Skip to main content
. 2022 Nov 18;23:496. doi: 10.1186/s12859-022-05050-w

Table 2.

Performance metrics for KNN, SVM, MLP and ensemble classifiers for five cancer types

Classifier Cancer class Precision Recall F1-score
(a) Performance metrics for KNN
KNN High-grade serous ovarian cancer 0.56 0.61 0.59
Human diffuse type gastric cancer 0.88 0.71 0.79
Intrahepatic cholangiocarcinoma 0.79 0.85 0.82
Non BRCA1/BRCA2 familial breast cancer 0.82 0.96 0.89
Pancreatic adenocarcinoma 0.60 0.62 0.61
Weighted accuracy 0.77
(b) Performance metrics for SVM
SVM High-grade serous ovarian cancer 0.66 0.58 0.62
Human diffuse type gastric cancer 0.83 0.66 0.73
Intrahepatic cholangiocarcinoma 0.85 0.86 0.86
Non BRCA1/BRCA2 familial breast cancer 0.84 0.99 0.91
Pancreatic adenocarcinoma 0.62 0.71 0.66
Weighted accuracy 0.76
(c) Performance metrics for neural networks
Neural networks High-grade serous ovarian cancer 0.75 0.74 0.74
Human diffuse type gastric cancer 0.83 0.78 0.80
Intrahepatic cholangiocarcinoma 0.85 0.89 0.87
Non BRCA1/BRCA2 familial breast cancer 0.89 0.92 0.91
Pancreatic adenocarcinoma 0.78 0.78 0.78
Weighted accuracy 0.82
(d) Performance metrics for ensemble model
Ensemble model High-grade serous ovarian cancer 0.76 0.78 0.77
Human diffuse type gastric cancer 0.82 0.77 0.79
Intrahepatic cholangiocarcinoma 0.84 0.91 0.87
Non BRCA1/BRCA2 familial breast cancer 0.89 0.93 0.91
Pancreatic adenocarcinoma 0.83 0.77 0.80
Weighted accuracy 0.82