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Abstract 

Background:  When a fracture goes into or around a joint, it usually damages the cartilage at the ends of bones and 
other joint tissue. As a result, the affected joints are prone to traumatic arthritis, leading to stiffness. Repairing bone 
damage, maintaining joint integrity, and avoiding subchondral and metaphyseal defects caused by comminuted frac‑
tures is often a great challenge for orthopedic surgeons. Tissue engineering of synthetic bone substitutes has proven 
beneficial to the attachment and proliferation of bone cells, promoting the formation of mature tissues with sufficient 
mechanical strength and has become a promising alternative to autograft methods. The purpose of this study is to 
retrospectively evaluate the clinical outcome and efficacy of a novel synthetic, highly biocompatible, and fully resorb‑
able Ca/P/S-based bone substitute based on medical image findings.

Materials and methods:  A synthetic, inorganic and highly porous Ca/P/S-based bone-substituting material (Eze‑
chbone® Granule, CBS-400) has been developed by National Cheng-Kung University. We collected fourteen cases of 
complex intra- and peri-articular fractures with Ezechbone® Granule bone grafting between 2019/11 and 2021/11. 
We studied the evidence of bone healing by reviewing, interpreting and analyzing the medical image recordings.

Results:  In the present study, CBS-400 was observed to quickly integrate into surrounding bone within three weeks 
after grafting during the initial callus formation of the early stage of repair. All of these cases healed entirely within 
three months. In addition, the patient may return to daily life function after 3.5 months of follow-up and rehabilitation 
treatment.

Conclusions:  Ezechbone® Granule CBS-400 was proved capable of promoting bone healing and early rehabilitation 
to prevent soft tissue adhesions and joint contractures. Moreover, it has a high potential for avoiding ectopic bone 
formation or abnormal synostosis.

Trial registration:  The Institutional Review Board at National Cheng Kung University Hospital (NCKUH) approved the 
study protocol (A-ER-109-031, 3-13-2020).
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Background
Intra- or peri-articular fractures occur when bones 
break into or around a joint. These injuries often dam-
age the cartilage at the ends of bones and other joint tis-
sues. Because fractures in and around the joint tend to 
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damage the cartilage, the affected joint is prone to trau-
matic arthritis leading to stiffness. The epidemiology 
of comminuted intra- and peri-articular metaphyseal 
injuries is often difficult to determine due to differences 
in target study populations and geographic locations [1, 
2]. The principal goal of treatment is primarily to repair 
bone damage, maintain the joint’s integrity and help 
prevent further joint problems. Subchondral and meta-
physeal bone defects caused by comminuted fractures 
are often a great challenge for orthopedic surgeons. 
Since the mechanism of support and cartilage mainte-
nance of the articular surface is disrupted, if the dam-
age is not repaired properly, it can lead to sequelae such 
as nonunion or malunion [3, 4]. Moreover, without 
proper repair of the bone and joint damage, movement 
of the injured joint is often avoided to improve stabil-
ity at the fracture site, thus creating a risk of long-term 
joint stiffness. Based on the complex morphology of the 
fracture, surgery is performed for reconstruction that 
preserves the integrity of the articular surface but often 
leaves a gap or cavity underneath, resulting in a lack of 
stability at the fracture site.

Globally, it estimates that there are nearly 2.2 million 
transplants per year. In the United States alone, more 
than 500,000 bone grafting surgeries are performed 
each year, such as in trauma, tumor, spine surgery and 
revision arthroplasty. Bone graft is the second most-
commonly used transplant tissue, next to blood [5–8]. 
In general, a bone graft may be defined as an implanted 
material that promotes bone healing with various 
mechanisms, including osteoinduction (bone morpho-
genetic proteins, etc.) that is the process by which mes-
enchymal stem cells (MSCs) at and around the host site 
are recruited to differentiate into chondroblasts and 
osteoblasts, osteoconduction (scaffold, etc.) that is the 
process by which an ordered, spatial three-dimensional 
ingrowth of capillaries, perivascular tissue, and MSCs 
takes place from the host site along the implanted graft, 
and osteogenesis (osteoprogenitor cells, etc.) that is 
the synthesis of new bone by cells derived from either 
the graft or the host [9]. Bone graft may help maintain 
joint stability, integrity and repair periarticular frac-
tures with significant subchondral defects. A bone graft 
with adequate osteoconduction and/or osteoinduction 
and strength is preferred for use to fill the space of a 
bony defect [9]. In addition to providing a mechanical 
scaffold to help support articular surfaces and maintain 
alignment, bone graft can also provide structural sup-
port for osteocytes during the healing of osteoregen-
eration, which is a complex cascade of physiological 
processes of bone formation, found in general frac-
ture healing and involved in continuous remodeling 
throughout adulthood [10].

