
ARTICLE

FastRNA: An efficient solution for PCA of single-cell RNA-sequencing
data based on a batch-accounting count model
Authors

Hanbin Lee, Buhm Han

Correspondence
hanbin973@snu.ac.kr (H.L.),
buhm.han@snu.ac.kr (B.H.)
FastRNA is an efficient data analysis

framework for single-cell RNA-seq. With

unique algebraic techniques, it reduced time

and memory requirement by orders of

magnitude. When applied to an atlas-scale

dataset with 2 million cells, it takes 1 min

and 1 GB of memory to complete feature

selection and dimension reduction.
Lee & Han, 2022, The American Journal of Human Genetics 109, 1974–1985
November 3, 2022 � 2022 American Society of Human Genetics.
https://doi.org/10.1016/j.ajhg.2022.09.008 ll

mailto:hanbin973@snu.ac.�kr
mailto:buhm.han@snu.ac.�kr
https://doi.org/10.1016/j.ajhg.2022.09.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2022.09.008&domain=pdf

ARTICLE

FastRNA: An efficient solution for PCA
of single-cell RNA-sequencing data based
on a batch-accounting count model

Hanbin Lee1,* and Buhm Han1,2,3,4,*
Summary
Almost always, the analysis of single-cell RNA-sequencing (scRNA-seq) data begins with the generation of the low dimensional embed-

ding of the data by principal-component analysis (PCA). Because scRNA-seq data are count data, log transformation is routinely applied

to correct skewness prior to PCA, which is often argued to have added bias to data. Alternatively, studies have proposed methods that

directly assume a count model and use approximately normally distributed count residuals for PCA. Despite their theoretical advantage

of directlymodeling count data, these methods are extremely slow for large datasets. In fact, when the data size grows, even the standard

log normalization becomes inefficient. Here, we present FastRNA, a highly efficient solution for PCA of scRNA-seq data based on a count

model accounting for both batches and cell size factors. Although we assume the same general count model as previous methods, our

method uses two orders of magnitude less time and memory than the other count-based methods and an order of magnitude less time

and memory than the standard log normalization. This achievement results from our unique algebraic optimization that completely

avoids the formation of the large dense residual matrix in memory. In addition, our method enjoys a benefit that the batch effects

are eliminated from data prior to PCA. Generating a batch-accounted PC of an atlas-scale dataset with 2 million cells takes less than

a minute and 1 GB memory with our method.
Introduction

The analysis of single-cell RNA-sequencing (scRNA-seq)

data almost always begins with the generation of the low

dimensional embedding of the data by principal-compo-

nent analysis (PCA). PCA results are needed both for

visualization after 2D transformation (tSNE, t-distributed

stochastic neighbor embedding, or UMAP, uniform mani-

fold approximation and projection) and for clustering of

the cells with unsupervised clustering algorithm and are

thus considered essential for the analysis of scRNA-seq

data, for which we do not know which cells are which

types a priori. Because PCA explains the variance existent

in the data in a linear space, it is highly preferred for the

data to be normally distributed than to be skewed. Howev-

er, scRNA-seq data are count data by nature. For this

reason, researchers have traditionally applied a log-normal

transformation to the data so that the resulting data look

normal.1 However, studies often argued that the use of

log normalization can induce artificial bias and exaggerate

the effects of small counts.2–4

To address this potential bias, recent studies have devel-

oped methods that directly assume a count model.5,6 In

these methods, instead of applying a log transformation,

a Poisson or negative binomial distribution is assumed

for the observed count. Then, residuals of the counts are

calculated after accounting for the effects of cell size factors

and occasionally for batches. As residuals approximate a
1Department of Medicine, Seoul National University College of Medicine, Seo

University College of Medicine, Seoul, Republic of Korea; 3Interdisciplinary Pro
4Genealogy Inc., Seoul, Republic of Korea

*Correspondence: hanbin973@snu.ac.kr (H.L.), buhm.han@snu.ac.kr (B.H.)

https://doi.org/10.1016/j.ajhg.2022.09.008.

1974 The American Journal of Human Genetics 109, 1974–1985, Nov

� 2022 American Society of Human Genetics.
normal distribution, they can be subsequently used for

PCA. The most popular methods are GLM-PCA,2 scTrans-

form,5 and the analytic Pearson residual.6 Count-based

models have the theoretical advantage of directly

modeling the count nature of data and the flexibility of ac-

counting for batches prior to PCA. The authors of these pa-

pers showed that count-based normalization performed

better than log normalization across a variety of tasks

in scRNA-seq analysis. Nevertheless, a large-scale bench-

marking study showed that GLM-PCA performs poorly

on some datasets.7 Therefore, further exploration and

experimentation will be needed to assess the actual perfor-

mance of count-based methods over a wide range of data-

sets. Methods applying PCA to Pearson residuals have been

called correspondence analysis (CoA) as pointed out by

Hsu et al. and are recently gaining attention.8

As scRNA-seq data grow in size, the most important

challenge becomes the time and memory usage in anal-

ysis. This challenge is critical for count-based methods,

but it also affects standard log normalization. Count-

based methods are memory intensive and slow for large

datasets because they generate large dense residual

matrices. scRNA-seq data are sparse by nature, but once

the data have been transformed to count residuals, the

data matrix is no longer sparse. Although not as severely

as with count-based methods, the efficiency of log

normalization is also affected by the data size. This is

because a dense matrix of the selected features still must
ul, Republic of Korea; 2Department of Biomedical Sciences, Seoul National

gram in Bioengineering, Seoul National University, Seoul, Republic of Korea;

ember 3, 2022

mailto:hanbin973@snu.ac.kr
mailto:buhm.han@snu.ac.kr
https://doi.org/10.1016/j.ajhg.2022.09.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2022.09.008&domain=pdf

be formed in the memory for the mean centering and

variance standardization.

Here, we present FastRNA, an efficient solution for PCA

of scRNA-seq data based on a full count model accounting

for both categorical batches and cell size factors. We

assume the same general count model as a previous

method (scTransform), but we obtain the solution by using

two orders of magnitude less time and three orders of

magnitude less memory than other count-based methods.

Even compared to the standard log normalization, our

method is an order of magnitude faster and an order of

magnitude more memory efficient. This achievement re-

sults from our unique algebraic strategy that exploits a

number of key observations, such as (1) that the PCA of

the count residual matrix can be obtained from the covari-

ance of that matrix, which is often of a much smaller size;

(2) that the latter covariance matrix can be decomposed

into a sum of elements, each of which can be computed

by sparse algebra; and (3) that the batch-wise count sum-

mation can serve as a sufficient statistic for calculation of

batch-corrected residuals. These unique algebraic ideas

work together seamlessly as a combination to completely

eliminate the need for expanding the actual residual ma-

trix in memory for both feature selection and dimension

reduction tasks. Because the data does not need to be

stored inmemory, ourmethod achieves extreme efficiency,

faster than standard log normalization, while still having

the benefits of count-based methods: the count data are

directly modeled and that batches can be corrected prior

to dimension reduction. Generating a batch-accounted

PC of an atlas-scale dataset with 2 million cells takes less

than 1 min and 1 GB memory with our method.
Material and methods

Notations
We first explain the symbols and notations that describe the

dimension of the data. nB is the number of batches and is indexed

by b ¼ 1;.;nB. Cells are indexed by c. Note that each cell c comes

from a particular batch b, which we write as c˛Fb. For a cell c˛
Fb, c ranges from 1 to nb where nb is the number of cells in batch

b. The total number of cells is nC ¼ PnB
b¼1nb. Finally, genes (or

transcripts) are indexed by g ¼ 1;.;nG in which nG is the number

of genes. scRNA-seq data are stored in a matrix, which we write as

Y˛RnC3nG . Y is a stacked matrix, i.e.,

Y ¼
h
YT

1 / YT
b / YT

nB

iT
; (Equation 1)

whereYb ˛Rnb3nG is a submatrix ofY that stores the data of cells in

batch b. We write the elements of Yb as Ybcg . This is the entry at

row c and column g of matrix Yb.

