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A B S T R A C T   

Introduction: Demand for total shoulder arthroplasty (TSA) has risen significantly and is projected to continue 
growing. From 2012 to 2017, the incidence of reverse total shoulder arthroplasty (rTSA) rose from 7.3 cases per 
100,000 to 19.3 per 100,000. Anatomical TSA saw a growth from 9.5 cases per 100,000 to 12.5 per 100,000. 
Failure to identify implants in a timely manner can increase operative time, cost and risk of complications. 
Several machine learning models have been developed to perform medical image analysis. However, they have 
not been widely applied in shoulder surgery. The authors developed a machine learning model to identify 
shoulder implant manufacturers and type from anterior-posterior X-ray images. 
Methods: The model deployed was a convolutional neural network (CNN), which has been widely used in 
computer vision tasks. 696 radiographs were obtained from a single institution. 70% were used to train the 
model, while evaluation was done on 30%. 
Results: On the evaluation set, the model performed with an overall accuracy of 93.9% with positive predictive 
value, sensitivity and F-1 scores of 94% across 10 different implant types (4 reverse, 6 anatomical). Average 
identification time was 0.110 s per implant. 
Conclusion: This proof of concept study demonstrates that machine learning can assist with preoperative planning 
and improve cost-efficiency in shoulder surgery.   

1. Introduction 

Total shoulder arthroplasty (TSA) is among the most commonly 
performed joint replacement procedures in the United States to treat 
glenohumeral osteoarthritis, humerus fractures, and other related joint 
diseases and traumas. From 2012 to 2017, the incidence of reverse total 
shoulder arthroplasty (rTSA) increased from 7.3 cases per 100,000 to 
19.3 cases per 100,000, while anatomical total shoulder arthroplasty 
(aTSA) increased from 9.5 cases per 100,000 to 12.5 cases per 100,000.1 

One study estimated a 122% growth in the overall demand of TSA by 
2040, with rTSA projected to increase at a faster rate than aTSA.2 

However, there has also been an increase of revision arthroplasties.3,4 

The most common reasons for shoulder arthroplasty failure include 
glenoid component failure and rotator cuff/subscapularis tear for aTSA 
and dislocation/instability and infection for rTSA.5 There is also 
considerable variation in failure modes across implant manufacturers.5 

Indications for revision arthroplasty include component loosening, 

infection, or trauma.6 Although shoulder arthroplasties are expected to 
last 10–15 years, one recent review found a mean time to revision of 3.9 
years from the initial procedure.7 Accurate and timely identification of 
implant types is critical for preoperative planning. This is because sur-
geons will need to obtain specific extraction equipment depending on 
the implant type for proper revision. Surgical technique may also differ 
depending on the implant. Implants are typically identified through 
manual image analysis by a surgeon or other medical expert. This can be 
a time-intensive process and requires detailed knowledge of each 
implant type. It is especially challenging with more obscure or outdated 
implants that require more extensive research and labor to properly 
identify. Additional difficulties arise when patients transition between 
institutions. Approximately 30% of readmissions following TSA take 
place at a different hospital than that of the original arthroplasty.8 The 
methodology and detail used to document implants is not standardized 
across hospitals, which complicates the identification process. It has 
only been in recent years that the United States Food and Drug 
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Administration has mandated the use of Unique Device Identifiers 
(UDIs), which underscores the issue of device identification in the US 
healthcare system.9 To the authors’ knowledge, no studies have specif-
ically analyzed the issue of implant identification in TSA. However, a 
study on orthopedic implant replacement found the median time of 
identification to be 20 min with approximately 10% of implants being 
unidentified preoperatively.10 Failure to accurately identify an implant 
can lead to increased operative time, complications, and cost.11 With 
rising healthcare costs and bundled payment models, it is essential to 
improve efficiency and maximize time expenditure for shoulder sur-
geons and staff. Implant identification is an inefficiency in shoulder 
arthroplasty that can be enhanced to improve the overall cost effec-
tiveness of care. 

Machine learning can address the issue of implant identification 
through automated image classification algorithms. These models excel 
at analyzing complex image data in comparison to traditional statistical 
methods. Machine learning has been widely applied in many medical 
specialties. In orthopedics specifically, models have been developed to 
classify fractures12,13 and spinal deformities14,15 with a high degree of 
accuracy. Therefore, the authors hypothesized that this technology can 
be used to identify shoulder implants from radiographs. This is a proof of 
concept study demonstrating the ability of machine learning to auto-
matically classify reverse and anatomical shoulder implants based on 
anterior posterior (AP) X-ray images. The technology may be used to 
assist with preoperative planning, particularly with revision surgeries. 

