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ARTICLE

The construction of cross-population polygenic
risk scores using transfer learning

Zhangchen Zhao,1,* Lars G. Fritsche,1,2 Jennifer A. Smith,3 Bhramar Mukherjee,1,2,3,*
and Seunggeun Lee1,4,*
Summary
As most existing genome-wide association studies (GWASs) were conducted in European-ancestry cohorts, and as the existing polygenic

risk score (PRS) models have limited transferability across ancestry groups, PRS research on non-European-ancestry groups needs tomake

efficient use of available data until we attain large sample sizes across all ancestry groups. Here we propose a PRS method using transfer

learning techniques. Our approach, TL-PRS, uses gradient descent to fine-tune the baseline PRSmodel from an ancestry group with large

sample GWASs to the dataset of target ancestry. In our application of constructing PRS for seven quantitative and two dichotomous traits

for 10,285 individuals of South Asian ancestry and 8,168 individuals of African ancestry in UK Biobank, TL-PRS using PRS-CS as a base-

line method obtained 25% average relative improvement for South Asian samples and 29% for African samples compared to the stan-

dard PRS-CS method in terms of predicted R2. Our approach increases the transferability of PRSs across ancestries and thereby helps

reduce existing inequities in genetics research.
Introduction

Genetic risk prediction is one of the widely investigated

topics in genetic epidemiology, as it can help us better un-

derstand the genetic architecture of complex traits and

potentially aid clinical decision-making.1–3 Many poly-

genic risk score (PRS) construction methods have been

developed, including pruning and thresholding (PT),4 Las-

sosum (Lsum),5 polygenic prediction via continuous

shrinkage priors (PRS-CS),6 and LDpred.4 Overall, these

methods perform well and help to identify high-risk indi-

viduals within the same ancestry group.2,4,7,8 However,

due to insufficient GWAS data from non-European-

ancestry groups such as South Asian and African ancestry,

PRSs for these cross-population groups often show only

limited prediction performance.5,6 In addition, due to ge-

netic differences across ancestry groups, the direct use of

PRS models trained with European data to non-European

individuals was shown to lead to reduced prediction

accuracy.4,8

To address this issue, Márquez-Luna et al. proposed a

cross-population PRS model by linearly combining two

PRSs, each trained from different-ancestry GWAS summary

statistics.9 They attained more than 70% relative improve-

ment in prediction accuracy for type 2 diabetes in both

Latino and South Asian cohorts compared to prediction

models from a single-ancestry GWAS. PRS-CSx10 imple-

mented the same linear-combination approach using two

PRSs trained with PRS-CS. However, this linear-combina-

tion approach implicitly assumes that the optimal effect

sizes (or beta coefficients) weighting for prediction are a

linear combination of the effect sizes of two PRSs, which
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may not hold in all situations. In addition, this method

cannot be used when GWAS summary statistics are avail-

able for only one ancestry.

Here we propose a cross-population PRS using transfer

learning techniques,11 borrowed from machine learning

literature. Transfer learning is a widely used tool that ap-

plies a pre-trainedmodel to a different but related problem.

The usual procedure of transfer learning is a gradient-based

optimization when modeling the second task.12,13 From

the practical viewpoint, the reuse or transfer of informa-

tion from previously learned tasks for the learning of

new tasks has the potential to significantly improve the

prediction performance compared to the baseline methods

as well as reduce the required sample size of training

data.11

Our approach, transfer learning PRS (TL-PRS), fine-tunes

the baselinemodel pre-trained with GWAS summary statis-

tics from an ancestry group of larger sample size to a

smaller target ancestry group. TL-PRS can use PRSs from

any existing PRS methods (such as Lsum and PRS-CS) as

a baseline model. Using the effect sizes of the baseline

model as initial values, TL-PRS iterates the gradient descent

algorithm to adapt the effect sizes for the target ancestry

group. In the presence of multiple GWAS summary statis-

tics from different ancestries, TL-PRS fine-tuned linearly

combined PRS. Since TL-PRS uses a simple gradient

descent, it is scalable for large datasets.

