
Lin et al. BMC Genomics          (2022) 23:758  
https://doi.org/10.1186/s12864-022-08992-w

RESEARCH

Comprehensive analysis of TCGA data 
reveals correlation between DNA methylation 
and alternative splicing
Shuting Lin1, Soojin Yi2 and Peng Qiu3* 

Abstract 

The effect of DNA methylation on the regulation of gene expression has been extensively discussed in the literature. 
However, the potential association between DNA methylation and alternative splicing is not understood well. In this 
study, we integrated multiple omics data types from The Cancer Genome Atlas (TCGA) and systematically examined 
the relationship between DNA methylation and alternative splicing. Using the methylation data and exon expres-
sion data, we identified many CpG sites significantly associated with exon expression in various types of cancers. We 
further observed that the direction and strength of significant CpG-exon correlation tended to be consistent across 
different cancer contexts, indicating that some CpG-exon correlation patterns reflect fundamental biological mecha-
nisms that transcend tissue- and cancer- types. We also discovered that CpG sites correlated with exon expressions 
were more likely to be associated with patient survival outcomes compared to CpG sites that did not correlate with 
exon expressions. Furthermore, we found that CpG sites were more strongly correlated with exon expression than 
expression of isoforms harboring the corresponding exons. This observation suggests that a major effect of CpG 
methylation on alternative splicing may be related to the inclusion or exclusion of exons, which subsequently impacts 
the relative usage of various isoforms. Overall, our study revealed correlation patterns between DNA methylation and 
alternative splicing, which provides new insights into the role of methylation in the transcriptional process.
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Background
DNA methylation is one of the most extensively stud-
ied epigenetic mechanisms and is essential for normal 
development and many key biological processes, includ-
ing embryogenesis, genome imprinting, and regulation 
of gene transcription [1–3]. Although DNA methylation 
is known to be perturbed in various cancers, its role in 
tumorigenesis is not fully understood  [4], motivating 
numerous studies to explore the mechanism of DNA 
methylation in human cancers   [5, 6]. A main question 

in this regard is the role of CpG methylation and gene 
expression. Many studies have characterized DNA 
methylation as a silencer or activator of gene transcrip-
tion because methylation of the promoter region often 
represses gene expression, while methylation of some 
CpG sites in the gene body is correlated with increase of 
transcriptional activities [2, 7–9]. However, emerging evi-
dence shows that DNA methylation not only affects tran-
scription but also regulates alternative splicing [10, 11].

Alternative splicing is known to have significant impact 
on cancer [12, 13]. Yet, few studies have explored the cor-
relation between methylation and alternative splicing, 
specifically the regulatory mechanisms of DNA methyla-
tion on alternative splicing in cancer. We speculate that 
this could be due to methylation being an epigenetic 
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event that occurs on DNA, while alternative splicing 
occurs during the processing of RNA molecules, and 
therefore the possibility of a direct relationship between 
DNA methylation and alternative splicing has received 
less attention than it should have. The lack of explora-
tions of the possible role of DNA methylation in alterna-
tive splicing presents an opportunity for further research, 
as it could contribute toward new understanding of DNA 
methylation during transcriptional processes, especially 
in tumorigenesis.

With advances in high-throughput genomics, exten-
sive cancer databases such as The Cancer Genome Atlas 
(TCGA) have become publicly available to examine the 
relationship between DNA methylation and alternative 
splicing. TCGA provides multiple types of molecular data 
on cancer patients, including mutation, copy number 
variation, DNA methylation, gene expression, miRNA 
expression and protein expression, across 33 cancer types 
and a total of ∼11,000 cancer patients. Using TCGA 
data resources, some in  vitro studies in the literature 
have incorporated DNA methylation data and transcript 
level quantification data to explore the potential link 
between alternative splicing and DNA methylation. For 

example, one previous study has used association analy-
sis to characterize the underlying relationship between 
cancer-specific alternative splicing and DNA methyla-
tion, and observed several different patterns of meth-
ylation-alternative splicing correlations  [14]. Another 
study developed a splicing decision model to identify 
actionable methylation loci potentially affecting splic-
ing events, which revealed that intragenic methylation 
status is important for splicing regulation [15]. However, 
most of the previous studies were limited to specific can-
cers, or focused exclusively on differentially methylated 
CpGs between tumor and normal samples. In this study, 
we aimed to comprehensively integrate and analyze dif-
ferent molecular data types in TCGA, including data on 
DNA methylation, exon expression, isoform expression, 
and gene expression, to unravel the correlation pattern 
between methylation and alternative splicing across mul-
tiple cancer types.

