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Editorial 

Towards real-time radiotherapy planning: The role of autonomous treatment strategies 

Today’s radiation therapy (RT) is a lengthy process, where the pa-
tient needs several appointments for consultation, simulation and frac-
tioned treatment. In recent years accelerated treatment regimens 
including hypofractionation and single-fraction treatments have gained 
attention and may improve patient comfort, workflow efficiency and 
reduce costs [1]. Palacios et al. [2] described in this volume of our 
journal a same-day consultation, simulation and treatment workflow for 
stereotactic ablative radiotherapy (SABR) using a magnetic resonance 
imaging linear accelerator (MRI-Linac). The study included ten patients 
with small lung tumors eligible for single fraction treatment. For all 
patients, the consultation, treatment simulation, planning and delivery 
were realized on the same day. The median time reported for the whole 
process was 6.6 h, with a median of 2.6 h for the treatment planning as 
the most time-consuming step. Good patient satisfaction was reported in 
a post treatment questionnaire. 

In Palacios et al.’s study, a main component to ensure a fast radio-
therapy planning process was a pre-planning step based on the diag-
nostic computed tomography (CT) data set [2]. This pre-planning was 
used to facilitate the whole process for the involved physician and 
physicist and also to steer the planning constraints in order to reduce 
time for manual tweaking of the patient individual constraints on the 
planning day. Such pre-optimization might also be a way to increase 
efficacy of conventional planning procedures and speed-up this part of 
the workflow. Recent studies have proposed to predict radiation dose 
distributions based on deep learning (DL) models applied to diagnostic 
CT [3]. Such DL based decision support tools, applied to diagnostic 
imaging information, might in the future enable to estimate potential 
side effects and risks related to RT already at the time of patient 
consultation and thus enable the physician as well as the patient to take 
informed treatment decisions. Potentially, pre-planning based on diag-
nostic imaging might be used directly as input for online-adaptive RT, 
which has to the best of our knowledge not yet been investigated. 

The one-day workflow proposed by Palacios et al. [2] used auto-
mation only to a minor extent and it is therefore highly dependent on the 
availability of staff throughout the day and not easily scalable to 
increasing patient numbers. Automated tools for various steps in the 
radiotherapy planning workflow such as automatic contouring [4–8] 
and radiotherapy planning [9–13] recently gained attention. For 
instance, Johnston et al. [7] showed the usability of a convolutional 
neural network for segmentation of thoracic organs at risk. Although 
auto-contouring of targets is more challenging, Xie et al. [8] recently 
introduced a 3D neural network for lung lesion contouring. Also, for 
treatment plan optimization different approaches were proposed 

[9–13]. While automation tools for single workflow steps are already in 
clinical use, the next goal should be an autonomous workflow inte-
grating contouring and plan optimization. Xia et al. [14] already showed 
the feasibility of a full-process solution for rectal cancer, integrating 
artificial intelligence based automated contouring and planning. For 
prostate cancer Künzel et al. [15,16] proved that such automated tools 
can be combined to an autonomous treatment planning workflow 
without human interaction for reference plans in magnetic resonance 
guided radiotherapy. In such a way the treatment planning process 
would be accelerated in a scalable approach. 

The work published by Palacios et al. [2] has demonstrated the po-
tential related to timing efficiency with respect to the whole RT chain, i. 
e. simulation, data annotation, planning, patient-specific quality assur-
ance and RT delivery. In their study, the authors impressively showed 
that the whole treatment planning and delivery chain can be effectuated 
in one day. In the same way of thought, several recent studies have 
shown that fully automated contouring and RT planning is possible 
[14–17]. Future developments might therefore enable real-time anno-
tation, planning and delivery. Consequently, this might allow for one- 
stop-shop simulation and treatment delivery making separate simula-
tion exams obsolete. 

In conclusion, the work published by Palacios et al. [2] in this virtual 
special issue of Physics and Imaging in Radiation Oncology focusing on 
highlights of ESTRO 2022 medical physics contributions impressively 
showed that developments towards low latency time or real-time RT 
simulation and planning is a current research focus. To enable future 
clinical implementation of such artificial intelligence driven real-time 
applications [18], further research is needed in the fields of automa-
tion in data annotation and target contouring, RT planning including 
dose calculation but also dedicated tools for the quality assurance of 
fully automated workflows need to be developed. Furthermore, ethical 
aspects related to autonomous cancer treatments including definitions of 
dedicated checkpoints for human interaction to allow expert checks and 
stopping rules need to be defined and investigated. 
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