In our simulations, TL-PRS outperformed existing PRS

methods in a wide range of genetic architectures and

cross-ancestry genetic correlations. In a real-world example

with individual-level data from the UK Biobank (UKBB),

we use a European-ancestry GWAS from UKBB and an
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East-Asian-ancestry GWAS from BioBank Japan (BBJ) as

pre-training data to predict nine traits in 10,285 samples

of South Asian (SAS) and 8,168 samples of African ancestry

(AFR). Compared to the baseline methods, TL-PRS substan-

tially improved the prediction accuracy for most traits. For

example, TL-PRS using PRS-CS as the baseline method ob-

tained 25% average relative improvement for SAS samples

and 29% for AFR samples comparing directly using PRS-CS

in terms of predicted R2. By improving the polygenic risk

prediction in non-European-ancestry individuals, our

approach helps reduce the prevailing inequities in genetic

and health research until we attain comparable sample

sizes across all ancestry groups.
Material and methods

Polygenic risk score construction using single-ancestry

GWAS summary statistics
With GWAS summary statistics (i.e., the effect-size estimate and

standard error), a PRS is constructed as the summation of the esti-

mated effects across all genetic variants on a given phenotype. For

individual i, PRS can be defined as

PRSi ¼
XM
j¼1

bbjGij;

where M is the number of variants, Gij is the genotype of the ge-

netic variant j, and bbj is the effect size. There are several well-

known methods that estimate the effect sizes bbj using GWAS

summary and linkage disequilibrium (LD) information, such

as PT, Lsum, and PRS-CS. PT computes the PRS on a subset of ge-

netic variants based on LD-pruning and p value thresholding.

Lsum re-estimates the effect sizes using elastic net on GWAS

summary statistics. The hyperparameters include the coeffi-

cients of L1 and L2 penalties. PRS-CS is a Bayesian polygenic

prediction approach that uses a continuous shrinkage prior to

deriving posterior effect sizes. Overall, PT and Lsum are compu-

tationally fast, whereas PRS-CS requires more computational

time. In terms of prediction accuracy, Lsum and PRS-CS gener-

ally outperform PT.5,6

Transfer learning (TL-PRS) using single-ancestry GWAS

summary statistics
Supposing that we have pre-trained a PRSmodel usingGWAS sum-

mary statistics from a source ancestry, this model could be consid-

ered as prior knowledge to predict the genetic effects in the target

ancestry. However, due to different LD patterns and possible ef-

fect-size heterogeneity across ancestries, effect-size estimation

from the source ancestry can result in biased estimators of effect

sizes in the target ancestry. To adapt the model to the target pop-

ulation and achieve better prediction performance, we borrow the

idea of transfer learning and attempt to combine information

from the baseline model and the target sample data.

Specifically, for the target ancestry group, we have the following

model:

Y ¼
XM
j¼1

Gjbj þ Cgþ ε ¼
XM
j¼1

Gj

�
b
pre
j þ tj

�
þ Cgþ ε;

where bj is the true effect size of the target ancestry group, assumed

to be unknown; b
pre
j is given by the pre-trained model; tj is the dif-
The American Jour
ference between b
pre
j and bj; C is the covariate matrix including the

intercept; and g is a vector of covariate coefficients. Our goal is to

minimize the following loss function:

Loss ¼
 
Y �

XM
j¼1

Gjbj � Cg

!2

:

The first and second derivative of loss function with respect to

bj is

vLoss

vbj

¼ �2GT
j ðY � Gb � CgÞ; v2Loss

vb2
j

¼ 2GT
j Gj > 0:

Since the second derivative is constantly larger than 0, we can

perform a gradient descent algorithm on bj with the initial value

b
pre
j . Given the current estimate bj

ðrÞ in the r-th iteration, the

next value, i.e., bj
ðrþ1Þ is

bj
ðrþ1Þ ¼ bj

ðrÞ � a0vLoss
vbj

¼ bj
ðrÞ þ 2a0GT

j

�
Y � GbðrÞ � Cg

�
;

(Equation 1)

and we define the learning rate a ¼ 2a0. Like many existing

methods, such as Lsum, LD blocks were used when updating bj.

LD blocks were defined by Berisa and Pickrell in 2016 to partition

the whole region.14 In addition, early stopping of iteration is

required to avoid overfitting.

Both the learning rate a and the number of iterations tstop can be

selected based on the validation dataset in terms of the best predic-

tion accuracy. In order to reduce computation cost, we suggest

choosing a from a small grid of values min
�
1;10;100;1000

m ;1
�
, where

m is the number of variants with non-zero effect sizes from the

pre-trained model.

TL-PRS in Equation 1 requires individual-level data for both

model fitting and hyper-parameter tuning, and we refer to it as

TL-PRS(ind) specifically. When the individual-level data from the

training sample are not accessible, TL-PRS can still be applied if

GWAS summary statistics of the target ancestry are available. In

the step of model fitting, GTY can be estimated by the summary

statistics of the target ancestry,5 and GTG can be estimated by

the target ancestry using a public reference dataset, such as the

1000 Genomes Project. In the step of hyper-parameter tuning,

the approach of using individual-level data is applied in default.