Here, we present a pan-cancer analysis to examine 
the relationship between DNA methylation and alter-
native splicing on an individual gene basis (Fig.  1). For 
one cancer and one gene, we selected patients with high 
expression of that specific gene, henceforth defined 

Fig. 1  Flowchart of data analysis used in this study. First, we selected gene-specific samples that highly expressed the gene for each of the genes 
we analysed, and then we performed correlation analysis between DNA methylation and exon/isoform expression based on gene-specific samples. 
A threshold of FDR<0.05 was required to detect significant correlations. In addition, we performed survival analysis for each CpG sites and identified 
a list of CpG sites that are predictive of patients’ survival outcome. Finally, a literature survey was conducted to search for existing evidences of 
identified correlations
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as “gene-specific patients”. We used the data on those 
patients to compute the correlations between DNA 
methylation levels of CpG sites associated with the gene 
and the expression data of exons of that gene. Thus, we 
identified genes whose DNA methylation was signifi-
cantly correlated with alternative splicing in cancers. 
Next, we reviewed the literature to find evidence sup-
porting the relationship between DNA methylation and 
alternative splicing in the identified genes. Furthermore, 
for each cancer, we stratified CpG sites into two classes 
(significant CpGs vs. non-significant CpGs), depend-
ing on whether the CpG sites were significantly associ-
ated with at least one of the exons of the corresponding 
gene. In order to evaluate whether there are differences 
in these two classes in terms of their ability to predict 
survival outcomes, we applied survival analysis to all 
the individual CpG sites and found CpG sites that cor-
relate with exons are more likely to be correlated with 
survival, compared to the CpG sites that do not correlate 
with exons. In addition, we applied a correlation analysis 
between the CpG sites and isoforms for each gene in each 
cancer type. Interestingly, we observed that CpG sites 
are more strongly correlated with exon expressions than 
their correlations with isoform expressions. This observa-
tion indicates that CpG methylation may affect alterna-
tive splicing by regulating the inclusion or exclusion of 
exons, which subsequently impacts the expression and 
usage at the isoform level.

Results
Correlations between DNA methylation and alternative 
splicing
For each of the 33 cancer types in TCGA and each gene, 
we performed a correlation analysis of the DNA meth-
ylation data for each CpG site and the expression data 
of each exon of the corresponding gene, which involved 
with a total of 485,577 CpG sites and 239,322 exons in 
20,880 genes. On average, one gene was associated with 
22 CpG sites and had 9.65 exons, which amounted to 
examining a total of 134,299,062 CpG-exon correlations.

For each cancer type and each gene, patients belonging 
to the cancer type were stratified into a highly-expressed 
group and a lowly-expressed group by applying Step-
Miner  [16] to binarize the gene expression data of the 
gene. Specifically, we sorted the expression data of the 
gene for all patients in all cancer types, and then fitted 
a step function to the sorted data that minimized the 
squared error between the sorted data and the fitted 
step function, which provided a global threshold to bina-
rize the expression of the gene. Since this threshold was 
derived based on the data of all patients across all can-
cer types, it robustly defined high and low expression of 
the gene. Since we were interested in studying alternative 