2. Materials and methods 

2.1. Image dataset 

Institutional review board approval was obtained prior to the start of 
this study. 696 AP radiographs of shoulder arthroplasties, containing 10 
different types of shoulder implants, were obtained from a single insti-
tution through the picture archiving and communication system (PACS). 
Criteria for image selection included AP radiographs of patients aged 18 
or older who underwent primary or reverse total shoulder arthroplasty. 
Images of poor quality or with significant artifacts were excluded from 
analysis. Implants were identified using operative notes, case implant 
reports, and review from a fellowship trained shoulder surgeon. The 
final data set consisted of four reverse and six anatomical implants. The 
full list of implants is shown in Table 1. Not all implants in use across the 
United States were available for the model because selection was limited 
to those used at the single institution. Images were randomly partitioned 
into 70% train and 30% test datasets. The final model was evaluated on 
the test dataset, which consisted of images the model had never seen. For 
preprocessing, images were converted to grayscale and reshaped into 
square sized images of dimension 224x224. 

2.2. Machine learning algorithm 

The machine learning algorithm used in this study was a variant of 
densenet121,16 a pretrained convolutional neural network (CNN). This 

type of model has been widely used for computer vision tasks and has 
demonstrated excellent proficiency in complex image analysis. A CNN 
scans through an image using filters, detecting key features such as 
edges and corners. The information is propagated through several layers 
and then synthesized to reach a classification decision (implant identi-
fication in this context). A CNN learns by seeing hundreds of images and 
their corresponding labels, making incremental improvements over 
several iterations. A schematic for the model is shown in Fig. 1. 484 
implants were used to train the CNN. The model was trained for a 
maximum of 200 epochs with early stopping if no improvement was 
seen in validation accuracy for 60 consecutive epochs. The model was 
then evaluated on 212 test implants that it previously had not been seen 
before. 

2.3. Performance metrics 

Model performance on the test set was assessed using the following 
metrics: accuracy, positive predictive value (PPV), sensitivity, and F-1 
score. The F-1 score is an average of PPV and sensitivity. A value of 1.0 
represents a perfect F1-score. In the problem of classifying shoulder 
implants, each implant type may only occur a few times per 100 images. 
This yields a large ratio of true negatives to true positives for a given 
implant, which inflates accuracy metrics and makes them less useful for 
evaluating model performance. The PPV and sensitivity metrics address 
this issue by focusing on the positive classifications, which are important 
to scrutinize closely. Since both of these metrics are important in a 
strong classifier, the F-1 score is the most useful metric for model per-
formance despite its less intuitive nature. Metrics were generated for 
overall and implant-specific performance. Saliency heat maps were also 
generated, which highlight the most important elements of the implant 
that best inform model decisions. This provides added transparency to 
the model’s analytical process and helps further validate the model. 

2.4. Software 

Python (v. 3.7) and the open source machine learning library Keras 
(v. 2.2.2) were used for algorithm development. The code was adapted 
from a model the authors’ previously created to identify hip implants 
from X-rays. 

3. Results 

The algorithm demonstrated an overall accuracy of 93.9% for 10 
shoulder implants on the test dataset. Likewise, overall PPV, sensitivity, 
and F-1 score were all 0.94 as well. The algorithm identified implants 
from 212 test radiographs in 23.37 s, averaging 0.110 s per image. 
Performance metrics and a confusion matrix for individual implants are 
shown in Table 1 and Fig. 2, respectively. The top performing implants 
were Arthrex Univers Apex, Zimmer Trabecular Metal Reverse, and 
Zimmer Bigliani-Flatow (Zimmer BF) with scores of 0.92 and above for 
all three metrics. The model achieved a high PPV but low sensitivity 
with Arthrex Univers II and Arthrex Univers Reverse. Depuy Delta Xtend 
Reverse was the worst performing implant with a score of 0.50 for all 
metrics due to data limitations. 

Saliency maps (Fig. 3) indicate the areas of highest importance when 
the model performs classification and provide transparency on the 
model’s “thought” process. This ensures that it is not simply analyzing 
arbitrary patterns and adds to the validity of the model. The mapping 
demonstrates that in correct cases the model examines logical features of 
the implant, such as the neck and head. These are key elements that a 
surgeon would use to discern the implant type. In incorrect cases, the 
model tended to focus away from the implant towards the periphery of 
the image. 

Table 1 
Performance metrics for individual implants.  

Implant N PPV Sensitivity F1-Score 

Arthrex Univers Apex 11 0.92 1.00 0.96 
Arthrex Univers II 3 1.00 0.67 0.80 
Arthrex Univers Reverse 9 1.00 0.67 0.80 
Depuy Delta Xtend Reverse 2 0.50 0.50 0.50 
Stryker Reverse 23 1.00 0.87 0.93 
Stryker Total 6 0.86 1.00 0.92 
Zimmer Bigliani Flatow (Zimmer BF) 61 0.97 0.98 0.98 
Zimmer Trabecular Metal Reverse 79 0.93 0.99 0.96 
Zimmer Trabecular Metal 12 0.91 0.83 0.87 
Zimmer Trabecular Metal Glenoid 6 0.83 0.83 0.83  
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4. Discussion 

In this study, the authors validated a machine learning algorithm for 
the automated identification of 10 reverse and anatomical shoulder 
implants from X-ray images. The model performed strongly with high 
overall accuracy, sensitivity, PPV, and F1-score. Overall accuracy was 
approximately 9.4 times greater than random chance (1/10). In addi-
tion, the model was also able to accurately classify and distinguish 
anatomical and reverse implants by manufacturer and implant name. 
This proof of concept study provides evidence suggesting that a machine 
learning algorithm may be used to assist shoulder surgeons with implant 
identification in real-world clinical settings. With a larger dataset and a 
more diverse array of implant classes, this technology may be further 
refined for clinical use. 

