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Introduction
Although cancer immunotherapies, such as immune checkpoint blockade, have been established as an effec-
tive treatment modality for several cancer types, the majority of  solid tumor patients still do not respond 
(1). In the setting of  numerous ongoing immunotherapy clinical trials, understanding how each patient’s 
immune system is configured at baseline and changes throughout the course of  treatment is pivotal to iden-
tifying strategies that can further improve immunotherapeutic efficacy. Thus, methods for evaluating the 
immunologic states of  large numbers of  patients and cell-scale dynamics within each patient, even in the 
setting of  negative clinical responses in a cost-effective, scalable manner are critically warranted.

Cytometry by TOF (CyTOF) is a high-parameter cytometry tool that has been used in several immuno-
therapy studies to report immune composition in peripheral blood and determine overall systemic responses to 
therapy (2–5). The appeal of this technology stems from its use of antibodies conjugated to isotopically enriched 
heavy metals, overcoming multiple challenges encountered in fluorescence-based cytometry (6) and enabling the 
simultaneous measurement of more than 40 parameters in a relatively cost-effective manner in comparison with 
other single-cell profiling tools (7). The high-dimensional nature of these data provides the ability to conduct 
detailed subtyping of cells at the protein level to monitor phenotypic shifts within those cells with high fidelity.

CyTOF antibody panels have been successfully designed to recapitulate discrete cell types from all 
major immune lineages (2, 3, 8–10). Many clinical applications then adopt analysis pipelines that pri-
oritize the frequency of  specific cellular subpopulations within the data set to distinguish immunologic 
efficacy (4, 11). Still, the function and state of  each of  these cells further contributes to the ultimate 
clinical benefit of  immunotherapeutic response (12). Whereas these discrete cell-type characterizations 
enable immunological observations consistent with previous flow-based studies, capturing the entirety 

Mass cytometry, or cytometry by TOF (CyTOF), provides a robust means of determining protein-
level measurements of more than 40 markers simultaneously. While the functional states of 
immune cells occur along continuous phenotypic transitions, cytometric studies surveying cell 
phenotypes often rely on static metrics, such as discrete cell-type abundances, based on canonical 
markers and/or restrictive gating strategies. To overcome this limitation, we applied single-cell 
trajectory inference and nonnegative matrix factorization methods to CyTOF data to trace the 
dynamics of T cell states. In the setting of cancer immunotherapy, we showed that patient-specific 
summaries of continuous phenotypic shifts in T cells could be inferred from peripheral blood–
derived CyTOF mass cytometry data. We further illustrated that transfer learning enabled these T 
cell continuous metrics to be used to estimate patient-specific cell states in new sample cohorts 
from a reference patient data set. Our work establishes the utility of continuous metrics for CyTOF 
analysis as tools for translational discovery.
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of  cell states in a given sample as they undergo continuous phenotypic changes can better reflect the 
functional dynamics within the overall immunological context. For example, characterizing T cells as 
they transition from activated to exhausted states or effector to memory states is particularly relevant 
to cancer immunotherapy, because checkpoint immunotherapy focuses on reinvigorating exhausted T 
cells and promoting T cell activation. Advancements in computational pipelines for single-cell analysis 
have contributed alternative machine-learning frameworks, including notable trajectory inference and 
matrix factorization approaches, that fully leverage the multiparameter measurements to monitor cell-
state transitions in these data sets (13–17). Specifically, studies leveraging single-cell RNA-Seq (scRNA-
Seq) coupled with unsupervised clustering and trajectory inference methods have established that many 
cellular phenotypes often exist in continuums (12, 18, 19). These studies have shown that because bio-
logical systems operate dynamically, restricting cell-type definitions to canons at the transcriptional 
level may prevent us from identifying unique or understudied cellular populations (15, 20). Indeed, 
previous studies have leveraged trajectory algorithms, e.g., TRACER and Monocle3, in mass cytometry 
analysis to distinguish cellular states along biological continuums in various contexts (21, 22), but more 
work is needed to establish the translational utility of  such approaches. Herein, we sought to determine 
whether continuous metrics derived from CyTOF-based profiles can be utilized as integrated biomark-
ers of  T cell states and thus applied as measures of  immunotherapy response in clinical data sets.