Log normalization
There are several forms of log normalization, but most if not all,

methods share the following transformation:

~Ybcg ¼ log

1þ f ,

YbcgP
gYbcg

!
: (Equation 2)
The American Jour
There are several choices for the scaling factor f. A default

choice found in Seurat is f¼10,000.9 Some authors use f ¼
medianc˛Fb

ðmbcÞ, where mbc is the total gene count of cell c in

batch b.10 In this paper, we benchmarked the first choice. Note

that if Ybcg is zero, ~Ybcg is also zero. Hence, ~Y is sparse if Y is sparse.

Feature selection is then performed with the transformed count

~Y. Several methods including non-parametric regression such as

loess are employed during this process.9 After feature selection,

~Y is mean centered and divided by its standard deviation.

RLog;bcg ¼
Y
�
bcg � Ec˛Fb

�
Y
�
bcg

�
ffi
Varc˛Fb

�
Y
�
bcg

�s ; (Equation 3)

where Ec˛Fb
and Varc˛Fb

are samplemean and variance over cells c

in batch b. RLog;bcg is generally non-zero, so the resulting scaledma-

trix RLog is not sparse. Nevertheless, this process is only applied to

the selected features, so it does not require as much memory as

applying it to the whole data.
Previous count-based normalization methods
We briefly describe two normalization methods: scTransform5 and

analytic Pearson residual.6

scTransform fits a negative binomial model with the following

specification. We modified the notation of the original paper to

conform to the notations described in the previous subsection.

$ Ybcg � NB
�
mbcg ; qg

�
$ log

�
mbcg

� ¼ b0g þ b1g log10ðmbcÞ þ
XnB

b¼2
bbgXbc

Note that the summation
PnB

b¼2 starts from b ¼ 2 because b ¼ 1

is used as a reference. Xbc (b ¼ 2;.;nB) is the batch indicator that

is 1 if c˛Fb and 0 otherwise. qg is the gene-dependent dispersion

parameter and mbc ¼ P
g
Ybcg is the total gene count of cell c˛Fb

often called the cell size factor. scTransform fits b� (abbreviation

for all bbg : b ¼ 1;.;nB and g ¼ 1;.; nG) and qg with negative

binomial regression that is implemented in glmGamPoi.11 After

fitting the parameters, it produces a matrix of residuals RSCT,

which is defined as

RSCT;bcg ¼ Ybcg � mbcgffi
mbcg þ m2

bcg

.
qg

r ; (Equation 4)

where RSCT;bcg is the c-th row, g-th column of RSCT;b, which is

defined to be the submatrix of RSCT identical to Y and Yb.

Analytic Pearson residual is based on a more parsimonious

model.

, Ybcg � Poisson
�
mbcg

�
, log

�
mbcg

� ¼ b0g þ logðmbcÞ

The fitted values in this case can be obtained analytically as

follows:

bmbcg ¼
P

gYbcg,
P

cYbcgP
c;gYbcg

: (Equation 5)

This fitted mean is used to compute the residual matrix RAPR.
nal of Human Genetics 109, 1974–1985, November 3, 2022 1975

RAPR;bcg ¼ Ybcg � bmbcgffiffiffiffiffiffiffiffiffibmbcg

p ; (Equation 6)

where RAPR;bcg is the c-th row, g-th column of RAPR;b, which is

defined similarly to scTransform. They also suggest a negative

binomial approach by setting a fixed dispersion parameter 4 for

all genes and replacing the denominator with the negative bino-

mial variance.

RAPR;bcg ¼ Ybcg � bmbcgffibmbcg þ bm2
bcg

.
4

r (Equation 7)

For both methods (scTransform and analytic Pearson residual),

the calculated residual matrices are used to calculate the variance

for each gene (which is used for feature selection) and singular

value decomposition (SVD) for dimension reduction.
SVD and spectral decomposition
Let M ˛Rp3q be a p-by-q matrix and r ¼ minfp; qg. The SVD

widely used in scRNA-seq is the reduced SVD.

M ¼ U,diagðSÞ,VT where U ˛Rp3 r ; S˛Rr ;V ˛Rq3 r

(Equation 8)

U and V have orthonormal columns (the norm of the columns

are 1 and the columns are orthogonal to each other). Convention-

ally, the principal component of scRNA-seq data refers to U,

diagðSÞ. What naturally follows is that multiplying V to both sides

of Equation 8 gives

MV ¼ U,diagðSÞ,VT,V ¼ U,diagðSÞ: (Equation 9)

For a square matrix L˛Rp3p, spectral decomposition calculates

the eigenvalues and eigenvectors of L. An important connection

between SVD and spectral decomposition is that the SVD output

V of M has eigenvectors of MTM as its columns. To see this,

MTMV ¼ V,diagðSÞUTU,diagðSÞ,VTV

¼ V,diagðSÞ2VTV

¼ V,diagðSÞ2
: (Equation 10)

Therefore, to obtain the principal components, one can use

Equation 10 instead of Equation 8. This should be a preferred

approach when M is prohibitively large but MTM is small and

can be directly computed without obtainingM, which is the strat-

egy we take in this paper.
Conditional likelihood approach
In this section, we describe the probabilistic model of FastRNA.

Similar to scTransform but with slightly different parameteriza-

tion, we assume the following model.

, Ybcg � Poisson
�
mbcg

�
, log

�
mbcg

� ¼ Gbg þ logðmbcÞ for c˛Fb

Note that Gbg ¼ b0g þ
PnB

b¼2bbgXbc (for Xbc defined in the sec-

ond equation in ‘‘previous count-based normalization methods’’),

so our proposed model is identical to scTransform, and the only

difference is in the distribution, where we used Poisson instead of

negative binomial, and it is more general than analytic Pearson

residual. Identical to the previous methods, mbc is the cell size

factor.
1976 The American Journal of Human Genetics 109, 1974–1985, Nov
At the heart of count-based normalization methods, residuals

measure the departure of the data from the null distribution. In

this case, null means that only the technical variation and no bio-

logical variation drives the observation. Hence, measuring the de-

parture by residuals can measure the biological variability that is

not described in the null model.

This is done by subtracting the conditional mean

mbcg ¼ E½Ybcg

		b�g ;mbc;X�c� (note that b�g is an abbreviation for all

b0g ;b1g ;.;bnBg and X�c is an abbreviation for all X2c; .; XnBc)

from the observed count Ybcg and dividing it with the square

root of the conditional variance Var½Ybcg

		b�g ;mbc;X�c�. This is essen-
tially the approach scTransform is taking—estimating the mean

and variance conditioned on the covariates (batch) and size fac-

tors. However, this requires estimating nB parameters, which

grows together with the number of cells. Hence, it is computation-

ally demanding for large scale data with many batches.

