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Introduction
Wolfram syndrome is a rare, monogenic, life-threatening disease largely caused by pathogenic variants 
in the Wolfram syndrome (WFS1) gene, or in a small fraction of  patients, pathogenic variants in the 
CDGSH iron sulfur domain protein 2 gene (1–3). There is currently no treatment to delay, halt, or 
reverse the progression of  this disease. Wolfram syndrome is well characterized by juvenile-onset insu-
lin-dependent diabetes, optic nerve atrophy, and progressive neurodegeneration (4, 5). Many patients 
also develop other symptoms, ranging from hearing loss and endocrine deficiencies to neurological 
and psychiatric conditions (4, 6). Accordingly, recent clinical and genetic findings have revealed that 
Wolfram syndrome is best characterized as a spectrum disorder (7). Of  the approximately 200 WFS1 
variants associated with Wolfram syndrome, approximately 35% are missense, 25% are nonsense, 21% 
are frameshift, 13% are in-frame insertions or deletions, and 3% are splice-site variants (8, 9). Most of  
these variants are predicted to be inactivating, loss-of-function variants, but extensive molecular charac-
terization of  individual alleles is sparse. Hence, there is a great need for genotype-phenotype correlation 
data to guide diagnostic interpretation of  WFS1 variants.

Wolfram syndrome is a rare genetic disorder largely caused by pathogenic variants in the WFS1 
gene and manifested by diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. 
Recent genetic and clinical findings have revealed Wolfram syndrome as a spectrum disorder. 
Therefore, a genotype-phenotype correlation analysis is needed for diagnosis and therapeutic 
development. Here, we focus on the WFS1 c.1672C>T, p.R558C variant, which is highly prevalent 
in the Ashkenazi Jewish population. Clinical investigation indicated that patients carrying 
the homozygous WFS1 c.1672C>T, p.R558C variant showed mild forms of Wolfram syndrome 
phenotypes. Expression of WFS1 p.R558C was more stable compared with the other known 
recessive pathogenic variants associated with Wolfram syndrome. Human induced pluripotent 
stem cell–derived (iPSC-derived) islets (SC-islets) homozygous for WFS1 c.1672C>T variant 
recapitulated genotype-related Wolfram syndrome phenotypes. Enhancing residual WFS1 function 
through a combination treatment of chemical chaperones mitigated detrimental effects caused by 
the WFS1 c.1672C>T, p.R558C variant and increased insulin secretion in SC-islets. Thus, the WFS1 
c.1672C>T, p.R558C variant causes a mild form of Wolfram syndrome phenotypes, which can be 
remitted with a combination treatment of chemical chaperones. We demonstrate that our patient 
iPSC–derived disease model provides a valuable platform for further genotype-phenotype analysis 
and therapeutic development for Wolfram syndrome.
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WFS1 encodes an ER transmembrane protein. The ER is a central cell organelle responsible for protein 
folding, Ca2+ storage, and lipid synthesis. It has been reported that WFS1 regulates Ca2+ homeostasis in the 
ER, which is crucial in the synthesis and secretion of  neurotransmitters and hormones such as insulin (10, 
11). WFS1 deficiency in the ER causes Ca2+ homeostasis disruption, leading to chronic ER stress followed 
by the unfolded protein response (UPR) (12, 13). WFS1 also negatively regulates activating transcription 
factor 6 (ATF6), a UPR molecule, inhibiting hyperactivation of  ATF6 and consequent cell apoptosis (14). 
Furthermore, a recent study suggested that WFS1 affects mitochondrial function by transporting Ca2+ from 
the ER to the mitochondria via the mitochondria-associated ER membrane (15).

Several Wfs1-knockout rodents were developed as disease models of  Wolfram syndrome, which 
generated insight into the etiology and provided opportunities to test therapeutic agents (11, 16–19). 
The models display progressive glucose intolerance due to impaired glucose-stimulated insulin secre-
tion (GSIS) and increased pancreatic β cell death (16, 18–20). However, the onset of  diabetes in these 
rodent models is delayed relative to the human phenotype, with further variation between each model 
based on rodent strain (16, 19). Also, to the best of  our knowledge, there are no transgenic animals with 
phenotypes and variants corresponding to the pathogenic WFS1 variants found in patients with Wolfram 
syndrome. As a result, these rodent models may not fully capture the spectrum of  Wolfram phenotypes. 
By contrast, patient induced pluripotent stem cells (iPSCs) differentiated into disease-relevant cell types 
have been demonstrated as suitable models for genotype-phenotype correlation analysis (21, 22).

To date, significant efforts have been invested to develop novel Wolfram syndrome treatments (23). 
Compounds such as valproic acid and glucagon-like peptide-1 receptor agonists were identified as possible 
drug candidates based on preclinical studies in immortalized cell and rodent models (24–26). In addition, 
we recently conducted a phase Ib/IIa clinical trial of  dantrolene sodium, an ER Ca2+ stabilizer, which 
demonstrated efficacy in a subset of  patients with Wolfram syndrome (11, 27). However, additional ther-
apeutic candidates for patients with Wolfram syndrome are still needed.