splicing, we focused on patients in the highly-expressed 
group for the specific gene of interest in the cancer type. 
We then calculated the correlations between DNA meth-
ylation of each of the CpG sites and expression of each of 
the exons for the given gene based on those patients who 
highly expressed the gene in that cancer type. In addition, 
we required that correlation analysis can only be per-
formed when there were at least 10 patients for a given 
gene and a given cancer type to avoid bias due to small 
sample size. After computing CpG-exon correlations for 
each gene in each cancer type, we identified significant 
CpG-exon correlations using a 5 % false discovery rate 
(FDR) threshold. The correlation analysis in 33 cancer 
types led to 6,049,182 significant CpG-exon correlations 
associated with 280,838 unique CpG sites and 190,577 
unique exons in 19,984 genes, which we called “signifi-
cant CpG sites” and “significant exons”, respectively. Since 
the correlation analysis was performed for each cancer 
and each gene separately, it is possible that a CpG site 
may correlate with multiple exons in the corresponding 
gene, and their association may appear in different can-
cer contexts. We focused on CpG-exon correlations that 
were significant in multiple cancer types in this study, 
because these CpG sites may play important role in exon 
usage during transcriptional processes and carcinogen-
esis. A total of 36,470 CpG-exon correlations were sig-
nificant in more than one cancer type, which we called 
multi-cancer CpG-exon correlations. The 30 strongest 
correlations we found are presented in Table 1. The entire 
table for the 36,470 CpG-exon correlation is available in 
the Supplementary File.1.

To better understand the association between DNA 
methylation and exon expression, we evaluated the con-
sistency of correlation direction in each of the 36,470 
CpG-exon pairs that showed significant correlation in 
multiple cancers. Specifically, for each of the 36,470 
CpG-exon pairs, we extracted its corresponding CpG-
exon correlation values that showed significance, and 
stratified these significant correlation values. This strati-
fication defined two groups of values for a CpG-exon 
pair, a majority group consisting of more than half of the 
corresponding correlation values that shared the same 
correlation direction, and a minority group consisting 
of the remaining correlation values for the CpG-exon 
pair. After that, we computed a consistency score for the 
CpG-exon pair as the ratio between the number of cor-
relations in the majority group and the total number of 
significant correlations for the CpG-exon pair. The con-
sistency score ranged from 0.5 to 1, with 1 indicating a 
perfect consistency where all of the corresponding CpG-
exon correlation values shared the same correlation 
direction, and 0.5 indicating poor consistency. Among 
the 36,470 CpG-exon pairs with significant correlations 
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in multiple cancers, 78.71% showed a perfect consist-
ency score of 1, and 84.52% showed a consistency score 
of >0.7. Therefore, when a CpG-exon pair showed sig-
nificant correlations in multiple cancers, the directions of 
the correlations tended to be the same.

In Table  1, the multi-cancer CpG-exon pairs were 
sorted by the mean of absolute values of their significant 
correlations. We observed that these top CpG-exon pairs 
all showed relatively high correlations in various cancers. 
These top correlations are dominated by a few CpG posi-
tions and their associations with several genes. A litera-
ture search based on PubMed database was performed 
to further investigate the significance of these top CpG-
exon correlations. Interestingly, we found supporting evi-
dence for two of the top genes. One is insulin-like growth 
factor 2 (IGF2), an imprinted gene with the parental 
allele expressed and the maternal allele silenced  [17]. 
Previous studies have reported that epigenetic features 
such as histone modifications and DNA methylation are 

associated with different levels of IGF2 transcription reg-
ulation such as alternative splicing  [18]. The same CpG 
sites or nearby CpG sites also showed strong correlations 
with the exon expression of INS-IGF2, which is a read-
through transcript composed of exons from proinsulin 
precursor (INS) and IGF2  [19]. In the literature, it was 
observed that hypomethylation of INS-IGF2 was corre-
lated with increase of INS-IGF2 transcripts in four breast 
cancer cell lines  [20]. Our analysis, using an entirely dif-
ferent method, has identified these previously recognized 
relationships between DNA methylation and expression 
of these genes.

CpG sites correlated with exons tended to be more 
predictive of survival outcomes
To explore the differences between CpG sites with and 
without significant correlation with exons, we com-
pared their ability to predict cancer survival outcomes. 
Specifically, for each cancer type and each CpG site, 