To overcome this difficulty, we suggest conditioning addition-

ally on
P

c˛Fb

Ybcg as well as b�g ;mb� (where mb� is an abbreviation

of mb1;.;mbnb
) and X� (where X� is an abbreviation of Xbc for all

combinations of b ¼ 1;.;nb and c˛Fb). The major advantage

of our approach is that it can eliminate the need for estimating

b�g for all g ¼ 1;.;nG. To show this, we consider the likelihood

conditioned on these variables including
P

c˛Fb

Ybcg .

P

Ybcg

�
c˛Fb

					X
c˛Fb

Ybcg ; b�g ;mb�;X�

!
¼ P

�
Yb1g ; .; Ybnbg

		b�g ;mb�;X�
�

P
�P

c˛Fb
Ybcg

			b�g ;mb�;X�

¼
Q

c˛Fb
P
�
Ybcg

		b�g ;mbc;X�c
�

P
�P

c˛Fb
Ybcg

			b�g ;mb�;X�

¼
Q

c˛Fb

m
Ybcg

bcg e
�mbcg

Ybcg !�P
c˛Fb

mbcg

P
c˛Fb

Ybcg

e
�
P

c˛Fb
mbcg�P

c˛Fb
Ybcg

!

¼
�P

c˛Fb
Ybcg

!Q

c˛Fb
Ybcg !

,
Y
c˛Fb

mbcgP

c0 ˛Fb
mbc0g

!Ybcg

¼
�P

c˛Fb
Ybcg

!Q

c˛Fb
Ybcg !

,
Y
c˛Fb

mbce

GbgP
c0 ˛Fb

mbc0e
Gbg

!Ybcg

¼
�P

c˛Fb
Ybcg

!Q

c˛Fb
Ybcg !

,
Y
c˛Fb

mbcP

c0 ˛Fb
mbc0

!Ybcg

(Equation 11)

Therefore, the conditional likelihood is independent of the

batch parameter b�g, which means

P

Yb1g ; .; Ybnbg

		X
c˛Fb

Ybcg ; b�g ;mb�;X�

!

¼ P

Yb1g ;. ;Ybnbg

		X
c˛Fb

Ybcg ;mb�

!
:

(Equation 12)

A nearly identical calculation has been used to derive a computa-

tionally efficient algorithm to fit high dimensional regression

models.12 Equation 12 shows that
P

c˛Fb

Ybcg ðb ¼ 1;.;nBÞ is a suffi-

cient statistics for b�g, i.e., the distribution of Ybcg is independent of

b�g when conditional on
P

c˛Fb

Ybcg .

With Equation 12, we can calculate the residual to measure the

departure of observed data from the null distribution of Ybcg
ember 3, 2022

conditioned on
P

c˛Fb

Ybcg and mb�. Equation 11 shows that this

distribution is a multinomial distribution with the following

parameters.

�
Yb1g ;. ;Ybcg ;.;Ybnbg

�					X
c˛Fb

Ybcg ;mb� � Mult

 X
c˛Fb

;Ybcg ;

pbcg

�
c˛Fb

!

where pbcg ¼ mbcgX
c˛Fb

mbcg

¼ mbcX
c0 ˛Fb

mbc0

(Equation 13)

Therefore, we can easily calculate the conditional mean and the

variance that are required to calculate the residuals with the for-

mula of the multinomial distribution as follows.

E

"
Ybcg

					X
c˛Fb

Ybcg ;mbc

#
¼
"X
c˛Fb

Ybcg

#
,pbcg

Var

"
Ybcg

					X
c˛Fb

Ybcg ;mbc

#
¼
"X
c˛Fb

Ybcg

#
,pbcg,

�
1 � pbcg

�
(Equation 14)

Equation 14 is then used to calculate the residual matrix

RFastRNA.

RFastRNA;bcg ¼
Ybcg � E

h
Ybcg

			Pc˛Fb
Ybcg ;mbc

i
ffi
Var

h
Ybcg

			Pc˛Fb
Ybcg ;mbc

ir ; (Equation 15)

where RFastRNA;bcg is the element of RFastRNA as before.

After the residuals are obtained, one can perform feature selec-

tion and dimension reduction by calculating the variance gene-

wise and applying SVD, respectively. However, as in scTransform

and analytic Pearson residual, the residual matrix RFastRNA is dense

and can be prohibitively large for large scale data. In the following

sections, we propose alternative algorithms that can perform

feature selection and dimension reduction rapidly without form-

ing large dense matrices.

FastRNA algorithm
We describe the algebra underlying FastRNA, our novel algorithm

for high-speed feature selection and dimension reduction in

scRNA-seq analysis. First, we introduce additional notations

regarding matrix algebra. Let M ˛Rn3m;N ˛Rm3l be matrices and

letMij, Njk be the elements ofM andN, respectively. The subscripts

denote the row and column indices, respectively. Then the

element at the i-th row and k-th column of the product of two

matrices is

ðMNÞik ¼
X
l

MilNlk; (Equation 16)

so to show that a matrix is a product of two matrices, one can

demonstrate by proving the above expression. This technique

will be used throughout our derivation. Additionally, we write R

and Rbcg , omitting the subscript FastRNA because the residual ap-

pearing in the following description will only refer to our method.

Also, for notational simplicity, we define

mbcg ¼ E

"
Ybcg

					X
c˛Fb

Ybcg ;mbc

#
¼
"X
c˛Fb

Ybcg

#
,pbcg (Equation 17)

and
The American Jour
sbcg ¼
ffi
Var

"
Ybcg

					X
c˛Fb

Ybcg ;mbc

#vuut ¼
ffi"X
c˛Fb

Ybcg

#
,pbcg,

�
1 � pbcg

�vuut :

(Equation 18)

Feature selection
As in scTransform and analytic Pearson residual, we calculate the

variance of the residual for each gene under the null distribution.

Hence, we must calculate the following

Vg ¼ 1P
bnb

X
b

X
c˛Fb

R2
bcg (Equation 19)

becauseVarðXÞ ¼ EðX2Þ � EðXÞ2 and EðRbcgÞ ¼ 0 by construction.

Previous methods have calculated Vg from Rbcg . However, this

requires calculating Rbcg and storing it in memory. As we have

described earlier, the time and memory requirement for forming

this matrix can be highly demanding for large datasets. We show

that Vg can be calculated directly from raw dataY throughmanip-

ulating only non-zero elements. Because scRNA-seq data are sparse

by nature, if we can only selectively utilize non-zero elements in

the calculation (sparse matrix algebra), we can dramatically reduce

time and memory cost. Note that Y is a sparse matrix, but R is not

sparse in general.

First, we expand R2
bcg to obtain

R2
bcg ¼ Y2

bcg

s2
bcg

� 2,
Ybcgmbcg

s2
bcg

þ m2
bcg

s2
bcg

: (Equation 20)

We show that each of these three terms in the right-hand side

can be calculated in a sparse manner. We can sum over the first

term only with non-zero elements because the numerator is

mostly zero in scRNA-seq data. By substituting Equation 14, we

can simplify the second and the third term.