Bone grafting is an alternative for addressing bone dis-
ease problems and is considered a surgical intervention 
to facilitate bone healing. Bone grafts can be derived 
from living donors, post-mortem donors or artificial 
materials [11–13] and may be categorized into two dif-
ferent types, i.e., biological or synthetic. Synthetic graft 
materials may further be classified into two groups, oste-
oinductive material (bone morphogenetic proteins, etc.) 
and osteoconductive material (scaffold, etc.) [3, 14–16].

Due to its various advantageous features, autologous 
bone has long been recognized as the gold standard of 
graft material for bone regeneration [10, 17]. However, 
its clinical drawbacks, including limited availability and 
donor site-induced complications and morbidity, limit 
its use [18–21].Among the recently emerged tissue-engi-
neered new biomaterials to solve these problems, artifi-
cial synthetic bone substitutes with different functions 
have been developed. Studies have proved that these syn-
thetic bone substitutes are beneficial to the attachment 
and proliferation of bone cells, promoting the formation 
of mature tissues with sufficient mechanical strength. 
Tissue engineering of synthetic bone substitutes has 
proven to be a promising alternative to autograft meth-
ods [18, 19, 22–27].

Synthetic bone substitutes may be metallic, ceramic 
or polymeric. Resorbable bone substitutes typically 
comprise collagen, hydroxyapatite, tricalcium phos-
phate, calcium sulfate, or a combination of such min-
erals in appropriate proportions [10]. Compared with 
autografts and allografts, artificial bone substitutes have 
several advantages such as high biocompatibility, absorb-
ability, unlimited supply, ease of sterilization and storage, 
avoiding the transmission of disease, easy access, and 
cost-effectiveness [8, 19, 28, 29]. However, most of the 
currently available bone substitute materials have certain 
potential disadvantages, such as lack of biocompatibility, 
inconsistent resorbability and material properties, which 
can hinder the repair and regeneration of bone tissue [16, 
30–32].

The purpose of this study is to retrospectively evalu-
ate the clinical outcome and efficacy of a novel synthetic, 
highly biocompatible and fully resorbable Ca/P/S-based 
bone substitute based on medical image findings.

Materials and methods
A synthetic, inorganic and highly porous Ca/P/S-based 
bone-substituting material (Ezechbone® Granule, CBS-
400) has been developed by a National Cheng-Kung 
University (NCKU)/ Joy Medical Devices (JMD) joint 
research project [29]. Taiwan Food and Drug Adminis-
tration has approved and granted a product license to the 
material (Approval No. 003889). Because this is a retro-
spective study and the study did not adversely affect the 
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rights and welfare of patients, the Institutional Review 
Board at National Cheng Kung University Hospital 
(NCKUH) approved the study protocol (A-ER-109-031, 
3-13-2020) and agreed to waive the patient’s informed 
consent for data publication. CBS-400 is mainly com-
prised of hydroxyapatite (HA) and calcium sulfate 
dihydrate (CSD) with a delicate Ca/P/S atomic ratio 
of 54.6/39.2/6.2. CBS-400 has demonstrated its excel-
lent biocompatibility from a variety of biocompatibil-
ity tests such as cytotoxicity, intradermal reactivity and 
skin sensitization tests. Animal models also show that 
the implanted granules are always in intimate contact 
with the surrounding newly-formed bone. Furthermore, 
the resorption and formation of new cancellous bone 
proceed at substantially same pace. In a recent study, 
the entire process of bone regeneration of CBS-400 
revealed a rapid increase in the proportion of new can-
cellous bone to over 40% at 4  weeks after implantation, 
followed by a bone remodeling process toward normal 
cancellous bone. As much as 85% of the bone substitute 
had been resorbed about 12 weeks after implantation [29, 
33]. According to the operation notes from the medical 
records, we collected fourteen cases of complex intra- 
and peri-articular fractures with Ezechbone® Granule 
bone grafting between 2019/11 and 2021/11. We studied 
the evidence of bone healing by reviewing, interpreting 
and analyzing the medical image recordings. All imag-
ing images were reviewed, discussed and interpreted by 
an orthopedic surgeon with 15 + years of clinical experi-
ence in the field along with a diagnostic radiologist with 
20 + years of experience. As indicated in X-ray, the ini-
tial bone graft area had turned into a nidus-like appear-
ance (Fig.  1) several days following grafting, indicating 

a primary fusion. The shrinkage of the nidus-like lesion 
(Fig.  2) suggested the initial bone callus formation. The 
fill-full of the nidus-like lesion (Fig. 3) indicated that the 
bone healed well. The time required for each different 
stage was recorded.