To derive continuous metrics, we applied 2 methods in parallel: we reduced CyTOF proteomic data 
dimensions to infer pseudotemporal immunological trajectories and employed a nonnegative matrix factor-
ization (NMF) method, Coordinated Gene Association in Pattern Sets (CoGAPS) (23, 24), to generate con-
tinuous weights to represent continuous phenotypic states of  T cells. To first benchmark these metrics, we 
tested whether the derived continuous CyTOF metrics could recapitulate T cell exhaustion states, an import-
ant functional feature to be monitored in the setting of  cancer immunotherapy. Given the well-established 
observations of  T cell exhaustion in HIV (25, 26), we first applied our pipeline to a publicly available CyTOF 
data set of  32 markers from patients with HIV and healthy controls to derive continuous T cell metrics. Both 
pseudotemporal and CoGAPS-based signatures accurately recapitulated the progression of  HIV-associated 
T cell exhaustion biology. We then applied this approach to data sets generated in immunotherapy clinical 
trials from diverse diseases, such as in pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma 
(HCC), and melanoma. We again computed integrated functional CyTOF metrics from these trajectories 
and correlated them with disease states and treatment outcomes. Finally, we demonstrate the ability of  trans-
fer learning to project disparate data sets into these CyTOF-derived single-cell proteomic metrics to compute 
continuous T cell states in new clinical samples. Our work offers a functional framework for immune system 
proteomics that can empower biomarker discovery and analysis in cancer immunotherapy.

Results
Single-cell proteomic pseudotemporal ordering of  CD8+ T cells in patients with HIV inferred a trajectory of  T cell 
exhaustion and described patient-level T cell states. Trajectory inference and pseudotime methods have demon-
strated the ability to compute measurements of  cell-state transitions along a biological process in scRNA-
Seq data (16). We aimed to construct a quantitative metric of  continuous phenotypic shifts associated with 
T cell activation and the transition from T effector to T memory cells from CyTOF data as functional bio-
markers in patient immune responses. Using our framework a distribution of  patient-specific T cell states 
to use as biomarkers (Figure 1). Given the well-established biology of  T cell exhaustion in HIV infection, 
we first benchmarked the ability to use patient-specific summaries of  T cell states based upon pseudotime 
analysis of  publicly available CyTOF data for PBMCs of  24 treated and untreated patients with HIV and 
healthy controls (25).

To define our T cell states, we ordered cells by selecting a naive (CCR7+CD45RA+) phenotype as the 
trajectory’s origin. We computed pseudotime weights of  developmental T cell-state transitions, wherein 0 
was representative of  the selected origin and increasing weights corresponded with progression through the 
trajectory (Figure 2, A and B). Replicating the findings of  Bengsch et al. (25), we found that the pseudotime 
trajectory associated with T cell exhaustion states defined by specific markers of  T cell exhaustion, such 
as TOX and HELIOS, increased along pseudotime, while naive and activation markers, such as CD28, 
decreased (Figure 2C and Supplemental Figure 1). We then formed a patient-specific metric of  expected T 
cell exhaustion using the mean pseudotime weight. Comparison of  the pseudotime-based estimation of  T 
cell exhaustion in each patient between healthy controls and infected patients in a t test demonstrated that 

https://doi.org/10.1172/jci.insight.160398
https://insight.jci.org/articles/view/160398#sd


3

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2022;7(19):e160398  https://doi.org/10.1172/jci.insight.160398

healthy controls had significantly lower pseudotime compared with infected patients, indicative of  a less 
exhausted profile, regardless of  disease severity (t test, P < 0.001; Figure 2D). We also found that patients 
on antiretroviral therapy (ART) had overall intermediate pseudotimes compared with untreated patients and 
healthy controls, suggestive of  a lingering exhaustion profile. Thus, these pseudotime trends correspond-
ed with known HIV-associated T cell biology, reflecting decreased functionality consistent with increased 
expression of  exhaustion-specific markers in T cells from patients with HIV, even those on ART with unde-
tectable viral loads (27).