The model requirements of TL-PRS and TL-PRS(ind) can be found

in Table S1.
Combining multiple GWAS summary statistics from

different ancestries
Supposing two PRSs, PRS1 and PRS2, are constructed from two

different GWAS summary statistics, then the cross-population

PRS can be built as

PRS ¼ pPRS1 þ ð1 � pÞPRS2;
where p is a tuning parameter with range [0,1] and can be decided

using the cross-validation method.9 Specifically, p is selected from

a vector of 0, 0.05, 0.1, ., 0.95, and 1. This idea was proposed by

Márquez-Luna et al. in 2017 using PT to construct a single-

ancestry PRS, which was referred as PT-multi, and also used with

PRS-CS (PRS-CSx10). This can be also used with Lsum, and we refer

to it as Lsum-multi.

Similarly, the linear combination can also be applied to TL-PRS

models. For example, with TL-PRS-Lsum models from two ances-

tries, we can linearly combine them first as the initial value and
nal of Human Genetics 109, 1998–2008, November 3, 2022 1999



then implement transfer learning (referred as MTL-PRS-Lsum).

MTL-PRS-CS can also be constructed in the same way.

Beyond the combination of two ancestries, we can further

extend this idea to three or more different ancestries. Supposing

that we have PRSs from three different ancestries, PRS1, PRS2,

and PRS3, then the cross-population PRS can be built as

PRS ¼ p1PRS1 þ p2PRS2 þ ð1 �p1 �p2ÞPRS3; where p1;p2 R 0

and p1 þ p2 %1, and thenMTL-PRS can be constructed using line-

arly combined PRS as initial inputs.
Simulations using SAS samples in the UK Biobank
We simulated quantitative phenotypes using real data from

10,285 SAS sample genotypes in UKBB. The proportion of causal

markers was fixed at 0.1% and 1%, and the SNP heritability hg
2

was fixed at 0.5. The normalized effect sizes bi were generated

from a normal distribution with mean 0 and variance equal to

hg
2 divided by the number of causal markers. The per-allele effect

size is bi ¼ biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p , where pi is the minor allele frequency of the

i-th SNP. We simulated phenotypes as Yj ¼
PM
i¼1

bigij þ εj; where

εj � Nð0;1 �hg
2Þ and M is the number of SNPs, and only

HapMap3 variants15 were included in the simulation.

The GWAS summary statistics, based on 10,000 individuals of

South Asian and 100,000 individuals of European ancestry, were

generated based on the formula bbi � NðbRbi; bR =nÞ, where n is the

sample size and bR is the estimated correlation matrix of the LD

block region. We assumed that causal variants could be shared

across all ancestries (European and South Asian ancestries),

but varying effect sizes were allowed and sampled from a multi-

variate normal distribution with a genetic correlation of 0.4, 0.7,

or 1.0. Two sources (South Asian and European ancestry) of

GWAS summary statistics were further generated, and the sam-

ple sizes were 10,000 and 100,000, respectively. The simulation

of the phenotype was repeated 20 times.

We randomly split the 10,285 simulated samples into training,

validation, and testing datasets (Table S2). Ten PRS methods

were included in our comparison, including single-source predic-

tion methods (PT, Lsum, TL-PRS-Lsum, PRS-CS, and TL-PRS-CS)

and multi-source prediction methods (PT-multi, Lsum-multi,

MTL-PRS-Lsum, PRS-CSx, and MTL-PRS-CS). Their predictive per-

formances were measured by R2 between the simulated and pre-

dicted phenotypes in the testing dataset.

Although TL-PRS doesn’t require individual-level data of the

training dataset, individual-level validation data are recommen-

ded. For a fair comparison, we applied the PRS baseline models

(PT, Lsum, PRS-CS) using the combination of training and valida-

tion datasets for validation. Among them, PT and Lsum require

individual-level data, whereas PRS-CS does not. PT-multi, Lsum-

multi, and PRS-CSx were then implemented by linearly

combining PT, Lsum, and PRS-CS models, respectively. We note

that when selecting the tuning parameter p, PRS-CSx also requires

individual-level data. For the TL-PRS methods, baseline models

(Lsum, Lsum-multi, PRS-CS, and PRS-CSx) were first pre-trained

using a 1000 Genomes Project reference panel, and Scalable and

Accurate Implementation of GEneralized mixed model

(SAIGE)16–18 was used on the training dataset to calculate GWAS

summary statistics. Based on the pre-trained models and calcu-

lated summary statistics of the target population, TL-PRS can

further be fine-tuned given the individual-level data of the valida-

tion dataset. We note that TL-PRS doesn’t require individual-level
2000 The American Journal of Human Genetics 109, 1998–2008, Nov
data for training. The implementation details of all methods can