Results
From November 2019 to November 2021, we followed 
14 cases (Table  1), including 11 males and 3 females, 
with an average of 34.1 ± 9.8 y/o. The fracture types 
applying bone graft substitutes included 6 peri-artic-
ular and 8 intra-articular fractures. The surgical sites 
were located in two olecranons, two in the distal radius, 

Fig. 1  The nidus-like appearance (white arrow) in the X-ray indicates 
a primary fusion of the bone substitute and its close contact with the 
surrounding bone

Fig. 2  The X-ray reveals a shrinkage of the nidus-like lesion (white 
arrow) accompanied with initial bone callus formation

Fig. 3  The X-ray-revealed fill-full of the nidus-like lesion (white arrow) 
in bone graft area demonstrates well healing of the bone
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two at the base of the proximal phalanx, four in the 
scaphoid, one in the radial head, and three in the meta-
carpal bones individually. According to medical image 
interpretation of X-rays, the time to nidus-like forma-
tion after bone grafting was 2.3 ± 0.5  weeks; the time 
to initial callus formation was 4.7 ± 1.0 weeks; and the 
time to good healing was 10.3 ± 1.3  weeks. In four of 
the 14 cases, the bone substitute material was scattered 

in the soft tissue around the bone graft area and around 
the adjacent joint due to the treatment process (Fig. 4). 
These implant residues were entirely absorbed within 
1.6 ± 0.5 months, for these four cases, and there was no 
ectopic exostoses formation or synostosis with limited 
joint mobility. The initial ROM rehabilitation program 
started on average at 3.0 ± 0.9 weeks. In addition, active 

Table 1  Demographic data and clinical image characteristics

case number Gender Age (y/o) Fracture type Fracture site Nidus-like 
formation 
(weeks)

Initial callus 
formation 
(weeks)

Healing 
well 
(weeks)

Initial start to 
rehabilitation 
program (weeks)

1 F 34 Intra-articular Olecraon 2 6 12 3

2 M 26 Intra-articular Scaphoid 2 6 12 4

3 M 34 Peri-articular Metacarpal neck 3 5 10 2

4 M 31 Intra-articular Scaphoid 2 4 8 4

5 M 38 Peri-articular Metacarpal base 3 6 10 2

6 M 23 Intra-articular Radial head 2 4 10 6

7 F 55 Intra-articular Metacarpal base 3 5 10 2

8 F 20 Peri-articular Proximal phalanx 2 4 10 2

9 M 44 Peri-articular Proximal phalanx 2 4 8 2

10 M 31 Intra-articular Scaphoid 2 4 12 4

11 M 23 Peri-articular Distal radius 3 5 10 3

12 M 44 Intra-articular Scaphoid 2 3 10 2

13 M 46 Peri-articular Distal radius 2 4 10 4

14 M 28 Intra-articular Olecranon 2 6 12 4

Fig. 4  The X-ray shows that the bone substitute material was scattered in the soft tissue around the bone graft area and around the adjacent joint 
due to the treatment process (left). These implant residues were entirely absorbed (white arrow) within two months after implantation (right)
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joint range of motion and function was restored in all 
14 followed-up cases on average at 3.5 months.

Discussion
It is generally recognized that, in clinical orthopedics, the 
treatment of complicated fracture, bone defects, delay- 
or non-union is a challenging and difficult issue. Since 
Ollier first described the role of bone graft on the proce-
dure for bone healing in 1861, bone grafting has become 
one major trend clinically. According to the differences 
among the variety of artificial bone materials, bone graft 
substitutes can be divided into growth factor-based, cell-
based, ceramic-based, and polymer-based materials. The 
present study is to evaluate the clinical osteoregenerative 
efficacy of a novel synthetic, highly biocompatible and 
fully resorbable Ca/P/S-based bone graft substitute based 
on medical image findings to learn the effectiveness of 
this material in clinical application, specifically in intra- 
and peri-articular fractures.