In parallel with pseudotime analysis, we also tested how clusters of  CD8+ T cells distinguished by 
Leiden clustering can be used to compare the profiles across the different HIV groups. We identified 3 
distinct clusters, one of  which we annotated as “naive” (CCR7+) and the other 2 as “preexhaustion” and 
“exhausted” (HELIOS+, TOX+) based on their protein expression profiles (Figure 2, E and F). As expected, 
the proportion of  cells belonging to the naive CD8+ T cell cluster was consistently lower in HIV-infected 
groups compared with that in healthy controls (t test, P < 0.001, Figure 2, G and H), whereas the preex-
haustion CD8+ T cell cluster was significantly more abundant in the ART, intermediate, and severe groups 
(t test, P < 0.001) but not in the mild group (Figure 2, G and I). Interestingly, in this discrete clustering anal-
ysis, no significant differences were observed in the exhausted CD8+ T cell cluster (Figure 2J). In contrast 
to the single-cell trajectory presented above, which employed a data-wide exploration of  continuous and 
progressive biological trends, the clustering analysis suggests that relying on clusters alone may result in an 
inconsistent or unnecessarily skewed interpretation of  the data by relying on discrete measures, underesti-
mating differences in certain populations while overestimating in others.

CoGAPS patterns in CyTOF data generated integrated patterns of  protein expression programs that also reflected 
T cell states at the patient level. To compute continuous integrated protein metrics that enhance the resolution 
of  T cell trajectory inference, which may span multiple cell states, while replacing discrete classifications 
in clustering analyses, we applied CoGAPS (23, 24) to CyTOF data. CoGAPS infers patterns of  biologi-
cal activity by identifying coregulated sets of  proteins and decomposing an expression matrix into 2 sets 
of  factors: cell-level pattern weights, ranging from 0 to a maximum weight of  1, and their corresponding 
protein-level amplitudes. In the same HIV data set described above, we computed 3 patterns from the pro-
tein expression that we annotated as naive, preexhaustion, and exhaustion based on the average pattern 
weights for each CyTOF panel marker (Figure 3A). These patterns mirrored the pseudotemporal trajec-
tory inferred in the uniform manifold approximation and projection (UMAP) embedding described above 
but provided greater resolution of  distinct T cell states without requiring either trajectory inference or the 
assumption of  monotonic changes along that trajectory (Figure 3B). We compared pattern weight means 
across patients and found that naive pattern weights were significantly higher in healthy controls com-
pared with ART-treated patients with HIV (t test, P < 0.01) and untreated patients (t test, P < 0.001) (Fig-
ure 3C). ART-treated patients also had significantly higher naive pattern weights compared with patients 
with intermediate and severe disease (t test, P < 0.05) but not compared with those with mild disease.  

Figure 1. Protein quantification of T cell states at the single-cell level. Workflow illustrating patient sample collection 
to data generation and computation of integrated metrics that can be projected across data sets.

https://doi.org/10.1172/jci.insight.160398
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Figure 2. Protein quantification of T cell states at the single-cell level. (A) Protein expression of representative canonical T cell markers present in 
the HIV CyTOF panel. (B) Pseudotime trajectory computed using naive CD8+ T cells (Tc) as origin. (C) Fitted model of surface protein expression of cells 
ordered by pseudotime from naive Tc to exhausted (Tex), demonstrating transient expression of activation and exhaustion. (D) Pseudotime mean by 
patient across HIV status and treatment. Statistical significance was determined by group mean comparison t tests. (E) Clustering analysis projected 
on UMAP. (F) Dot plot of mean expression by cluster. (G) Bar plot showing compositionality by condition. (H–J) Box plots of proportion of each cluster 
by patient, grouped by condition. Statistical significance was determined by group mean comparison t tests. Statistically significant P values adjusted 
for multiple comparisons (Holm-Bonferroni) are shown as follows: *P < 0.05; **P < 0.01; ***P < 0.001.

https://doi.org/10.1172/jci.insight.160398
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Preexhaustion pattern weights indicated no differences among patients across groups (Figure 3D). Exhaus-
tion pattern weights, however, mirrored the pseudotime-based results (Figure 3E). Specifically, healthy con-
trol patients exhibited significantly lower exhaustion pattern weights compared with patients with HIV (t 
test, P < 0.01, ART; P < 0.001, untreated). ART-treated patients also had significantly lower exhaustion 
pattern weights compared with untreated patients (t test, P < 0.001).