Ybcgmbcg

s2
bcg

¼ Ybcg

1 � pbcg

m2
bcg

s2
bcg

¼
"X
c0 ˛Fb

Ybc0g

#
,

pbcg

1 � pbcg

(Equation 21)

This shows that the second term is mostly zero so it can be calcu-

lated like the first term with only non-zero elements.

What deserves attention is the third term, which incurs summa-

tion over the cells and therefore is mostly non-zero. Substituting

Equation 21 into Equation 20 shows that

X
b

X
c˛Fb

"X
c0 ˛Fb

Ybc0g

#
,

pbcg

1 � pbcg

¼
X
b

"X
c0 ˛Fb

Ybc0g

#
,
X
c˛Fb

pbcg

1 � pbcg

:

(Equation 22)

The first term of the product,
P

c0 ˛Fb

Ybc0g , can be calculated for

each batch in a sparsemanner. pbcg in the second term of the prod-

uct is a precalculated constant per cell, which is independent of

gene g in our conditional Poisson model (Equation 13). Hence,

there is no need to form Rbcg , which is generally a very large dense

matrix.

Dimension reduction
We have described two approaches (SVD and spectral decomposi-

tion) to obtain principal components of cells in the previous sec-

tion. We adapt the second strategy because after feature selection,
nal of Human Genetics 109, 1974–1985, November 3, 2022 1977

the number of genes usually ranges from 500 to 5,000, which is

much smaller than the number of cells that can go up to mil-

lions. Even without feature selection, the number of cells nC

will go beyond the number of genes nG (�50,000) when the

data are large.

We first obtain the eigenvectors V of R by applying spectral

decomposition on RTR. To do this, we developed an algorithm

that computes RTR directly from raw data Y through sparse

algebra.

RTR ¼
h
RT

1 / RT
nB

i
,

24R1

«
RnB

35
¼
XnB
b¼1

RT
bRb

(Equation 23)

Thus, we now have to expand RT
bRb for each b.

We define matrices A and B in terms of their entries.

Abcg ¼ Ybcg

sbcg

Bbcg ¼ mbcg

sbcg

(Equation 24)

A is sparse because the numerators are mostly zero. However, B

is generally a dense matrix. Now we expand RT
bRb.

RT
bRb ¼ AT

bAb � 2AT
bBb þBT

bBb (Equation 25)

Examining Equation 25, it is clear that the first term AT
bAb

is a multiplication of two sparse matrices. Therefore, the diffi-

cult parts are the latter two. To proceed, we introduce new

notations.

$mbc ¼
X
g

Ybcg ; mbg ¼
X
c˛Fb

Ybcg ; mb ¼
X

g;c˛Fb

Ybcg

d pbc ¼ mbc=mb (¼ pbcg in Equation 13)

Expand AT
bBb by substituting Equation 14.�

AT
bBb

�
gg0 ¼

X
c˛Fb

AbcgBbcg0

¼
X
c˛Fb

Abcg

ffi
mbg0

pbc
1 � pbc

r
¼ ffiffiffiffiffiffiffiffiffi

mbg0
p

,
X
c˛Fb

Abcg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pbc

1 � pbc

r
(Equation 26)

In the light of Equation 16,
P

c˛Fb

Abcg

ffiffiffiffiffiffiffiffiffiffi
pbc

1� pbc

q
is a multiple of Ab (a

sparsematrix) and vector (which is also a one-dimensional matrix)h
pbc

1� pbc

i
c˛Fb

. Since ½ ffiffiffiffiffiffiffiffiffimbg0
p �g ¼1;.;nG

is also a vector, Equation 26 is an

outer product of two vectors. Hence, only non-zero elements are

involved and manipulations or large dense matrices are not

required.

Next, expand BT
bBb by substituting Equation 14.�

BT
bBb

�
gg0 ¼

X
c˛Fb

BbcgBbcg0

¼
X
c˛Fb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbgpbc
1 � pbc

r
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbg0pbc
1 � pbc

r
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mbgmbg0
p X

c˛Fb

pbc
1 � pbc

(Equation 27)

Similar to Equation 26, we can view Equation 27 in the light of

Equation 16 to realize that this is simply a self outer product

(multiplying the vector by itself) of vector ½mbg �g ¼1;.;nG
. The last
1978 The American Journal of Human Genetics 109, 1974–1985, Nov
part
P

c˛Fb

pbc
1� pbc

is simply a scalar, which is again a summation

over a vector.

Finally, the principal component of cells U,diagðSÞ can be ob-

tained after calculating the eigenvectors of RTR, which we write

as V.

ðRbVÞck ¼ ðAbVÞck � ðBbVÞck
¼ ðAbVÞck �

X
g

BbcgVgk

¼ ðAbVÞck �
X
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbgpbc
1 � pbc

r
Vgk

¼ ðAbVÞck �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pbc
1 � pbc

r X
g

ffiffiffiffiffiffiffiffi
mbg

p
Vgk

(Equation 28)

P
g

ffiffiffiffiffiffiffiffi
mbg

p
Vgk is a matrix-vector multiplication where the matrix is

a nG3nP matrix (nP is the number of principal components),

which is dense but small. This results in a vector, so Equation

28 is an outer product of two vectors
h ffiffiffiffiffiffiffiffiffiffi

pbc
1� pbc

q i
c˛Fb

and"P
g

ffiffiffiffiffiffiffiffi
mbg

p
Vgk

#
k¼1;.;nP

at the final stage. For AbV, it is a multiple

of a large sparse matrix and a small dense matrix, which can be

readily calculated with standard sparse linear algebra routines

(e.g., mkl_sprase_?_mm of Intel MKL).

In sum, our calculation of the principal components only in-

volves (1) sparse matrix algebra when a matrix is used in a multi-

plication; (2) vector-vector product, which is very fast and mem-

ory efficient in general; and (3) (exceptional) dense matrix

multiplication only when the matrix size is small. By completely

avoiding algebraic calculations involving large dense matrices,

we remove the need for computing and storing the residual matrix

in the memory, therefore improving time and memory efficiency

dramatically.

Software implementation
The program was written with Cþþ and Cython. Intel Math Ker-

nal Library (Intel MKL) routines were directly called with Cython

interface to perform the described algorithm.

Potential numerical issues
There might be concerns on potential numerical issues such as

underflows due to the small values (e.g., pbc) in the algorithm. Spe-

cifically, pbc might be small resulting in underflow. Our method is

built upon float32 and this datatype ranges approximately from

10�38 to 1038. By definition of pbc, it is approximately at the range

near 1=nb ðb ¼ 1;.;nBÞ, which is the reciprocal of the number of

cells in batch b. Hence, for this value to underflow, nb should be

large as 1038, which is larger than the number of cells in any living

organism (e.g., approximately 1013 for human). Therefore, we

conclude that there is no need for protection against underflow

while running our algorithm.

Input/output formats
Our implementation takes CSC (compressed sparse column)

format sparse matrix as an input. After taking the input, however,

the internal functions only consider the triple (data, indices,

indptr) and ignore the input CSC format. This is because our im-

plementation directly calls the low-level sparse BLAS/LAPACK rou-

tines from Intel MKL, which takes the triple as an input rather

than high-level sparse matrix layouts such as scipy.sparse.

