Skip to main content
. 2022 Oct 13;109(11):1998–2008. doi: 10.1016/j.ajhg.2022.09.010

Table 1.

Prediction accuracy of 15 different approaches to construct PRS in the analyses of LDL in the African cohort of UK Biobank

Model Predicted R2of PRS Mean difference between top 10% and bottom 10% PRS
Single-source PRS methods

PT (UKBB) 0.012 (0.004, 0.023) 0.388 (0.199, 0.564)
Lsum (UKBB) 0.033 (0.019, 0.048) 0.625 (0.423, 0.779)
TL-PRS-Lsum (UKBB) 0.058 (0.040, 0.079) 0.779 (0.602, 0.943)
PRS-CS (UKBB) 0.022 (0.012, 0.037) 0.552 (0.369, 0.714)
TL-PRS-CS (UKBB) 0.028 (0.015, 0.044) 0.506 (0.343, 0.721)
PT (BBJ) 0.028 (0.018, 0.045) 0.474 (0.326, 0.639)
Lsum (BBJ) 0.048 (0.032, 0.067) 0.595 (0.456, 0.770)
TL-PRS-Lsum (BBJ) 0.068 (0.048, 0.090) 0.795 (0.625, 0.967)
PRS-CS (BBJ) 0.023 (0.012, 0.036) 0.421 (0.274, 0.602)
TL-PRS-CS (BBJ) 0.028 (0.016, 0.044) 0.565 (0.389, 0.733)

Multi-source PRS methods

PT-multi 0.030 (0.019, 0.046) 0.531 (0.405, 0.715)
Lsum-multi 0.052 (0.036, 0.073) 0.727 (0.581, 0.895)
MTL-PRS-Lsum 0.068 (0.047, 0.088) 0.926 (0.727, 1.073)
PRSCSx 0.037 (0.022, 0.054) 0.662 (0.483, 0.823)
MTL-PRS-CS 0.044 (0.028, 0.062) 0.721 (0.569, 0.908)

The bootstrap confidence interval is shown in the parentheses. For single-source PRS methods, the training GWAS summary source is shown in the parentheses. The approach with highest predicted R2 is highlighted using italics. UKBB, UK Biobank; BBJ, BioBank Japan.