Similar to marker coexpression patterns identified from CoGAPS, analysis of  single markers identified 
significant differences between patient groups. However, this was only observed for some markers, such as 
CD28 and TOX, but not for others, such as PD-1 and HELIOS (Supplemental Figure 2). This demonstrates 
that integrated T cell patterns can highlight both drivers of  differential phenotypes as well as coexpressed or 
coregulated genes with a contribution to phenotype that might be missed at the single-gene level. Overall, 
these results provide a proof  of  concept that integrated metrics of  patient-specific T cell states derived from 
pseudotime weights or CoGAPS patterns based on mass cytometry profiling can be employed to evaluate 
immunological contexts.

CyTOF-based integrated T cell metrics can be directly used to describe clinically meaningful attributes in patients 
with PDAC treated with ipilimumab and GVAX. In addition to comparing T cell states in general, we aimed 
to determine the translational utility of  CyTOF-based T cell metrics for individual patients defined by 
both trajectory inference and NMF using a time-course data set in the context of  cancer immunotherapy. 
Specifically, we hypothesized that our CyTOF analysis approach could identify continuous Th cell and 
cytotoxic T (Tc) cell trajectories of  antigen experience, including naive, memory, and effector T cell states, 
during immunotherapy. We previously generated CyTOF data using PBMCs from patients with PDAC 
treated with ipilimumab, a checkpoint immunotherapy targeting CTLA-4, and a GM-CSF–secreting allo-
geneic pancreatic cancer vaccine (GVAX). PBMCs were profiled at baseline and 7 weeks after treatment 
to monitor systemic immune responses across time (28). As done for the HIV data set, we first performed 
dimension reduction on the protein level to generate a UMAP representation of  the CyTOF data (Figure 
4A). The pan-immune panel used in the study yielded 4 distinct clusters belonging to T cells, NK cells, B 
cells, and myeloid cells (Figure 4B). Next, we subsetted Tc and Th cells and computed separate immune 
pseudotemporal trajectories (Figure 4, C and D). Again, ordering the cell trajectories by selecting naive cells 
(CCR7+CD45RA+) as the origin and computing pseudotime weights, we found that the protein expression 
of  memory and effector markers increased with pseudotime following a transition from naive to memory 
and effector T cell states. In corroboration, we also computed CoGAPS patterns, identifying 3 patterns that 
were annotated as naive, memory, and effector based on the pattern weights of  key markers (Figure 5A). 
These protein-expression patterns also corresponded well with their respective topologies when overlaid on 
the CyTOF UMAP (Figure 5B).

To determine the sensitivity of  these findings with the analysis method selected to generate the metrics, 
we compared these results with those of  other trajectory inference methods recommended by dynverse, a 
tool that compiles trajectory inference methods and suggests those most appropriate for the data and tra-
jectories of  under study (15). Using the PDAC Tc cell population across patients from both time points, we 
evaluated the correlations among the results based on Monocle3, Waterfall, Comp1, Tscan, and Scorpius 
(16, 29–32), confirming that pseudotime weights quantifying memory to effector transitions significantly 
correlated with each other (Spearman’s, P < 0.001) and were consistent across methods (Figure 5C). We 
also compared these weights from the different trajectory inference methods to the naive, memory, and 
effector CoGAPS patterns and confirmed that the memory pattern was positively correlated with pseudo-
time (Spearman’s r, 0.16 to 0.84, P < 0.001), whereas the naive pattern was negatively correlated with 
pseudotime (Spearman’s r, –0.19 to –0.79, P < 0.001) and the effector pattern was overall less correlated 
with pseudotime across methods (Spearman’s r, –0.018 to 0.01, P < 0.001).