The advantage of directly manipulating the triple is that one can
ember 3, 2022

move between CSR (compressed sparse row) and CSC formats

without additional overhead. For example, mkl_sparse_

syrk only takes CSR inputs to calculateAAT (orATA if a transpose

option is set to True) for an inputmatrixA. A simple trick to apply

this function to a CSC matrix B is to create a CSR matrix with the

triple that constitutesB. This createsBT in a CSR format by defini-

tion. Then we supply BT to mkl_sparse_syrk with the trans-

pose option, which computes ðBT ÞTBT ¼ BBT .
Benchmark environment
Silhouette score and k-NN classification: Silhouette score and k-

NN classification algorithm from scikit-learn version 1.0.1 were

used for benchmark. For cell-type Silhouette score, the raw value

ranging from �1 to 1 was obtained from the metrics.

silhouette_samples function. For batch Silhouette score, we

applied the absolute function to the raw Silhouette score obtained

from the same function.

GLM-PCA and scry: We used the scry version 1.8 downloaded

from Bioconductor. The accompanying version of GLM-PCA in

scry was used. In benchmarks, scry feature selection and GLM-

PCA were paired.

Scanpy and Analytic Pearson residual:We used the implementa-

tion in Scanpy version 1.9.

Seurat and scTransform: Seruat version 4.1.3 was downloaded

from the CRAN. scTransform was provided within Seurat.

Splatter: Splatter 1.2.0 was downloaded through Bioconductor.

A total of 1,500 genes and 4,000 cells were created. Five cell types

were simulated in equal size from two batches. Six DEG thresholds

were set: f1:2; 1:5; 2; 2:5; 3; 4g.
t-SNE visualization: We used the openTSNE 0.6.2 implementa-

tion within Python 3.9.

Benchmarking hardware: We used the Intel(R) Xeon(R) Gold

6136 CPU @ 3.00 GHz processor for all the analysis. The system

memory was 251 GB and 4 cores were used.

Runtime and memory measurement: Runtime was measured

with the %timeit header in jupyter notebook. Memory was

measured with the htop command in linux.
Datasets
Zhengmix8eq:13 This is a widely used mixture dataset comprising

eight different FACS-labeled cell types. The dataset was down-

loaded with the DuoClustering2018. We used 3,000 top highly

variable genes (HVGs) for each method and supplied 20 PCs for

visualization (t-SNE exaggeration ¼ 2 and perplexity ¼ 30) and

LISI benchmark.

PBMC from three 10X experiments:14 The data was downloaded

from Broad single cell portal. We used 2,000 top HVGs for

each method and supplied 50 PCs for visualization (t-SNE

exaggeration ¼ 2 and perplexity ¼ 30). The dataset provides

curated author-provided labels for the cells.

Mouse organogenesis atlas:15 The dataset was downloaded from

GEO database accession number GEO: GSE119945. We selected

2,000 HVGs for the benchmark. Batch was controlled by ‘‘batch’’

variable in the metadata provided by the authors. Batch was

controlled by ‘‘id’’ variable in the metadata provided by the au-

thors. Top 50 principal components were supplied to t-SNE with

exaggeration¼ 4 and perplexity¼ 30. Gene removal process to re-

move batch artifacts was done by the following procedure as

described by Lause et al.6 For each batch and gene, the number

of cells that expressed > 10 unique molecular identifiers (UMIs)

were counted. Next, they compared the fold-change in the
The American Jour
numbers of such cells across batches. Genes that had > 100-fold

difference in the batch with the largest and the third largest num-

ber of such cells were excluded from analysis. This way, genes that

enriched in two or less embryos were removed.
Results

Benchmarking of time and memory requirement

To benchmark the time andmemory efficiency of FastRNA,

we performed dimension reduction (PCA) of an atlas-scale

mouse datasetwith 2million cells.15 This organogenesis da-

taset included 62 batches. The runtime and memory usage

measured in our benchmarking environment shows that

our method takes 27.7 seconds and 690 MB of memory to

complete dimension reduction of the whole dataset

(Figure 1A and 1B). This is a dramatic improvement because

it has been reported that R100 GB memory and several

hours of time are required to perform dimension reduction

in such data via various PCA implementations (all based on

log normalization).16 Using our method, several GB of

memory in an ordinary laptop can be enough to run the

analysis for large population-scale datasets.

Tomeasure the impact of the number of batches on the ef-

ficiency, we ignored the true batch labels of this dataset and

assigned random batches, while gradually increasing the

number of batches from 1 to 62. Unlike other previous

methods whose performance is sensitive to the number of

batches, the efficiency of our method was not affected by

thenumberofbatches (Figure1C). Thiswas expectedbecause

our conditional Poissonmodel accounts for the batch effects

prior to the dimension reduction. In fact, when the number

of batches increased, the efficiency slightly increased; we

are investigating on why this is the case.

Next, we compared the efficiency of FastRNA to log

normalization and previously proposed count-based

methods: GLM-PCA, scTransform, and analytic Pearson re-

siduals. For this atlas-scale mouse dataset, a direct compari-

son to competing methods was not possible because

FastRNA was the only method that successfully ran on the

full dataset in our benchmarking environment. To make

the comparison feasible, we downsampled the dataset to

200,000 cells. The runtime and memory requirements of

FastRNA on the downsampled dataset were considerably

smaller than scTransform and analytic Pearson residuals as

well as log normalization (Figure 1D). To process 200,000

cells, FastRNA only required 30 MB memory and took 4 s.

By contrast, scTransform required 216 GB memory and

took 6,424 s, and the analytic Pearson residual required

6.76 GB memory and took 700 s. GLM-PCA did not finish

in 3 days for this subsampled dataset and was omitted.

Thus, both the time and memory requirements of FastRNA

were two orders of magnitude smaller than the second best

count-based method. Log normalization took 11.47 GB

memory and took156 s. Thus, FastRNA requiredR300 times

less memory and R30 times less time than log

normalization.
nal of Human Genetics 109, 1974–1985, November 3, 2022 1979

A

C D

B Figure 1. Time and memory efficiency of
FastRNA
(A) Runtime of feature selection and
dimension reduction of FastRNA.
(B) Memory use of FastRNA. Both memory
usage and runtime were measured with
respect to the time of execution of the pro-
gram. The static memory allocation of the
sparse matrix (12 GB) was not included.
(C) Runtime of FastRNA pipeline with
respect to the number of batches. The error
bars represent the interquartile ranges
(IQRs) of 10 trials.
(D) Runtime (s) and memory usage (GB) of
four methods in the downsampled (n ¼
200;000) mouse organogenesis data
during feature selection and dimension
reduction.
Benchmarking of the quality of dimension reduction

using real data

Whereas the speed and the memory requirement of

methods can be objectively measured, evaluating the qual-

ity of the resulting PC can be more challenging. What we

can do is to look at whether the cells of the same cell

type are clustered together in the PC space. For this pur-

pose, we used the Zhengmix8eq dataset, a fluorescent-acti-

vated cell sorting (FACS)-labeled dataset widely used for

benchmarking. This is an artificial mix of the cells for

which we know the true types by FACS, and it can there-

fore be used to indirectly suggest the quality of the PC.

Note that the following results are meant as a guide at

best, as the benchmarking is based on a single artificial

dataset.