be found in Table S3.
Analysis of SAS and AFR samples in the UK Biobank
We constructed PRSs for the following target samples in UK Bio-

bank: individuals of South Asian ancestry (SAS) and individuals

of African ancestry (AFR). UK Biobank protocols were approved

by the National Research Ethics Service Committee, and partici-

pants signed written informed consent agreements. In each target

sample, we used the software Kinship-based INference for

Genome-wide association studies (KING)19 to exclude one individ-

ual in each related pair up to second-degree relatives. We then

built the polygenic predictionmodels on the following nine traits:

high-density lipoprotein (HDL), low-density lipoprotein (LDL),

body mass index (BMI), triglycerides (TGs), systolic blood pressure

(SBP), diastolic blood pressure (DBP), height (HGT), coronary ar-

tery disease (CAD), and type 2 diabetes (T2D). The first seven traits

were quantitative, and the last two traits were dichotomous.

Summary statistics of GWAS analyses on White British individ-

uals in UK Biobank (UKBB) and Japanese individuals in BioBank

Japan (BBJ) were downloaded from UKBB (https://pheweb.org/

UKB-Neale/) and BBJ PheWeb (http://jenger.riken.jp/en/result).

We restricted our analysis to common variants (MAF R 0.01) pre-

sented in summary data and target genotype files after removing

A/T and C/G SNPs to eliminate potential strand ambiguity.9

For each ancestry, the target samples were randomly split into a

training dataset, a validation dataset, and a testing dataset

(Table S2). We followed the same strategy of training models as

the simulation (Table S3). We applied single-source prediction

methods (PT, Lsum, TL-PRS-Lsum, PRS-CS, TL-PRS-CS) to UKBB

and BBJ summary statistics and used multi-source prediction

methods (PT-multi, Lsum-multi, MTL-PRS-Lsum, PRS-CSx, MTL-

PRS-CS) to combine UKBB and BBJ GWAS results. The prediction

accuracy was assessed in the testing dataset of each target ancestry

separately, adjusting for age, sex, and the top four principal com-

ponents (PCs). We used R2 as the prediction accuracy metric for

quantitative traits and Nagelkerke R2 for dichotomous traits. A

bootstrap method was implemented to estimate 95% bootstrap

confidence intervals for all prediction metrics. Specifically, we re-

sampled the testing data with replacements 1,000 times to calcu-

late prediction metrics, and the 2.5% and 97.5% percentiles

were used to estimate bootstrap confidence intervals.
Results

Overview of TL-PRS

We first built PRS models using existing methods, and

these models provided effect-size estimates of genetic var-

iants, which were used as initial values for TL-PRS. In this

paper, we used models pre-trained using Lsum5 and PRS-

CS6 as the baseline methods, which are referred to as TL-

PRS-Lsum and TL-PRS-CS, respectively. The TL-PRS

method can also be applied to any other pre-trained

models, such as MegaPRS20 and LDpred.4 When more

than one summary source is available, we can linearly

combine the baseline models first as the initial value and

then implement transfer learning (referred to as MTL-PRS).

The hyperparameters in TL-PRS include the learning rate

and the number of iterations. Given TL-PRS models from
ember 3, 2022
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A

B

Figure 1. Overview of TL-PRS methods
(A) The general procedure to construct TL-PRS.
(B) The detailed procedure of TL-PRS. The training data from the target population do not require individual-level data. Validation data
are recommended to be at the individual level to achieve the best prediction performance.
different GWAS summary sources, we can integrate them

by learning an optimal linear combination and then use

it as the initial value to implement TL-PRS (Figure 1).

Figure 2 shows the relative accuracy (R2
TL=R

2
Baseline) of TL-

PRS as a function of iterations. The relative accuracy in

the training dataset continues to increase as the number

of iterations increases, which caused the overfitting. How-

ever, the fifth iteration reached the maximum relative ac-
1

2

3

4

0 5 10 15
Iteration

R
TL2

R
Ba

se
lin

e
2

training set

validation set

A

Figure 2. Relative accuracy of transfer learning method by the nu
(A) The simulation result, where the proportion of causal markers wa
tics were used.
(B) The real data analysis of HDL in a South Asian cohort from UK B

The American Jour
curacy in the validation sets of both simulation and real-

data analysis, which suggested that the fifth iteration was

the optimal point to stop in these two examples. A similar

strategy can be applied to choose the learning rate.