The availability of  pre- and posttreatment profiles in this data set enabled us to evaluate whether these 
T cell metrics can reflect the changes in T cell states resulting from therapy. Overall, we found that Th cell 
pseudotime weights significantly increased after 7 weeks of  therapy (2 treatments of  vaccine plus ipilimumab 
3 weeks apart) in these patients (paired t test, P < 0.0001), suggesting a positive shift in Th cell activation or 
antigen experience (Figure 5D). This was also observed with CoGAPS-inferred Th and Tc cell memory pat-
tern weights, which also increased after 7 weeks of  treatment (t test, P < 0.01, Th cell; P < 0.05, Tc cell) (Fig-
ure 5, E and F). To test the potential of  associating CyTOF-based T cell metrics with patient outcomes, we 
used a Cox proportional hazards model to compare overall patient survival of  binarized groups defined using 
the median of  T cell metrics means at baseline. Even with a small sample size, our analysis demonstrated that 
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patients with higher Th cell effector pattern weights exhibited significantly increased overall survival (Cox, 
P < 0.05; HR, 5.36) (Figure 5G). Altogether, these results suggest that our approach can effectively quantify 
shifts in T cell states during immunotherapy and lead to correlates of  clinical outcomes.

Continuous CyTOF metrics can be projected across data sets to efficiently query patterns associated with clini-
cal features of  disease and patient outcomes. To further extend the utility of  CyTOF workflows, particularly 
in the setting of  analyzing disparate immunotherapy studies, we next sought to determine whether 
other data sets can be projected into the previously learned functional states from a CyTOF data set. 
Leveraging the integrated CyTOF signatures found in our PDAC study, we employed transfer learning 
of  those metrics to 2 additional independent CyTOF data sets using projectR, our transfer learning tool 

Figure 3. NMF can reveal biologically descriptive patterns of protein expression in CyTOF data. (A) Heatmap showing relative expression of protein markers in 
patterns generated using CoGAPS. (B) CD8+ T cells from the HIV data set represented in a UMAP overlaid with pattern weights. (C) Naive pattern–, (D)  
preexhaustion-, and (E) exhaustion-related pattern weight means by patient across conditions. Statistical significance was determined by group mean compari-
son t tests. Statistically significant P values adjusted for multiple comparisons (Holm-Bonferroni) are shown as follows: *P < 0.05; **P < 0.01; ***P < 0.001.

https://doi.org/10.1172/jci.insight.160398
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to project cell state patterns learned from matrix factorization to query their occurrence in new data 
sets (13, 33, 34).

First, we projected a CyTOF data set we previously generated with the same antibody panel but in 
patients with HCC treated with nivolumab who presented either with nonviral etiologies, treated hepatitis 
infections, or active hepatitis infections (35) into the CoGAPS T cell patterns from the PDAC study. This data 
set allowed us to explore whether T cell profiles affected by a different immunologic context, i.e., the different 
viral histories across patients, could be compared by transfer learning of  integrated T cell signatures. Using 
the CoGAPS patterns learned in the PDAC CyTOF data set led to the rapid characterization of  T cells in the 
HCC cohorts without the need for any manual annotations (Figure 6A). Upon transfer learning, we observed 
that the resulting effector pattern weights in the projected target data were significantly increased in CD8+ T 
cells from patients with HCC with active viral hepatitis infections compared with those with prior hepatitis 
infections who were treated effectively with antiviral therapies (t test, P < 0.05) (Figure 6B).