We compared FastRNA to three other count-based

methods, scTransform, GLM-PCA, and analytic Pearson re-

sidual. For completeness, we added the standard non-

count-based log normalization (LogNorm) to this compari-

son. We measured Silhouette score, which measures how

well the PCcoordinates reflect the known labels. In addition,

wemeasured5-nearest-neighbor (NN)cell-typeclassification

accuracy by 5-fold cross-validation (CV), which measures

how well the five nearest neighbors of a point can predict

the label of a point, when the point is in the test set (20%)

and the neighbors are from the train set (80%). Note that

5-NN accuracy only measures the local structure and tends

to not much penalize the situation that a true cluster is split

into two or three chunks in the PC space.

Figure 2 shows that all count-based models had similar

performance, while LogNorm stands behind the four
1980 The American Journal of Human Genetics 109, 1974–1985, November 3, 2022
methods. For the Silhouette score

(Figure 2A), the four methods were

similar (FastRNA 0.510, scTransform

0.507, GLM-PCA 0.443, and analytic

Pearson 0.485), while LogNorm was

lower (0.385). For 5-NN accuracy

(Figure 2B), FastRNA (0.810) was

slightly lower than scTransform

(0.814), GLM-PCA (0.870), and ana-

lytic Pearson (0.821) but higher than
LogNorm (0.768). GLM-PCA performed the 2nd worst in

terms of Silhouette score (0.443) but performed the best

in the 5-NN benchmark (0.870). Figure 2C shows the 2D

embedding of the PC by tSNE, for which an objective

assessment of the quality by human eyes is difficult.

FastRNA excels in multi-batch benchmarking

We considered an additional benchmarking experiment

assuming multiple batches exist in one dataset. To this

end, we used a peripheral blood mononuclear cell

(PBMC) dataset generated from three 10X experiments.14

Although the cell types are not FACS labeled, the author-

provided labels can be used for benchmarking. Impor-

tantly, the dataset was a mixture of data generated by three

different versions of technology (10X V2A, 10X V2B, and

10X V3). Because every technology can have its own

bias, we can consider the generating technology as a batch

with a batch effect.

In this experiment, we compared six methods. In addi-

tion to FastRNA and three count-based methods (GLM-

PCA, scTransform, analytic Pearson residual), we tried

LogNormwith batch correction by RPCA9 and Harmony.17

Harmony is an integration method of scRNA results and

thus can be applied to correct for batches.

Like the previous experiment, the overall performance of

three count-based methods were similar. For the Silhouette

score (Figure 3A), FastRNA (0.475) was higher than

scTransform (0.449), GLM-PCA (0.392), and analytic Pear-

son (0.434). Log normalization with batch correction (via

RPCA) performed better than scTransform and analytic

Pearson residual (0.468). Harmony (0.305) performed

A

C

B

Figure 2. Benchmark of common normalization methods in the Zhengmix8eq dataset
(A) Cell-type Silhouette score of log normalization þ RPCA, scTransform, GLM-PCA, analytic Pearson residual, and FastRNA. The error
bars represent the 95% confidence intervals of the median silhouette score.
(B) 5-fold cross-validation 5-NN accuracy of the five methods. The error bars represent the interquartile range (IQR) of 5 trials of cross-
validation.
(C) t-SNE visualization of the five methods colored by cell type.
worse than the other methods. For the 5-NN accuracy

(Figure 3B), all six methods were similar. FastRNA (0.905)

was slightly lower than others (scTransform 0.926, Har-

mony 0.909, GLM-PCA 0.925, analytic Pearson residual

0.924) and better than log normalization with batch

correction (0.899) (Figure 3C). The 2D embedding shows

that while log normalization (with RPCA), Harmony,

GLM-PCA, and FastRNA properly corrected batch effects,

scTransform and analytic Pearson residuals split CD4þ

T cells (and cytotoxic T cells) into two subclusters accord-

ing to batch membership (Figure 3D and 3E). This partially

explains why FastRNA had a slightly higher Silhouette

score and slightly lower 5-NN accuracy: because the

Silhouette score penalizes the split of a true cluster, while

5-NN accuracy (almost) does not.

Nevertheless, when considering the batches of this data,

FastRNA exceled. We calculated the Silhouette score with

respect to batches (batch Silhouette score). A lower score

is better because we do not want the cells clustered by

batches. FastRNA showed much better (lower) score than

the other methods. The score of FastRNA (0.032) was

smaller than all methods except for GLM-PCA (0.025).
The American Jour
Log normalization (with RPCA) and Harmony showed

slightly worse performance. As expected from the 2D

t-SNE embedding, scTransform and analytic Pearson resid-

ual could not correct batch effects well and thus showed

worse scores.

To see whether the batch information was important for

both logNorm and count-based methods, we additionally

applied log normalization and GLM-PCA both without

batch correction. Silhouette score was smaller than the

batch-corrected counterparts (log normalization 0.201

versus 0.468 and GLM-PCA 0.274 versus 0.392) (Figure S1),

showing that the batch information was crucial. 5-NN ac-

curacy was slightly higher than the batch-corrected coun-

terparts, which comes from the fact that 5-NN does not

penalize split by batches. These findings are reconfirmed

in the 2D t-SNE embeddings in Figure S2. As was observed

for scTransform and analytic Pearson residual, log normal-

ization and GLM-PCA showed splitting the same cell type

into distinct clusters according to batch labels when the

batch information was not given.

We measured the computation time of the methods for

completing analysis in this dataset (Figure S3). This dataset
nal of Human Genetics 109, 1974–1985, November 3, 2022 1981

A

D

E

B C

Figure 3. Benchmark of common normalization methods in a PBMC dataset from three 10X experiments
(A) Cell-type Silhouette score of log normalization þ RPCA, scTransform, Harmony, GLM-PCA, analytic Pearson residual, and FastRNA.
The error bars represent the 95% confidence interval of the median silhouette score.
(B) 5-fold cross-validation 5-NN accuracy of the six methods. The error bars represent the interquartile range (IQR) of 5 trials of cross-
validation.
(C) Batch-wise Silhouette score of the six methods. The error bars represent the 95% confidence interval of the median silhouette score.
(D) t-SNE visualization of the six methods colored by cell type.
(E) Same as (D) but colored by batch label.
was small with 9,806 cells, and thus all methods finished

in 30 min. Nevertheless, we can expect that the relative ef-

ficiency of the methods will be similarly scaled as the size

of the data grows. Again, FastRNA was the fastest among

all methods (2.1 seconds). When we excluded the three

methods that failed to correct for batches in this dataset

(log normalization without batch correction, scTransform,

and analytic Pearson residual) from our consideration, the

second fastest method was Harmony, which took 37.1 s.

Thus, FastRNA was an order of magnitude faster.

Batch correction of FastRNA helps feature selection

In the conditional Poisson framework of FastRNA, the ef-

fects of batches are eliminated prior to feature selection

and dimension reduction. This preclusion of batch effects

can help feature selection because it prevents artificial

features from being selected only as a result of batch

effects.
1982 The American Journal of Human Genetics 109, 1974–1985, Nov
We simulated data by using Splatter.18 We generated

five cell types from two batches (see material and

methods). As true differentially expressed genes (DEGs)

are known in a simulation setting, we measured the pro-

portion of recovered true DEGs under various DEG

thresholds (Figure 4A). We compared FastRNA with

feature selections by log normalization, scTransform, ana-

lytic Pearson residual, and Scry.19 FastRNA performed bet-

ter than the other methods when DEG thresholds were

low. As the DEG threshold increased (larger log fold

change), the other methods’ performance became compa-

rable to FastRNA.

