Skip to main content
. 2022 Nov 18;12:19899. doi: 10.1038/s41598-022-24356-6

Table 1.

Summary of the dataset and tasks used to evaluate Deep Explanation Ensembles alongside baseline model and training hyperparameters.

Dataset name Dataset descriptors Baseline model hyperparameters Baseline training hyperparameters
Task Num. samples Num. features Num. classes Model architecture Num. hidden layers Num. epochs Learning rate Batch size
Breast cancer Wisconsin Binary classification 569 10 2 MLP 2 14 0.001 64
KAIMRC Binary classification 18,844 24 2 MLP 3 14 0.001 32
KAIMRC Regression 18,844 24 N/A MLP 3 14 0.001 32
MIMIC-IV Binary classification 383,220 N/A 2 flexible-ehr 4 20 0.0005 128
Codon usage (Kingdom) Multi-class classification 12,964 64 5 MLP 1 16 0.0001 32
Codon usage (DNA) Multi-class classification 12,964 64 3 MLP 1 20 0.0001 32

Note that MIMI-IV is a time-series dataset and so each entry will have different numbers of features, and the KAIMRC (Regression) task has no target class as it is a regression problem.