Second, we projected a publicly available CyTOF data set from patients with melanoma treated with 
ipilimumab (5). Because this data set was generated with a different antibody panel for T cell phenotyping 
and contained annotations of  clinical responses to ipilimumab, the data set was particularly useful for test-
ing whether transfer learning using the T cell signatures could tolerate nominal differences in the antibody 
panel and whether they can associate with clinical outcomes in another study. Again, using the CoGAPS 
patterns from the PDAC CyTOF data set (Figure 6A), we were able to observe that projected CD8+ T cells 
from patients with melanoma who clinically responded to ipilimumab therapy (t test, P < 0.01) (Figure 6C) 
were significantly increased in the previously learned memory pattern. This was consistent with the inter-
pretations from the study based on analyzing discrete cell subtype abundances, showing higher frequencies 
of  CD8+ T effector memory subsets (5). In a separate validation analysis, we repeated CoGAPS learning of  
T cell patterns directly from these data sets and found signatures consistent with naive and effector pheno-
types and canonical single protein markers (Supplemental Figure 3 and Supplemental Figure 4). Altogeth-
er, these results demonstrate a practical and integrated workflow using CyTOF profiling for empowering 
immunologic cross comparisons, particularly in the setting of  multiple immunotherapy clinical studies.

Figure 4. CyTOF integrated metrics recapitulate T cell differentiation from naive to effector phenotypes in peripheral blood of patients receiving 
cancer immunotherapy. (A) UMAPs colored by protein expression canonical markers representing major immune lineages in PBMCs from patients with 
PDAC undergoing ipilimumab and GVAX combination immunotherapy. (B) Annotated UMAP. (C and D) Pseudotime trajectory and fitted models of protein 
expression by pseudotime in CD8+ and CD4+ T cells, respectively.

https://doi.org/10.1172/jci.insight.160398
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Discussion
This study provides a framework that can be used to apply single-cell mass cytometry analysis to a wide 
range of  clinical immunology settings. As demonstrated by its use in T cell profiling (21) and understanding 
epithelial-mesenchymal transition states (22), trajectory inference has previously been applied for the analy-
sis of  high-parameter cytometry data sets (36). In this study, we implemented distinct approaches for CyTOF 
analysis: trajectory inference, clustering, and dimension reduction through NMF. All of  these algorithms 
employ unsupervised learning to infer cellular phenotypes directly from the data, with clustering learning 
cellular subtypes, trajectory inference monotonic transitions between cellular phenotypes, and NMF distinct 
groups of  continuous patterns distinguishing sets of  phenotypic transitions. With these methods, we derived 
integrated T cell metrics on a per-patient basis and evaluated the clinical utility of  such metrics. We showed 
that patient-specific means of  pseudotime and CoGAPS pattern weights from CyTOF data are confirmatory 
and correspond well with known biology without relying on individual markers for gating or discrete cell 
clusters for interpretation, which can help alleviate under- or overestimation of  signal in single-cell data.

Specifically, using a CyTOF data set focused on CD8+ T cells from patients with HIV, we showed 
that CyTOF-derived pseudotimes, based on a T cell exhaustion trajectory and independently derived 
CoGAPS pattern weight distributions, can recapitulate previously established T cell biology in HIV infec-
tion. Furthermore, applying these approaches in the context of  cancer immunotherapy, we demonstrated 
that CyTOF-based T cell metrics can reflect significant changes during active immunotherapy with the 

Figure 5. Integrated CyTOF metrics generated using CoGAPS have clinical utility. (A) Heatmap of relative marker protein expression in NMF patterns 
generated by CoGAPS in CyTOF data in peripheral blood T cells from patients with PDAC. (B) CD8+ Tc and CD4+ Th cell UMAPs colored by pattern weights. 
(C) Correlations between pseudotime methods and NMF patterns in Tc cells. (D) Mean Th cell pseudotime by patient at baseline and 7 weeks of treatment 
with ipilimumab and GVAX. (E and F) Memory pattern weight means by patients across time points and treatment response (SD, stable disease; NB, no 
benefit) in Th cell and Tc cells, respectively. (G) Comparison of overall survival (OS) by months in patients with PDAC with high Th cell effector pattern 
weight mean versus low Th cell effector pattern mean. Statistical significance was determined by (D) group mean comparisons, paired t tests for line plot; 
(E and F) unpaired t tests in box plots; and (G) Cox proportional hazards regression model in survival plot. Statistically significant P values adjusted for 
multiple comparisons (Holm-Bonferroni) are shown as follows: *P < 0.05; **P < 0.01; ***P < 0.001. 

https://doi.org/10.1172/jci.insight.160398
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anti–CTLA-4 checkpoint inhibitor, ipilimumab, and the cancer-specific vaccine, GVAX, and associate with 
clinical endpoints. As an alternative to more conventional clustering and cell-type abundance analyses, 
which provide discrete measures of  immune profiles, we showed the use of  integrated, continuous metrics 
that incorporate multiple parameters simultaneously to interpret the immunological states in patients. We 
posit that this approach is complementary, overcoming the potential pitfalls related to cluster-based algo-
rithms, such as the need for a detailed manual annotation process, identifying the most optimal number of  
metaclusters, or mutually exclusive assignment of  cells to clusters.