Simulations using SAS samples in the UK Biobank

In the simulation, different scenarios were considered by

randomly selecting 0.1% or 1% variants across the
2

4

6

0 5 10 15
Iteration

R
TL2

R
Ba

se
lin

e
2

B

mber of iterations
s 0.1%, genetic correlation was 0.4, and European summary statis-

iobank, where UKBB summary statistics were used.
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Figure 3. Prediction accuracy of single-source and multi-source polygenic prediction methods in simulations
(A and B) The proportion of causal variants in (A) is 0.1% and the proportion of causal variants in (B) is 1.0%. In each setting, three
different cross-population genetic correlations (0.4, 0.7 and 1.0) were considered. Heritability was fixed at 50%. Prediction accuracy
was measured by the squared correlation (R2) between the simulated and predicted phenotypes in the testing dataset, averaged across
20 simulation replicates. Error bar indicates the standard deviation of R2 across simulation replicates.
genome as causal variants, which explained 50% of the

phenotypic variance in total. Additionally, causal variants

were assumed to be the same across ancestry groups, but

different effect sizes were simulated from a multivariate

normal distribution using the cross-ancestry genetic corre-

lation 0.4, 0.7, and 1.10 We generated 20 datasets in each

scenario to evaluate the predictive performance of

different PRS construction methods. We evaluated sin-

gle-source prediction methods (PT, Lsum, TL-PRS-Lsum,

PRS-CS, and TL-PRS-CS) that use a single-ancestry-group

GWAS to build prediction models and multi-source

prediction methods (PT-multi, Lsum-multi, MTL-PRS-

Lsum, PRS-CSx, and MTL-PRS-CS) that utilize multiple-

ancestry-group GWASs. The implementation details can

be found in Table S3.

Results of single-source polygenic predictionmethods in

simulation

The prediction accuracy of single-source and multi-source

polygenic prediction methods in the simulations can be

found in Figure 3. For a fixed heritability of 0.5, the predic-

tive performance of all ten PRS methods decreased when

the genetic architecture became more polygenic (0.1% vs
2002 The American Journal of Human Genetics 109, 1998–2008, Nov
1% causal). Although the causal variants were identical

across the ancestries, all ten PRS methods showed

decreased prediction accuracy when the genetic effects

were less correlated among ancestries. This is also the situ-

ation where TL-PRS could further improve the prediction

accuracy. For example, when genetic correlation was 0.4,

TL-PRS-Lsum improved the average prediction accuracy

by 241% and 57.1% compared to Lsum when the propor-

tion of causal variants was 0.1% and 1%, respectively

(Figure 4). The relative improvement of TL-PRS-CS over

PRS-CS was 44.4% and 44.8% on average. However,

when genetic correlation was 1.0, Lsum and PRS-CS are

sufficient for prediction in target ancestry because the

training and testing data shared same true effect sizes.

TL-PRS-Lsum and TL-PRS-CS could attain limited relative

improvement of the prediction accuracy in this situation.

In general, TL-PRS performed better when the genetic cor-

relation was smaller and when the causal variants were

sparser.

Table S4 shows the selected learning rates and iterations

across different simulation scenarios. When the genetic

correlation was low (0.4), the selected learning rate was

large. Conversely, when the genetic correlation was high,
ember 3, 2022
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Figure 4. Relative prediction accuracy of
single-source and multi-source TL-PRS,
with respect to the baseline models across
20 replicates in the simulation
Note the maximum value of y axis is 7 for
(A) and 1.8 for all other plots.
the learning rate was relatively small. However, we did not

observe the same trend for the number of iterations, as the

number of iterations highly depends on the choice of

learning rate. In terms of different proportions of causal

markers, there was no difference in selected learning rate

and iterations.
The American Journal of Human Genetics
Results of multi-source polygenic

prediction methods in simulation

We further assessed whether multi-

source prediction methods (PT-multi,

Lsum-multi, MTL-PRS-Lsum, PRS-CSx,

MTL-PRS-CS) could improve cross-

ancestry polygenic prediction. Specif-

ically, we combined PRS models from

European-ancestry summary statistics

(N ¼ 100K) and SAS summary statistics

(N ¼ 10K). When the genetic correla-

tion was 1, the multi-source prediction

methods cannot improve prediction

accuracy in comparison with the sin-

gle-source prediction methods using

European-ancestry summary statistics,

because European ancestry shared the

same true effect sizes as SAS and had

ten times the sample size. In the sce-

nario where the genetic correlation

was less than 1, multi-source predic-

tion methods improved prediction

accuracy over single-source prediction

methods, reflecting the increase in

source sample size. Overall, while

Lsum-multi outperformed PT-multi

and PRS-CSx in most cases, MTL-PRS-

Lsum further improved cross-ancestry

prediction accuracy comparing Lsum-

multi across all simulation settings

(Figures 3 and 4). For example, when

genetic correlation was 0.4, MTL-

PRS-Lsum improved the average pre-

diction accuracy by 7.38% and 11.6%

compared to Lsum-multi when the

proportion of causal variants was

0.1% and 1%.