For real data analysis, we applied these methods to the

atlas-scale mouse organogenesis dataset that we used for

speed benchmarking.15 This dataset comprises a large

number (62) of batches. Because of the size of the dataset

(2 million cells), it is impossible to run scTransform that

can account for batches. A previous study instead applied
ember 3, 2022

A

B C

Figure 4. Comparison of feature selection methods
(A) Proportion of recovered DEGs versus number of selected genes of log normalization, scTransform, scry, analytic Pearson residual, and
FastRNA. The data was simulated with Splatter.
(B) Feature variances computed by FastRNA versus log normalization, scTransform, and analytic Pearson residual.
(C) t-SNE plot of the mouse organogenesis dataset with FastRNA dimension reduction.
analytic Pearson residual for the analysis of this dataset, as

analytic Pearson was faster and feasible. But because ana-

lytic Pearson residual cannot account for batches, a

manual curation process was required.6 The authors eval-

uated the final tSNE plot and found many single-batch

clusters. To remove these clusters, they designed an addi-

tional quality control (QC) procedure for feature selection

so that the artificial clusters can be cleaned out. Specif-

ically, they selected genes that are exclusively high in

less than two embryos and removed them (see material

and methods).

We compared the variance of features calculated by

FastRNA with log normalization, scTransform, and ana-

lytic Pearson residual in Figure 4B. As scTransform did
The American Jour
not run for the full dataset, we subsampled 200,000 cells

and used them for comparing the variance of features.

Scry was excluded because it failed to run on the sub-

sampled dataset. Figure 4B shows that as FastRNA pre-

cludes the batch effects from data, no additional manual

curation is required for feature selection. The red dots

denote the features that the previous study was able to

manually detect and remove. For these artificial features,

the variance calculated by FastRNA is already low, and

therefore they are not selected as important features at

the first stage. As a result, the t-SNE visualization using

FastRNA coordinates was concordant with develop-

mental trajectories and does not require further manual

curation (Figure 4C).
nal of Human Genetics 109, 1974–1985, November 3, 2022 1983

Discussion

We proposed FastRNA, an extremely efficient and scalable

method for dimension reduction and feature selection of

scRNA-seq data. Our method accommodates flexible

model parameters such as batch- and gene-dependent co-

variates while improving speed and memory efficiency

through sparse matrix algebra. Our method enables popu-

lation-scale scRNA-seq analysis inside a personal computer

within minutes without sacrificing model complexity or

accuracy. The experimental results show that our method

can process small to moderate sized datasets within a sec-

ond and millions of cells within a minute. It would even

be possible to process billions of cells within a day accord-

ing to our extrapolation.

The key features of FastRNA can be divided into two

parts. The first is the conditional likelihood approach

that is used to define batch-corrected residuals. The second

is the alternative PCA algorithm using spectral decomposi-

tion ofRTR (whereR is the residual matrix) instead of SVD

applied to R directly. Because R is large and dense, many

SVD methods employ approximate strategies such as sub-

sampling to obtain eigenvectors. FastRNA, on the other

hand, using its spectral decomposition-based strategy,

computes the eigenvectors without such approximation.

The computed eigenvectors are algebraically equivalent

to the eigenvector obtained by applying the full non-

approximate SVD to R.

FastRNA enjoys many favorable theoretical properties.

Our theory suggests that the efficiency is invariant under

gene- and batch-dependent covariates and robust to the

number of batches, which we confirmed in our bench-

marking. This is because our conditional model eliminates

the need to estimate these factors. One unique property of

our method is that it completely removes the need to

calculate or store the dense matrix of residuals, R.

Although the derivations for dimension reduction and

feature selection are based on R, the final equations only

require sparse algebra.
Recently, out-of-core implementations of PCA have been

suggested.16,20 They are also called on-disk methods. These

methods read only a block of the data from the disk when

needed. The major drawback is that it requires many disk-

accesses, which is much slower than accessing data from

memory. PCAone, a recently proposed on-disk PCA

method, alsomentions this shortcoming and recommends

the use of on-memory mode when the computing system

has enough memory to store the whole data.20 After

loading the block of data from the disk, out-of-core

methods convert the data into a dense matrix to make

further calculations (e.g., log normalization). By contrast,

FastRNA loads the whole data into memory prior to anal-

ysis, but it never converts the data into a dense form and

always keeps it sparse to avoid excessive memory use.

There are concerns on the use of Poisson distribution

rather than the more general negative-binomial distribu-

tion. Another concern is the dropout issue where more ze-
1984 The American Journal of Human Genetics 109, 1974–1985, Nov
ros are observed than expected. As FastRNA depends on

the Poisson assumption, the method might not be

adequate for data showing large over-dispersion or drop-

outs. Models such as ZIFA and ZINB-WaVE include zero-in-

flated components in the likelihood to overcome this

issue.21,22 However, such models can be prohibitively

slow and, hence, may not be applied to large data like

FastRNA. Furthermore, these methods do not have their

own feature selection scheme that FastRNA has.

The scale of single-cell omics data is increasing rapidly,

which calls for an urgent need for efficient methods that

can handle large data. Sparsity of single-cell data is one

of the most important key features for performance opti-

mization, and FastRNA proposes one way to achieve

extreme scalability by exploiting this feature, which is

likely to motivate future method developments. Because

FastRNA relies on the Poisson count model, future devel-

opments may incorporate extensions such as the nega-

tive-binomial model. Also, the model only supports cate-

gorical covariates so future developments for more

flexible covariates is warranted.

The automation of the analysis is of utmost interest in

both academia and industry as scRNA-seq technology be-

comes popular. Our approach automates a large portion

of a typical scRNA-seq analysis pipeline from preprocessing

(such as normalization) to dimension reduction (PCA) and

batch correction. The speed, convenience, and perfor-

mance of our method all stem from a single theory, which

opens a door for future extensions of the framework. We

expect that our method will directly serve as a practical

tool in the era of population-level scRNA-seq analysis.
Data and code availability

The source code of FastRNA is available at https://github.com/

hanbin973/FastRNA. We also provide reproducible codes at

https://github.com/hanbin973/FastRNA_paper. A use example

can be found at https://fastrna.readthedocs.io/en/latest/.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.09.008.
Acknowledgments

This research was supported by a research grant of Genealogy Inc.

(grant number 800-20210449).
Declaration of interests

B.H. is the CTO of Genealogy Inc.

Received: May 23, 2022

Accepted: September 14, 2022

Published: October 6, 2022
ember 3, 2022

https://github.com/hanbin973/FastRNA
https://github.com/hanbin973/FastRNA
https://github.com/hanbin973/FastRNA_paper
https://fastrna.readthedocs.io/en/latest/
https://doi.org/10.1016/j.ajhg.2022.09.008
https://doi.org/10.1016/j.ajhg.2022.09.008

References

1. Luecken, M.D., and Theis, F.J. (2019). Current best practices in

single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15,

e8746. https://doi.org/10.15252/msb.20188746.