Additionally, using 3 independent CyTOF data sets from patients with PDAC, HCC, and melanoma 
and our transfer learning software projectR (33), we demonstrated that CyTOF-derived integrated signa-
tures with clinical correlations can be used for transfer learning across data sets, despite discordance in anti-
body panels and distinct disease contexts. We have previously illustrated the wide applicability of  projectR 
in cross-data set and cross-species transfer learning of  single-cell and bulk transcriptomic data in multiple 

Figure 6. CyTOF integrated metrics can be projected across distinct patients, diseases, and immunological scenarios to annotate newly generated 
data sets and query proteomic outcomes-associated signatures. (A) CCR7 expression. NMF patterns from the PDAC CyTOF data set projected onto 
different cohorts of patients with HCC treated with nivolumab and patients with melanoma treated with ipilimumab. (B) Projected memory pattern 
weights in CD8+ T cells by response of patients with melanoma to ipilimumab, showing significantly increased means in responders at baseline. (C) 
Projected effector pattern weights in CD8+ T cells by patients with HCC disease etiology, showing significantly different means between treated and 
untreated viral status. Statistical significance was determined by group mean comparison t tests. Statistically significant P values adjusted for multiple 
comparisons (Holm-Bonferroni) are shown as follows: *P < 0.05; **P < 0.01.

https://doi.org/10.1172/jci.insight.160398
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biological contexts (34, 37). Our current work also implicates the utility of  our approach in CyTOF-based 
translational applications, such as comparing immunological states of  patients learned from NMF across 
several clinical trials, evaluating relatively uncommon events such as clinical response to immunotherapy 
in patients with PDAC, and validating specific T cell signatures in a data set of  limited scale by projecting 
robust signatures identified in another well-established data set. Together, these examples highlight the 
ways in which our approach will improve the power and efficiency of  CyTOF analysis used in clinical 
studies. Still, future extensions of  projectR to enable transfer learning from pseudotime are needed in appli-
cations that leverage trajectory inference in place of  NMF-based inference of  cellular states. Altogether, 
the combination of  machine learning via NMF and transfer learning applied onto CyTOF as described in 
this study can enable a machine-learning approach for clinical correlate inferences while offering enhanced 
portability of  signatures learned by projecting onto different data sets and disease contexts. Beyond the 
examples presented in this study, many more biomedical applications for the translation of  patient-specific 
distributions of  continuous cell states inferred from CyTOF can be envisioned, as CyTOF panels are rel-
atively easy to design and implement. Moreover, running CyTOF is relatively cost-effective on a per-cell 
basis (7), allowing for the testing of  large numbers of  patient cohorts that in turn enable larger-scale prog-
nostic and/or predictive studies using T cell pseudotimes or CoGAPS patterns as stratifiers. The scalability 
and efficient turnaround of  patient sample processing, data acquisition, and the demonstrated analysis 
pipeline offer the potential for real-time monitoring of  patient responses to immunotherapeutics. Although 
the sample sizes of  the individual data sets presented here are limited, future testing of  this method on larg-
er-scale data sets will serve as a further validation of  its use in translational discovery.