In the training step, TL-PRS does not

require individual-level data, as the

gradients can be calculated with sum-

mary statistics. To evaluate whether us-

ing summary statistics can reduce the

performance of TL-PRS, we compared
it with a TL-PRS implemented with individual-level data,

TL-PRS(ind). Table S1 compares the model requirements

of TL-PRS and TL-PRS(ind). Figure S1 further showed that

TL-PRS had similar predicted R2 compared to TL-PRS(ind),

which shows that summary statistics are sufficient for

TL-PRS training.
109, 1998–2008, November 3, 2022 2003



Table 1. Prediction accuracy of 15 different approaches to construct PRS in the analyses of LDL in the African cohort of UK Biobank

Model Predicted R2 of PRS
Mean difference between top 10% and
bottom 10% PRS

Single-source PRS methods

PT (UKBB) 0.012 (0.004, 0.023) 0.388 (0.199, 0.564)

Lsum (UKBB) 0.033 (0.019, 0.048) 0.625 (0.423, 0.779)

TL-PRS-Lsum (UKBB) 0.058 (0.040, 0.079) 0.779 (0.602, 0.943)

PRS-CS (UKBB) 0.022 (0.012, 0.037) 0.552 (0.369, 0.714)

TL-PRS-CS (UKBB) 0.028 (0.015, 0.044) 0.506 (0.343, 0.721)

PT (BBJ) 0.028 (0.018, 0.045) 0.474 (0.326, 0.639)

Lsum (BBJ) 0.048 (0.032, 0.067) 0.595 (0.456, 0.770)

TL-PRS-Lsum (BBJ) 0.068 (0.048, 0.090) 0.795 (0.625, 0.967)

PRS-CS (BBJ) 0.023 (0.012, 0.036) 0.421 (0.274, 0.602)

TL-PRS-CS (BBJ) 0.028 (0.016, 0.044) 0.565 (0.389, 0.733)

Multi-source PRS methods

PT-multi 0.030 (0.019, 0.046) 0.531 (0.405, 0.715)

Lsum-multi 0.052 (0.036, 0.073) 0.727 (0.581, 0.895)

MTL-PRS-Lsum 0.068 (0.047, 0.088) 0.926 (0.727, 1.073)

PRSCSx 0.037 (0.022, 0.054) 0.662 (0.483, 0.823)

MTL-PRS-CS 0.044 (0.028, 0.062) 0.721 (0.569, 0.908)

The bootstrap confidence interval is shown in the parentheses. For single-source PRS methods, the training GWAS summary source is shown in the parentheses.
The approach with highest predicted R2 is highlighted using italics. UKBB, UK Biobank; BBJ, BioBank Japan.
Overall, our simulation shows that TL-PRS-Lsum and TL-

PRS-CS robustly improve cross-ancestry prediction over PT,

Lsum, and PRS-CS across varying genetic architectures and

genetic correlations. The relative improvement of TL-PRS

compared to the baseline method is over 40% when ge-

netic correlation is 0.4.

Prediction performance for SAS and AFR samples in the

UK Biobank

After excluding related individuals, the target sample sizes

of SAS and AFR were 10,285 and 8,168, respectively. We

randomly split them into training dataset (for model

fitting), validation dataset (for hyper-parameter tuning),

and testing dataset (for the evaluation of predictive perfor-

mance) (Table S2). We applied single-source prediction

methods to the UKBB or BBJ GWAS summary results and

used multi-source prediction methods to combine the

UKBB and BBJ GWAS results.

Table 1 shows the prediction accuracy of different PRS

constructionmethods in analyses of LDL in the AFR cohort

of UK Biobank. We selected LDL because it showed the

largest improvement compared to all other traits. When

using UKBB GWAS results, the predicted R2 of TL-PRS-

Lsum (0.058) was significantly higher than Lsum (0.033).