2. Townes, F.W., Hicks, S.C., Aryee, M.J., and Irizarry, R.A. (2019).

Feature selection and dimension reduction for single-cell

RNA-seq based on a multinomial model. Genome Biol. 20,

295. https://doi.org/10.1186/s13059-019-1861-6.

3. O’Hara, R.B., and Kotze, D.J. (2010). Do not log-transform

count data. Methods Ecol. Evol. 1, 118–122. https://doi.org/

10.1111/j.2041-210x.2010.00021.x.

4. Warton, D.I. (2017). Why you cannot transform your way out

of trouble for small counts. Biometrics 74, 362–368. https://

doi.org/10.1111/biom.12728.

5. Hafemeister, C., and Satija, R. (2019). Normalization and vari-

ance stabilization of single-cell RNA-seq data using regularized

negative binomial regression. Genome Biol. 20, 296. https://

doi.org/10.1186/s13059-019-1874-1.

6. Lause, J., Berens, P., and Kobak, D. (2021). Analytic pearson re-

siduals for normalization of single-cell RNA-seq UMI data.

Genome Biol. 22, 258. https://doi.org/10.1186/s13059-021-

02451-7.

7. Sun, S., Zhu, J., Ma, Y., and Zhou, X. (2019). Accuracy, robust-

ness and scalability of dimensionality reduction methods for

single-cell RNA-seq analysis. Genome Biol. 20, 269. https://

doi.org/10.1186/s13059-019-1898-6.

8. Hsu, L.L., and Culhane, A.C. (2021). Corral: Single-cell RNA-

seq dimension reduction, batch integration, and visualization

with correspondence analysis. Preprint at bioRxiv. https://doi.

org/10.1101/2021.11.24.469874.

9. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd,

Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zagar,

M., et al. (2021). Integrated analysis of multimodal single-

cell data. Cell 184, 3573–3587.e29. https://doi.org/10.1016/j.

cell.2021.04.048.

10. Shekhar, K., Lapan, S.W., Whitney, I.E., Tran, N.M., Macosko,

E.Z., Kowalczyk,M., Adiconis, X., Levin, J.Z., Nemesh, J., Gold-

man, M., et al. (2016). Comprehensive classification of retinal

bipolar neurons by single-cell transcriptomics. Cell 166, 1308–

1323.e30. https://doi.org/10.1016/j.cell.2016.07.054.

11. Ahlmann-Eltze, C., and Huber, W. (2020). glmGamPoi: fitting

gamma-poisson generalized linear models on single cell count

data. Bioinformatics 36, 5701–5702. https://doi.org/10.1093/

bioinformatics/btaa1009.
The American Jour
12. Wooldridge, J.M. (2010). Econometric Analysis of Cross Sec-

tion and Panel Data, 2 edition (The MIT Press).

13. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W.,

Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu,

J., et al. (2017). Massively parallel digital transcriptional

profiling of single cells. Nat. Commun. 8, 14049. https://doi.

org/10.1038/ncomms14049.

14. Ding, J., Adiconis, X., Simmons, S.K., Kowalczyk, M.S., Hes-

sion, C.C., Marjanovic, N.D., Hughes, T.K., Wadsworth,

M.H., Burks, T., Nguyen, L.T., et al. (2020). Systematic compar-

ison of single-cell and single-nucleus RNA-sequencing

methods. Nat. Biotechnol. 38, 737–746. https://doi.org/10.

1038/s41587-020-0465-8.

15. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M.,

Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers,

F.J., et al. (2019). The single-cell transcriptional landscape of

mammalian organogenesis. Nature 566, 496–502. https://

doi.org/10.1038/s41586-019-0969-x.

16. Tsuyuzaki, K., Sato, H., Sato, K., and Nikaido, I. (2020). Bench-

marking principal component analysis for large-scale single-

cell RNA-sequencing. Genome Biol. 21, 9. https://doi.org/10.

1186/s13059-019-1900-3.

17. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang,

F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.R., and Ray-

chaudhuri, S. (2019). Fast, sensitive and accurate

integration of single-cell data with harmony. Nat.

Methods 16, 1289–1296. https://doi.org/10.1038/s41592-

019-0619-0.

18. Zappia, L., Phipson, B., and Oshlack, A. (2017). Splatter: simu-

lation of single-cell RNA sequencing data. Genome Biol. 18,

174. https://doi.org/10.1186/s13059-017-1305-0.

19. William Townes, F., and Kelly, S. (2020). scry. https://

bioconductor.org/packages/scry.

20. Li, Z., Meisner, J., and Albrechtsen, A. (2022). PCAone: fast

and accurate out-of-core PCA framework for large scale

biobank data. bioRxiv. https://doi.org/10.1101/2022.05.25.

493261.

21. Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S., and Vert, J.-P.

(2018). A general and flexible method for signal extraction

from single-cell RNA-seq data. Nat. Commun. 9, 284.

https://doi.org/10.1038/s41467-017-02554-5.

22. Pierson, E., and Yau, C. (2015). ZIFA: Dimensionality reduc-

tion for zero-inflated single-cell gene expression analysis.

Genome Biol. 16, 241. https://doi.org/10.1186/s13059-015-

0805-z.
nal of Human Genetics 109, 1974–1985, November 3, 2022 1985

https://doi.org/10.15252/msb.20188746
https://doi.org/10.1186/s13059-019-1861-6
https://doi.org/10.1111/j.2041-210x.2010.00021.x
https://doi.org/10.1111/j.2041-210x.2010.00021.x
https://doi.org/10.1111/biom.12728
https://doi.org/10.1111/biom.12728
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1186/s13059-021-02451-7
https://doi.org/10.1186/s13059-021-02451-7
https://doi.org/10.1186/s13059-019-1898-6
https://doi.org/10.1186/s13059-019-1898-6
https://doi.org/10.1101/2021.11.24.469874
https://doi.org/10.1101/2021.11.24.469874
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2016.07.054
https://doi.org/10.1093/bioinformatics/btaa1009
https://doi.org/10.1093/bioinformatics/btaa1009
http://refhub.elsevier.com/S0002-9297(22)00411-6/sref12
http://refhub.elsevier.com/S0002-9297(22)00411-6/sref12
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/s41587-020-0465-8
https://doi.org/10.1038/s41587-020-0465-8
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1186/s13059-019-1900-3
https://doi.org/10.1186/s13059-019-1900-3
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1186/s13059-017-1305-0
https://bioconductor.org/packages/scry
https://bioconductor.org/packages/scry
https://doi.org/10.1101/2022.05.25.493261
https://doi.org/10.1101/2022.05.25.493261
https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1186/s13059-015-0805-z
https://doi.org/10.1186/s13059-015-0805-z

	FastRNA: An efficient solution for PCA of single-cell RNA-sequencing data based on a batch-accounting count model
	Introduction
	Material and methods
	Notations
	Log normalization
	Previous count-based normalization methods
	SVD and spectral decomposition
	Conditional likelihood approach
	FastRNA algorithm
	Feature selection
	Dimension reduction
	Software implementation
	Potential numerical issues
	Input/output formats
	Benchmark environment
	Datasets

	Results
	Benchmarking of time and memory requirement
	Benchmarking of the quality of dimension reduction using real data
	FastRNA excels in multi-batch benchmarking
	Batch correction of FastRNA helps feature selection

	Discussion
	Data and code availability
	Supplemental information
	Acknowledgments
	Declaration of interests
	References