There are, however, prerequisites for this analysis approach. To compare the degree of  activation and/
or antigen experience in T cells across patients, the panel of  antibodies must include key markers to capture 
the extent of  biological transitions. In other words, the panel design dictates the robustness of  the T cell tra-
jectory inferences. This is expected given that mass cytometry most typically measures 30–50 markers, the 
selection of  which defines the biology that can be observed. Conversely, the panel design can be optimized 
to better resolve T cell states at specific points along the inferred trajectory. Furthermore, because CoGAPS 
patterns can denote functional states without inferred trajectories or the assumption of  monotonic cell state 
transitions or reliance on a reconciled UMAP embedding, our use of  pattern weights would still enable 
integrated comparisons across patients. Previous work leveraging these tools to analyze cell-state transi-
tions that occur with immunotherapy in the context of  higher-throughput scRNA-Seq data also establishes 
the value and applicability of  this approach for biomarkers in that technology. These tools can also be 
applied to interpret new data sets developed from the advances in single-cell proteomics technologies that 
are allowing for characterization of  ever larger panels (13). In conclusion, our study establishes the feasibil-
ity of  utilizing continuous integrated CyTOF metrics as a streamlined tool for real-time patient monitoring 
and cross-cohort comparisons of  patient immune responses to immunotherapy.

Methods
CyTOF data sets. Samples related to HIV (25), PDAC (28), melanoma (5), and HCC (35) have all been previ-
ously described in detail. A list of  mass cytometry antibodies, isotopes, and concentrations used for pheno-
typing as well as the methods for cell staining and data acquisition are provided in the respective referenced 
publications. For preprocessing of  CyTOF data, randomization, bead normalization, and bead removal of  
data were performed on CyTOF software (Fluidigm; v6.7). Multiplexed data sets were also gated for via-
bility and debarcoded into single samples as previously described (5, 25, 28, 35). Each preprocessed sample 
was exported as a separate FCS file for analysis.

CyTOF pseudotime, clustering, and CoGAPS patterns analysis. FCS files from each sample were subsequently 
read using FlowSOM (38) to extract protein expression matrices. Expression matrices from each patient 
were aggregated and arcsine transformed. To make computational time and memory feasible, expression 
matrices were sampled by 10,000 random cells per sample and incorporated into a Monocle3 CDS object. 
Markers used for barcoding were removed. In data sets where significant sample processing batch effects 
were observed, Batchelor was used to correct the embedding (39). After dimensional reduction using 10 
principal components, each cell partition was annotated, and Tc and Th cells were processed for pseudotime 
analysis using Monocle3 or Dynverse and NMF using CoGAPS v3.8.0, with default parameters on all pro-
tein markers in each panel, except CD45 isotopes, which are used for immune cell enrichment barcoding 
(23, 24). In each inferred trajectory, the first node was selected as the start node for pseudotime ordering in 
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the direction of  naive T cell marker expression (CCR7+CD45RA+). Unsupervised clustering was performed 
using Leiden community detection embedded in Monocle3, with default parameters and resolution = e6. 
Projection of  CoGAPS patterns was performed on protein expression matrices using the projectR package 
v.1.10 with default parameters (33). All analyses were performed in R v4.0.2. A schematic of  the entire pipe-
line is provided in Supplemental Figure 5.

Data and code availability. All code is available at the following Github repository: https://github.com/
Dimitri-Sid/CyTOFpatterns (branch, main; commit ID, b9f21cc44b1bfcd4c65728bad8550ddd617157c8).

Statistics. To compare pseudotime, cluster abundance, and NMF distributions among patients, we used 
2-sample unpaired 2-tailed t tests to compare means between groups and paired 2-tailed t tests to compare 
differences in means between patients’ time points. ggpubr v0.4.0 was used to calculate 2-tailed t test P 
values and adjust them with the default Holm-Bonferroni method. We fitted a Cox proportional hazards 
model using the coxph function of  the survival R package v3.12-13 to evaluate patient outcomes as a 
function of  NMF pattern weights using the median of  pattern weight means for stratification. Correlations 
were evaluated using a Spearman’s correlation test and FDR correction as part of  the corr.test function of  
the psych package v 2.2.5. P values of  less than 0.05 were considered statistically significant. All statistical 
analyses were performed in R version v4.0.2.

Study approval. Experiments and clinical trial data acquisition and processing were performed in accor-
dance with protocols approved by the Institutional Animal Care and Use Committee and the Institutional 
Review Board of  Johns Hopkins University.
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