Table 1  Top 30 multi-cancer CpG-exon correlations across all the cancer types

CpG Exon Gene Cancer Correlation Majority sign

cg23538703 chr3:118864997-118866434:+ RP11-484M3.5 breast; cervical 0.845 −
cg02425416 chr11:2170356-2170833:- INS-IGF2 cholangiocarcinoma; liver 0.822 +

cg02425416 chr11:2170356-2170575:- INS-IGF2 cholangiocarcinoma; liver 0.821 +

cg02425416 chr11:2168796-2169037:- INS-IGF2 cholangiocarcinoma; liver 0.818 +

cg05777976 chr11:2170356-2170833:- INS-IGF2 cholangiocarcinoma; liver 0.807 +

cg05777976 chr11:2170356-2170575:- INS-IGF2 cholangiocarcinoma; liver 0.803 +

cg05777976 chr11:2168796-2169037:- INS-IGF2 cholangiocarcinoma; liver 0.802 +

cg13167664 chr11:2170356-2170575:- IGF2 cholangiocarcinoma; liver 0.792 +

cg04083712 chr7:99158156-99158318:+ GS1-259H13.10 colon; esophageal 0.786 −
cg13167664 chr11:2170356-2170833:- IGF2 cholangiocarcinoma; liver 0.782 +

cg01814130 chr3:118906622-118906822:+ RP11-484M3.5 bladder; cervical 0.773 −
cg14458615 chr3:118864997-118866434:+ RP11-484M3.5 breast; cervical 0.766 −
cg12389423 chr3:118864997-118866434:+ RP11-484M3.5 breast; cervical 0.765 −
cg10066151 chr19:57874879-57875071:+ AC003002.4 cervical; brain 0.756 −
cg15744005 chr10:104632854-104632990:+ C10orf32-ASMT breast; cervical 0.755 −
cg20675391 chr3:118864997-118866434:+ RP11-484M3.5 breast; cervical 0.751 −
cg15744005 chr10:104632205-104632355:+ C10orf32-ASMT breast; cervical 0.750 −
cg27331871 chr11:2168796-2169037:- INS-IGF2 cholangiocarcinoma; liver 0.749 +

cg05777976 chr11:2170356-2170833:- IGF2 cholangiocarcinoma; liver 0.747 +

cg05777976 chr11:2170356-2170575:- IGF2 cholangiocarcinoma; liver 0.746 +

cg02166532 chr11:2170356-2170575:- IGF2 cholangiocarcinoma; liver 0.744 +

cg15744005 chr10:104629841-104629968:+ C10orf32-ASMT breast; cervical 0.744 −
cg04334121 chr11:18257383-18257477:- SAA4 cholangiocarcinoma; liver 0.743 −
cg16817891 chr11:2170356-2170575:- INS-IGF2 cholangiocarcinoma; liver 0.743 +

cg04334121 chr11:18253942-18254080:- SAA4 cholangiocarcinoma; liver 0.742 −
cg13167664 chr11:2168796-2169037:- IGF2 cholangiocarcinoma; liver 0.741 +

cg16817891 chr11:2170356-2170833:- INS-IGF2 cholangiocarcinoma; liver 0.740 +

cg27331871 chr11:2170356-2170833:- INS-IGF2 cholangiocarcinoma; liver 0.740 +

cg20844262 chr20:62365997-62366176:+ ZGPAT cholangiocarcinoma; liver 0.740 −



Page 5 of 9Lin et al. BMC Genomics          (2022) 23:758 	

we focused on patients that highly expressed the gene 
associated with that CpG site, and performed survival 
analysis and log-rank test to examine whether methyla-
tion status of that CpG site was predictive of survival of 
patients who expressed the corresponding gene. This 
survival analysis in 33 cancer types identified 31,045 

CpG sites that correlated with patient’s survival after a 
FDR correction for p-values (<0.05). Interestingly, when 
we compared the list of CpG sites correlated with the 
exons and the list of CpG sites associated with survival, 
we observed that 643 CpG sites were overlapped between 
the two lists, all of which were related to brain and breast 
tumors. According to the significance of survival differ-
ences, Table  2 shows the top CpG sites that correlated 
with both exon expression and survival outcomes. We 
performed a literature search on the genes associated 
with the overlapping CpG sites and found previous stud-
ies linked to them. For example, our results showed that 
multiple CpG sites associated with CD302 were predic-
tive of survival in brain tumors (Fig. 2), which is consist-
ent with another study showing that the expression level 
of CD302 was upregulated in brain regions and may be 
involved in biological processes such as development, 
differentiation, and immunological responses  [21]. Spe-
cifically, we identified four CpGs associated with CD302 
and are predictive of survival in brain cancer, which are 
cg08347373, cg04735129, cg24859623, and cg20351640. 
In order to examine their prognostic ability, we clustered 
199 patients with brain cancer using the methylation data 
of the four survival-related CpGs (Fig. 2A), and observed 
two well-separated clusters. Next, we stratified patients 
into two groups, which are group1 and group2, according 
to the clustering results. Survival analysis was performed 
to examine the ability of the identified CpGs for stratify-
ing patients with different prognoses (Fig. 2B).