In addition, when using BBJ GWAS results, the predicted

R2 of TL-PRS-Lsum (0.068) was significantly higher than

Lsum (0.048), demonstrating higher prediction accuracy

in TL-PRS models. In addition, TL-PRS-CS also performed
2004 The American Journal of Human Genetics 109, 1998–2008, Nov
better than PRS-CS using single-source data. When

combining UKBB and BBJ GWAS results, both Lsum-multi

(0.052) and PRS-CSx (0.037) outperformed PT-multi

(0.030), as expected. At the same time, MTL-PRS-Lsum

(0.068) and MTL-PRS-CS (0.044) reached the best predic-

tion accuracy. The consistent conclusions were reached

when using the criteria of beta coefficients of normalized

PRS or the mean difference between top 10% and bottom

10% PRS. The detailed results of other traits in the SAS

and AFR samples can be found in Tables S5 and S6,

respectively.

Consistentwith the simulation results, TL-PRS-Lsum and

TL-PRS-CS outperformed Lsum and PRS-CS in most traits

from SAS and AFR samples (Figure 5). For SAS, TL-PRS-

Lsum attained 10% and 4% average relative improvement

in prediction accuracy using BBJ and UKBB GWAS results

compared to Lsum; the relative improvement of TL-PRS-

CS over PRS-CS was on average 39% and 11%, respectively.

For AFR samples, TL-PRS-Lsum attained 13% and 30% rela-

tive improvement of prediction accuracy in BBJ and UKBB

GWAS results compared to Lsum; TL-PRS-CS improved pre-

diction accuracy by 38% and 20% compared to PRS-CS.

When combining BBJ and UKBB GWAS results, MTL-PRS-

Lsum andMTL-PRS-CS had higher prediction performance

than Lsum-multi and PRS-CSx (Figure 5).

Figure 6 further compares all ten PRS methods among

all nine traits in the SAS and AFR samples. This bar plot

summarizes the number of times each PRS method ranked
ember 3, 2022
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Figure 5. Relative prediction accuracy of single-source and multi-source TL-PRS, with respect to the baseline models across nine
traits in South Asian and African populations
(A and B) South Asian populations are shown in (A) and African populations in (B). In both panels, every point shows the relative pre-
dicted R2 of a trait.
in the top 3 methods in terms of predicted R2 for 18 traits

and ancestry combinations (9 traits 3 2 ancestries). (The

detailed comparison can be found in Table S7.) Compared

to the baseline methods, TL-PRS appeared more times in

the top 3 than the baseline methods, demonstrating the

ability of TL-PRS to improve prediction accuracy. In addi-

tion, MTL-PRS generally performed better than TL-PRS

because MTL-PRS incorporated two different ancestries.

Overall, MTL-PRS-CS shows the most robust performance

across all situations since it ranks in the top 3 in almost

all situations (17/18).

Figure S2 shows the cumulative event plot using the

samples in the top 10% PRS across two ancestries. Across

all situations, TL-PRS methods were found to have a

similar or higher cumulative event curve than the base-

line method. For example, in the analysis of CAD in the

AFR cohort, when the age was up to 70, the cumulative

prevalence of the samples with the top 10% PRS con-

structed by TL-PRS-Lsum(UKBB) was 0.16, while the prev-

alence in the samples with the top 10% PRS using

Lsum(UKBB) was 0.12, suggesting that the TL method
The American Jour
can improve the prediction of individualized disease risk

and trajectories.

In general, TL-PRS using PRS-CS as baseline method ob-

tained 25% average relative improvement for SAS samples

and 29% for AFR samples comparing directly using PRS-CS;

TL-PRS using Lsum as baselinemethod obtained 7% average

relative improvement for SAS samples and 22% for AFR sam-

ples comparing directly using Lsum. Among all ten PRS

methods,MTL-PRS-CS is recommendeddue to its robust per-

formance across all possible situations.
Discussion

We have presented the TL-PRS method, which can adapt

the PRS model from other ancestries to the target ancestry.