Open reduction and internal fixation usually involves a 
surgical incision to expose the fracture and using plates 
and screws to correct/repair the fracture. The fractured 
bone fragments are screwed back together, allowing 
direct bone-to-bone healing. Traditionally speaking, bone 
healing is divided into three stages, including the inflam-
mation stage, repair stage and remodeling stage [34, 35]. 
The inflammatory stage begins when an injury occurs, 
while fracture-induced bleeding can form a hematoma 
or blood clot formation. Local cell death occurs due to 
tissue damage and chemotactic signaling mechanisms 
are initiated to clear these cell deaths. At the same time, 
the blood clot organizes into a network of proteins, and 
granulation tissue forms between the fragments leading 
to vascularization of the hematoma [36]. At this stage the 
transparency of the fracture may increase on radiographs 
due to bone resorption [34, 37]. This period normally 
takes about 1–2 weeks. During the following 2–3 weeks, 
the tissue repair phase begins, where progenitor cells 
within the granulation tissue proliferate and differentiate 
into fibroblasts and chondroblasts, producing an extra-
cellular organic matrix of fibrous tissue and cartilage, 
wherein osteoblasts deposit woven bone [38–40]. At this 
stage new living cells of bone, cartilage, and fibrous tissue 
appear at the fracture site, resulting in the formation of 
rubbery tissue called "fracture callus" or "soft callus." The 
subsequent calcium deposits in the callus can then begin 
to be faintly visible on radiographs 2–3 weeks after injury 
[41] and this phase usually lasts 4–16 weeks. During this 
phase shear forces can still damage the newly formed 
callus, while axial traction and pressure promote matrix 
formation [34, 42]. Finally, bone remodeling occurs 
when the fractured callus is replaced by solid tissue bone 
(or called “hard callus”), restoring its typical cortical 

structure according to Wolff’s law related to the load dis-
tribution [43]. The overall healing process is ongoing and 
can last from months to years. The remodeling process is 
faster in children than in adults that may compensate for 
malunion to some extent [44, 45].

The bone substitute used in the present study (Ezech-
bone® Granule CBS-400) was observed to quickly inte-
grate into surrounding bone within three weeks after 
grafting, while the initial callus formation of calcified 
deposits could be found within six weeks, indicating the 
early stage of repair. To the end of the follow-up, all of 
these cases healed entirely within three months. In addi-
tion, the CBS-400-derived earlier callus formation in the 
early stage of repair made it possible for us to shorten 
the start time of rehabilitation from 4 to 6  weeks after 
surgery to within 3  weeks. As a result, the patient may 
return to daily life function after 3.5 months of follow-up 
and rehabilitation treatment.

An ideal bone graft substitute should present such 
material properties as biocompatibility, resorbability, vas-
cularity and angiogenesis, durability, osteogenesis and 
osteoconduction/ osteoinduction. However, in vitro and 
in vivo studies indicated that most of the artificial bone 
products in the current market, such as calcium phos-
phate and recombinant human bone morphogenetic 
protein, are poorly absorbed and uncertain in biocompat-
ibility, even induce ectopic cartilage and bone formation 
or abnormal synostosis (Fig. 5A–C) [46–51]. Ezechbone® 
Granule CBS-400 is highly porous in structure and com-
prised majorly of Ca-PO4 and Ca-SO4. It is completely 
synthetic without biohazards of animal origin, provid-
ing excellent biocompatibility and a matched resorption 
rate to new bone formation. Based on a rabbit animal 
study [29], the trabecular bone in the implanted region 
appeared much thicker than that of the non-implanted 
region, and bone remodeling after 8–12 weeks of implan-
tation of CBS-400 was substantially complete. Micro-
scopic pictures revealed good resorption and integration 
of the implant with surrounding bone tissues without 
fibrous formation or inflammatory reaction.

Conclusions
The primary goal of successful bone augmentation is 
to provide adequate intensity for early active and pas-
sive range-of-motion exercises to prevent soft tissue 
adhesions and joint contractures. From the present pre-
liminary clinical results, the present Ca/P/S-based bone-
substituting material (Ezechbone® Granule CBS-400) 
provides capability of promoting bone healing. Moreo-
ver, it has a high potential for avoiding abnormal ectopic 
bone formation or synostosis. Collection of more cases 
and further in-depth study are invited to reassure its 
efficacy.
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MSCs: Mesenchymal stem cells; NCKUH: National Cheng Kung University 
Hospital; NCKU: National Cheng-Kung University; JMD: Joy medical devices; 
HA: Hydroxyapatite; CSD: Calcium sulfate dihydrate.
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