To assess whether the number of overlapping CpG sites 
that correlated with both exon and survival was statisti-
cally significant, we computed the expected number of 

Table 2  CpG sites that correlate with both exon expression and 
survival outcome

*P-value and FDR are for log-rank test of CpG association with survival

CpG Gene Cancer P-value FDR

cg20351640 CD302 brain 1.70E-08 0.000138852

cg03903831 RP11-307N16.6 brain 3.51E-08 0.000181116

cg27048140 ATP5J2-PTCD1 brain 8.93E-08 0.000289902

cg19857457 RPL17-C18orf32 breast 1.09E-08 0.000337161

cg03903831 SPATA13 brain 1.88E-07 0.000432463

cg05032848 RFFL brain 2.45E-07 0.000497251

cg20477147 NPEPL1 brain 3.95E-07 0.000600647

cg24859623 CD302 brain 3.95E-07 0.000600647

cg09088496 RP11-307N16.6 brain 3.86E-07 0.000600647

cg04735129 CD302 brain 4.81E-07 0.000657035

cg08347373 CD302 brain 5.69E-07 0.000711062

cg08278937 SERINC4 brain 7.10E-07 0.000783884

cg16992627 TNXB brain 8.01E-07 0.000830607

cg21870038 RFFL brain 8.07E-07 0.000830823

cg13586610 TNXB brain 1.07E-06 0.000969694

cg22158248 ALDH2 brain 1.23E-06 0.001040217

cg13799005 RP11-644F5.10 brain 1.25E-06 0.001049216

cg09088496 SPATA13 brain 1.97E-06 0.00123508

cg06017559 RP11-161M6.2 brain 2.34E-06 0.001332273

cg07204711 CDK3 brain 2.32E-06 0.001332273

Fig. 2  A Cluster heatmap of the methylation data of the CpG sites associated with CD302 in brain cancer. Patients were separated into two groups 
based on the clustering results. B Kaplan-Meyer survival curves of the two patient group stratified by the CpGs associated with CD302
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overlaps in cases where the two relationships were inde-
pendent. Since we analyzed data for 33 cancer types, the 
total number of CpG-survival relationships examined is 
the number of CpG sites (485,577) multiplied by 33. As 
mentioned above, we observed 31,045 significant CpG-
survival relationships, which is roughly 0.19% of the 
total number of CpG-survival relationships examined. If 
the CpG-exon correlation was independent of the CpG-
survival relationships, among the 65,949 CpG sites cor-
related to exons, only 124 are expected to be significantly 
correlated with survival. However, we observed 643 
overlapping CpGs in both CpG-exon correlation analysis 
and survival analysis, which was 5.2 times greater than 
expected (Fig. 3). This observation showed that the CpG 
sites correlated with exons tended to be more correlated 
with cancer survival outcomes than expected, which 
could be an indication that CpG sites correlated with 
exons tend to have functional consequences on clinical 
outcomes [12, 13]. This result was consistent with those 
of previous studies regarding the ability of methylation-
related alternative splicing events to predict survival out-
comes in cancer [12–14]

CpG sites are more strongly correlated with exons 
than their correlation with isoforms
We examined the relationship between DNA methyla-
tion and isoform expression. Similar to the analysis of 
CpG-exon correlation, for each cancer type and each 
gene, we first stratified patients into highly-expressed 
and lowly-expressed groups according to the binarized 
expression data for the gene. We only used patients in the 
highly-expressed group to calculate correlations between 
the methylation level of CpG sites associated with the 
gene and the expression data of isoforms of that gene. 
For a given cancer type, we computed the correlation 

for a given gene only if the number of patients in highly-
expressed group exceeded 10. We applied FDR adjusted 
significance p-value < 0.05 as a threshold in each cancer 
type to identify significant CpG-isoform correlations in 
the 33 cancer types. A total of 1,929,993 CpG-isoform 
correlations exceeded the threshold, which involved 
276,554 CpG sites, 131,735 isoforms, and 19,368 genes.