We have shown, through simulation studies, that TL-PRS-

Lsum and TL-PRS-CS robustly improved cross-ancestry pre-

diction over Lsum and PRS-CS across traits with varying

genetic architectures and genetic correlations between

source and target ancestries. Using both quantitative and
nal of Human Genetics 109, 1998–2008, November 3, 2022 2005
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Figure 6. The method comparison across all nine traits in the individuals of South Asian and African ancestry
The y axis represents the number of times that each PRS method ranked in the top 3 in terms of predicted R2 for 18 traits and ancestry
combinations (9 traits 3 2 ancestries). Single-source prediction methods (PT, Lsum, TL-PRS-Lsum, PRS-CS, TL-PRS-CS) based on UKBB
and BBJ GWAS results and multi-source PRS methods (PT-multi, Lsum-multi, MTL-PRS-Lsum, PRS-CSx, MTL-PRS-CS) were included
in the comparison.
dichotomous traits from SAS and AFR samples in

UK Biobank, we have demonstrated that TL-PRS can

leverage large-scale European and East Asian GWASs to

boost the accuracy of polygenic prediction, for which

ancestry-matched GWAS results may be orders of magni-

tude smaller in sample size. In addition, MTL-PRS, which

combined two sources, robustly improved cross-ancestry

prediction over the linear-combination methods, such as

PT-multi, Lsum-multi, and PRS-CSx, across different

circumstances.

Overall, the performance of TL-PRS depends on many

factors, such as target ancestries and trait types. When ge-

netic correlations between source and target ancestries are

large, the baseline methods are sufficient for prediction,

and TL-PRS might not further improve the prediction per-

formance. When genetic correlations are small, TL-PRS

helps to adapt the effect sizes of the existing model to

the target data. The performance of TL-PRS also depends

on the baseline methods we choose. When changing

the European GWAS sample size from 100,000 to 50,000

in the simulation, TL-PRS performed worse (Table S8)

because the baseline method wasn’t trained well with

fewer samples. Because TL-PRS can be applied to a variety

of PRS methods, we expect that its predictive power will

improve with the development of better PRS baseline

methods. For example, Zhang et al. developed a software,

MegaPRS,20 which reportedly outperformed other

methods by allowing the specification of more realistic

heritability models.

In addition, when GWAS summary data from more

than one source ancestry are available, MTL-PRS, espe-

cially MTL-PRS-CS, is recommended in general due to its

robust performance in real-data analysis. For most traits

and diseases, European GWAS results are already available,

and East Asian GWAS results are also available for many

common traits and diseases. Consequently, these two

sources allow the implementation of MTL-PRS. As larger
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and more diverse biobanks, such as the pan-African bio-

bank, are being developed, we believe that there will be

future opportunities to combine three or more ancestries.

Moreover, TL-PRS could be further extended to admixed

populations with simple modifications. Future work is

needed to better evaluate the performance in admixed

populations.

TL-PRS can use GWAS summary results of the target sam-

ples to calculate gradients for transfer learning. In our

simulation and real-data analysis, we used only GWAS

summary results for TL-PRS training. However, TL-PRS

still requires individual-level data for validation and test

datasets. When the individual-level validation data are

unavailable, pseudo-validation5 could be applied for the

hyper-parameter selection, but the performance would be

unstable.21 Alternatively, recent studies20,22 showed that

summary statistics can be divided into pseudo-summary

statistics, i.e., two independent sub-datasets for training

and validation, and by doing so circumvent the require-

ment of individual-level data, e.g., when only summary

statistics of the target population are available.

Despite these advantages, our work is subject to limita-

tions and leaves several questions open for future explora-

tion. First, although we have demonstrated large relative

improvements in prediction accuracy, absolute prediction

accuracies are not sufficiently high to achieve clinical util-

ity for most traits;23,24 our simulations suggest that cross-

population PRS will continue to produce improvements

when more diverse GWAS results are available and the

sample sizes are larger. Second, when combing two sum-

mary sources, the improvement of our MTL-PRS over the

existing best PRS methods (PT-multi, Lsum-multi, and

PRS-CSx) is limited. More research work is needed to

combine more than one summary source. For example,

the heritability of the traits, which may differ across ances-

tries due to environmental factors, such as health behav-

iors and socioeconomic factors, can also be used to tune
ember 3, 2022



the model. Additionally, we did not incorporate data from

the X chromosome, which is likely to harbor additional

heritability that could improve prediction in some traits.25

Finally, we restricted our analyses to common variants, but

we may wish to incorporate the effects of rare variants in

future work.

While extending the present research to acquire more

diverse ancestry genomes with sample sizes equivalent

to European ancestry samples is the ideal, in the mean-

time, all existing available information should be effi-

ciently used to improve prediction across ancestries. We

believe that TL-PRS can increase the usefulness of PRS in

multiple ancestry groups and reduce potential health

inequities.
Data and code availability

The codes generated during this study are available at

https://github.com/ZhangchenZhao/TLPRS. The example

data and scripts can be found at https://www.dropbox.

com/sh/40vewd1kuxcbeev/AAD7Dj3H-sBTWv2ObUIDEH

Fya?dl¼0.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.09.010.
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