Clinical application of a machine learning algorithm for the identi-
fication of shoulder implants could be of great benefit to the busy joint 
reconstruction surgeon’s workflow. The current paradigm for implant 
identification involves substantial time investment, and the process may 
require the input of several parties to arrive at a firm conclusion. Wilson 
et al. estimated that the median identification time for an orthopedic 
implant was 20 min.10 By comparison, the algorithm presented in this 
work identified each implant in 0.110 s on average. Additionally, 87% of 
surgeons reported using a minimum of three methods to identify an 
implant.10 A well-made identification algorithm could become the only 
required method for identification. The cumulative surgeon time used 
for implant identification is projected to be over 133,000 h in 2030, 
which is the equivalent of 275,000 15 min office visits in 2020.11 

Clinical implementation of automated implant identification algorithms 

Fig. 1. Simplified schematic representation of the convolutional neural network pipeline used for image classification.  

Fig. 2. Normalized confusion matrix of algorithm predictions. Values are expressed as a percentage of true class images. True class is on the y-axis and predicted class 
is on the x-axis. Darker shading indicates higher values. 
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could virtually eliminate this time investment and allow surgeons to 
reinvest valuable time elsewhere. 

Other studies have attempted to develop a machine learning algo-
rithm to identify shoulder implants. Urban et al. trained a machine 
learning model to classify shoulder implants from X-rays on the basis of 
four manufacturers, achieving an overall accuracy of 80%.18 The au-
thors’ algorithm, in contrast, identifies more implants with greater ac-
curacy. This added granularity provides greater clinical utility as several 
implant types exist per manufacturer. These have been produced over 
varying decades and will likely require differing equipment and proce-
dural techniques. The authors’ model additionally demonstrates the 
ability to classify reverse implants, which constituted 4 of the 10 im-
plants in the sample. This is particularly significant moving forward 
because rTSA is outgrowing aTSA in terms of utilization.2 For patients 
85 and older, rTSA is expected to grow by 120%, while aTSA is projected 
to decline by 20%.2 Therefore, shoulder surgeons will increasingly 
encounter reverse implants, making it critical for an algorithm to 
accurately classify both reverse and anatomical implants. Yi et al. also 
developed a model to classify five shoulder implant models from X-ray 
images with high accuracy and area under the curve (AUC).19 However, 
they trained five separate binary classifiers (one for each implant type), 
thereby limiting clinical utility at scale. Their model was able to 
distinguish whether an implant was reverse or anatomical, but not by 
specific manufacture or type. The authors’ model improves upon that of 
Yi et al. First, this model demonstrates strong proficiency in classifying 
up to 10 implant types, including reverse implants. Second, the model is 
a single multi-classifier model, which is more memory efficient and 
therefore more readily deployable in clinical practice. Machine learning 
algorithms are computationally expensive and efficiency of design must 
be taken into account for real world application. Efficient algorithms 
enable deployment on smaller platforms such as consumer computers or 
smartphones. Despite the presented algorithm’s strong performance in 
implant identification, several limitations remain. First, class imbalance 
was an issue with certain implants being underrepresented in the 
dataset. Model performance suffered with these implants in particular. A 
smaller sample size results in fewer examples for the algorithm to learn 
from, which ultimately results in lower accuracy and potentially biases 
predictions toward majority classes. This was accounted for in part by 
implementing class weights while training the model, where certain 
implant types are weighted more or less heavily depending on their 
prevalence in their dataset. However, the gold standard solution would 
simply be to increase the number of minority classes. This should be an 
aim for future studies. Second, this study was limited to X-rays from a 
single institution. This limits the selection of images, as not all implant 
types in the United States are used. Factors such as X-ray quality and 

technique also vary across institutions. Future studies should consider 
the possibility of using multi-institutional data from a wide selection of 
regions to enhance implant diversity in their dataset. There are, how-
ever, significant challenges to broad implant data acquisition. Radio-
graphs are typically siloed by institutions due to HIPAA requirements. In 
addition, imaging data is generally memory intensive, so storage and 
transfer of large quantities poses a significant logistical and computa-
tional burden. Ideally, the finalized version of this software for clinical 
use should include the majority of, if not all, implants used across the 
United States. This study demonstrates the potential of machine learning 
in automating implant identification, and this initial model may be 
further developed for real time clinical use. 

5. Conclusion 

Rapid identification of shoulder implants is a critical part for pre-
operative planning in shoulder arthroplasties and revisions. In this work, 
the authors’ present a machine learning algorithm that is capable of 
identifying shoulder implants from AP plain films with high accuracy 
and speed. This work improves upon previous studies by classifying 
more implant types, including reverse implants, with equal or greater 
performance. While this is a proof of concept study, the technology may 
be augmented with the addition of more implant types and ultimately be 
leveraged to promote cost-effective care in shoulder arthroplasty 
procedures. 
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