Table 3.
Algorithm | AUROC | Sensitivity | Specificity | Accuracy | Balanced Accuracy |
---|---|---|---|---|---|
Featureless | 0.50 (0.00) |
1.00 (0.00) |
0.00 (0.00) |
0.68 (0.05) |
0.50 (0.00) |
Logistic Regression | 0.72 (0.06) |
0.75 (0.06) |
0.62 (0.10) |
0.71 (0.05) |
0.69 (0.06) |
Naïve Bayes | 0.84 (0.04) |
0.85 (0.04) |
0.76 (0.08) |
0.82 (0.04) |
0.80 (0.04) |
Regularized Regression (ElasticNet) | 0.89 (0.02) |
0.88 (0.04) |
0.73 (0.07) |
0.83 (0.03) |
0.80 (0.03) |
k-nearest Neighbor | 0.85 (0.03) |
0.88 (0.05) |
0.60 (0.09) |
0.79 (0.04) |
0.74 (0.04) |
Support Vector Machine | 0.90 (0.03) |
0.85 (0.04) |
0.86 (0.07) |
0.85 (0.03) |
0.85 (0.04) |
Random Forest | 0.92 (0.03) |
0.90 (0.03) |
0.82 (0.07) |
0.87 (0.03) |
0.86 (0.04) |
Gradient Boosted Trees | 0.92 (0.02) |
0.89 (0.04) |
0.82 (0.08) |
0.87 (0.03) |
0.85 (0.04) |