We compared the strengths between CpG-exon cor-
relations and CpG-isoform correlations, where the same 
CpG was significantly correlated with the expression of 
an exon as well as with an isoform containing the exon. 
Specifically, in each cancer type, for each of the CpG 
sites significantly correlated with an exon, we examined 
all the isoforms that correlated with the same CpG site 
and contained the exon. We then calculated the differ-
ence between the CpG-exon correlation and the corre-
sponding CpG-isoform correlation to determine which 
of them was stronger. Since an exon can belong to mul-
tiple isoforms, it is possible that a CpG-exon correlation 
has multiple corresponding CpG-isoform correlations 
in the same cancer context, and these CpG-isoform cor-
relations may have different strengths or even different 
directions. Therefore, for a given CpG-exon correlation 
and its corresponding CpG-isoform correlations, we 
selected the strongest CpG-isoform correlation with a 
direction consistent with the CpG-exon correlation. For 
example, if a CpG-exon pair was positively correlated, we 
selected the CpG-isoform that showed a positive corre-
lation and had the largest correlation value. In contrast, 
if a CpG-exon pair was negatively correlated, we selected 
the negative CpG-isoform correlation with the smallest 
correlation value. We computed the differences between 
CpG-exon correlations and the corresponding strongest 
CpG-isoform correlations, and visualized the differences 
in the histogram in Fig. 4. It is interesting to observe that 
the histogram is skewed toward the positive side, with 
70.20% of the differences greater than 0. When we set up 
±0.1 thresholds for the correlation differences, 34.76% 
of the differences were > 0.1 , whereas only 6.81% of the 
differences were < −0.1 , meaning that CpG-exon cor-
relations tended to be stronger than the corresponding 
CpG-isoform correlations. This result may indicate that 
DNA methylation’s impact on the inclusion or exclusion 
of exons could subsequently affect isoform usage.

Discussion
In this study, we examined the relationship between 
DNA methylation and alternative splicing by integrat-
ing multiple data types in TCGA. Our analyses success-
fully identified significant CpG-exon correlation patterns 
in various cancer contexts and explored the regulatory 
mechanism of CpG methylation on alternative splic-
ing. Although most CpG-exon pairs showed a negative 

Fig. 3  CpGs correlated with exons and survival. This Venn diagram 
shows the overlapping between the CpGs correlated with the exons 
and the CpGs that are predictive of survival
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correlation in various cancer contexts, consistent with 
the concept of methylation-induced expression silencing, 
we also observed a substantial number of CpG-exon pairs 
exhibiting positive correlations. Remarkably, we showed 
that the majority of CpG-exon expression correlations 
had a consistent direction across multiple cancer types, 
indicating that the relations we have identified may share 
common molecular mechanisms across multiple can-
cers. Log-rank test was used to explore the connection 
between CpGs that correlated with exons and CpGs that 
correlated with survival outcomes. We showed that the 
CpG sites correlated with exon expression were enriched 
with CpG sites that correlated with survival outcomes, 
which may indicate that the CpGs correlated with exons 
have larger functional consequences than CpGs that do 
not correlate with exons. Therefore, the significant CpG-
exon expression correlations we have identified in this 
study may provide useful candidates for functional stud-
ies in the future. Furthermore, we performed pairwise 
correlation analysis between CpG sites and isoforms for 
each cancer-gene combination, and compared the cor-
relation strength between CpG-exon and CpG-isoform. 
Our analysis demonstrated stronger correlations between 
CpGs and exons compared to the correlations between 
CpGs and isoforms that contain the exons, indicating 
that CpG methylation may be associated with alterna-
tive splicing via regulating the inclusion or exclusion of 
exons, which subsequently impacts the relative usage of 
various isoforms.

This study is not without limitations. One limita-
tion was the lack of independent validation datasets. 

It would be ideal to validate the identified CpG-exon 
correlations in independent patient cohorts. However, 
we were unable to find a multi-omics cancer dataset 
with exon-level gene expression data, CpG methyla-
tion data, and survival data. Therefore, our ability to 
perform independent validation was limited by data 
availability. Another limitation pertained to the lit-
erature search. Although a comprehensive literature 
review is a powerful tool for validating and evaluat-
ing our results based on existing knowledge, the large 
number of search results generated by simple searches 
with keywords made it difficult for us to distinguish 
useful information efficiently. In addition, experi-
mental results on methylation analysis were rarely 
reported using CpG id in Tables  1 and 2 as identifi-
ers. Therefore, it is likely that we did not fully capture 
the relevant literature associated with the correlations 
observed in this study.

Despite these limitations, this study revealed the rela-
tionship between CpG methylation and alternative splic-
ing in cancer and contributed toward the understanding 
of the role of methylation in alternative splicing during 
transcriptional processes and carcinogenesis. In addition, 
survival-related CpG sites not only provided positive 
indications of the functional relevance of CpGs that cor-
relate with exons, but also served as potential biomarkers 
predictive of clinical outcomes. In summary, the com-
prehensive survey of associations between methylation 
and alternative splicing will facilitate the exploration of 
the role of methylation regulation in transcriptional pro-
cesses in cancers.

Fig. 4  Comparison of correlation strength between CpG-exon and CpG-isoform. This histogram shows the differences between CpG-exon 
correlations and the corresponding strongest CpG-isoform correlations, which indicates that CpG-exon correlations tend to be stronger than the 
corresponding CpG-isoform correlations
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Methods
Data access
Methylation, exon expression, isoform expression, and 
gene expression data were downloaded from TCGA 
Genomic Data Commons (GDC) using the GDC Data 
Transfer Tool. The methylation data used in this study 
were acquired by the Illumina HumanMethylation450K 
array, which integrates 485,577 CpG sites on the Illu-
mina chip. Exon, isoform, and gene expression data were 
measured using the IlluminaHiSeq technology, which 
included 239,322 exons, 198,619 isoforms, and 23,548 
genes, respectively. In addition, this analysis covered 33 
different cancer types and data of more than 11,000 can-
cer patients available in TCGA. We also download the 
clinical data from GDC, which provided survival out-
come data for 11,082 patients.

Data preprocessing
The gene expression data downloaded from TCGA 
were normalized by FPKM-UQ  [22], and we subse-
quently transformed the expression data by log-trans-
formation. For each gene, we used StepMiner  [16] 
to compute a global threshold based on all patients 
across all cancer types. We first sorted the expression 
data of a given feature for all patients and then fitted 
a step function to minimize the square error between 
the original and the fitted values. Since this threshold 
is derived based on the data of all patients across all 
cancer types, it is able to robustly define high and low 
expression. The threshold of each gene was used to 
binarize the data, so that the patients could be divided 
into two groups (highly-expressed group vs. lowly-
expressed group) according to the binarized expres-
sion data of an individual gene.

Correlation analysis
Correlation analysis was performed using Pearson’s cor-
relation with a Bonferroni correction to the p-values 
based on the number of correlations computed for 
each cancer type. A correlation analysis was performed 
between DNA methylation data and expression data of 
either exons or isoforms, with an FDR-corrected p-value 
threshold of 0.05. All statistical tests were performed 
using standard Python functions.

Survival analysis
For each gene and each cancer type, we performed sur-
vival analysis on all the individual CpG sites associated 
with that gene based on the methylation data of patients 
who highly expressed the gene. Log-rank test was used 
to assess the statistical significance of the survival dif-
ference between patients with the CpG site methylated 

or unmethylated. P-values of the log-rank test were 
adjusted for multiple testing using Benjamini-Hochberg 
method with a false-discovery rate (FDR) <0.05. Kaplan-
Meier analysis and log-rank tests were performed using 
the R package “survival”.

Literature search
A literature search was performed using PubMed, 
accessed via the National Library of Medicine PubMed 
interface (http://​www.​ncbi.​nlm.​nih.​gov/​pubmed). We pro-
grammatically searched the PubMed database using cus-
tom Python scripts. We searched through PubMed for all 
keywords in all fileds, including the title, abstract and main 
texts of the articles.
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