Here, we focus on the missense variant, WFS1 c.1672C>T, p.R558C, which is enriched in the 
Ashkenazi Jewish population (allele frequency 1.4%) (28). We characterize this variant multidimen-
sionally through clinical investigation, biochemical studies, and patient iPSC–derived disease models. 
Further, we demonstrate the potential efficacy of  a combination treatment of  chemical chaperones, 
sodium 4-phenylbutyrate (4-PBA) and tauroursodeoxycholic acid (TUDCA), as a potentially novel 
therapeutic approach for Wolfram syndrome.

Results
WFS1 c.1672C>T, p.R558C is enriched in the Ashkenazi Jewish population and causes a mild form of  Wolfram 
phenotypes. To determine the carrier frequency for WFS1 c.1672C>T, p.R558C variant in the Jewish popu-
lation, we genotyped 87,093 patients from several Jewish populations. In the original data set, each patient 
was classified by self-identification as Ashkenazi, Sephardi, Ashkenazi/Sephardi, convert, and unknown. 
Samples from convert and unknown origin summed 773 and were excluded from analysis. The observed 
frequency of  WFS1 c.1672C>T, p.R558C carriers reached 2.32% (1:43) in Ashkenazi Jewish patients, 
1.32% (1:76) for Ashkenazi/Sephardi patients, and 0.04% (1:2,268) in Sephardi Jewish patients (Figure 
1A and Supplemental Table 1A; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.156549DS1). To elucidate if  WFS1 c.1672C>T, p.R558C was present at higher 
rates in the Jewish population from various countries, we classified data based on self-reported ancestry 
of  4 grandparents. Patients who stated 2 or more countries of  mixed origin were removed from analysis. 
In cases where South Africa was provided as the country of  origin, the samples were redefined as Lithu-
anian, as South African Jews are primarily of  Lithuanian origin (29). Patients who had Israel or United 
States listed in their ancestry were also removed because the Jewish people residing in these countries often 
have mixed Ashkenazi origins (30). Patients who did not provide any information on grandparental origin 
or stated unknown were removed. Patients with Ukrainian origin were merged into the Russian group. 
Patients with Belarus and Czechia origin were removed from analysis because they totaled fewer than 100 
patients and a small sample group can produce spurious signals. In data classified by the country of  origin, 
the frequencies occurred as follows: Romania 3.50% (1:29), Poland 2.57% (1:39), Russia 2.07% (1:48), 
Hungary 1.63% (1:61), Germany 1.60% (1:63), and Lithuania 0.87% (1:116) (Figure 1B and Supplemental 
Table 1B). Clinical investigation revealed that most patients carrying the homozygous WFS1 c.1672C>T, 
p.R558C variant developed diabetes mellitus; however, the age at diagnosis was greater than that of  typical  
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Wolfram syndrome (approximately 6 years) (4) (Table 1). Only 4 patients were clinically diagnosed with 
optic nerve atrophy. Their optic nerve atrophy was mild, and no case was diagnosed as legally blind 
(Table 1). Additionally, no patient developed hearing loss or diabetes insipidus (Table 1). Together, WFS1 
c.1672C>T, p.R558C variant was enriched in the Ashkenazi Jewish population, especially those originated 
from Romania, and the variant led to mild or less severe phenotypes of  Wolfram syndrome.

The WFS1 p.R558C variant is degraded more than wild-type but less than WFS1 p.P885L variant. Patho-
genic WFS1 variants are classified based on their effect on WFS1 expression: class A, depleted WFS1 
protein or reduced, defective WFS1 protein, which leads to loss of  function or incomplete function, 
or class B, expression of  defective WFS1 protein leading to gain of  function. Class A is further divid-
ed into 3 subclasses: class A1, WFS1 depletion due to WFS1 mRNA degradation (nonsense-mediated 
decay, NMD); class A2, WFS1 depletion due to WFS1 protein degradation; or class A3, WFS1 deple-
tion due to mRNA and protein degradation (31, 32) (Supplemental Figure 1). To determine the class 
specification of  the WFS1 c.1672C>T, p.R558C variant, we investigated the thermal stability of  WFS1 
p.R558C and p.P885L by appending a HiBiT-based tag (Promega) to detect the variant in cells (33). The 
p.R558C variant showed less thermal stability than wild-type WFS1, suggesting an altered folding state, 

Figure 1. Carrier frequencies and clinical manifestation of WFS1 c.1672C>T, p.R558C variant. (A) Carrier frequencies for WFS1 c.1672C>T, p.R558C in 
patients of Ashkenazi, Ashkenazi/Sephardi, and Sephardi descent. (B) Carrier frequencies for WFS1 c.1672C>T, p.R558C by country of origin.

Table 1. Clinical manifestation of WFS1 c.1672C>T, p.R558C homozygotes

Patient Age Sex Consanguinity
DM 

Yes or no/when
OA 

Yes or no/when
D 

Yes or no/when
NB 

Yes or no/when
DI 

Yes or no/when
Additional 
phenotype

1 23 Male Yes No Yes/12 No Yes/12 No
2 13 Male Yes No Yes/9 No Yes/9 No
3 29 Male No Yes/15 No No No No
4 27 Male No Yes/16 No No No No
5 21 Female No Yes/15 No No No No
6 35 Male No Yes/16 No No No No
7 11 Female No No Mild, not clinical No Yes No
8 24 Male No Yes/17 No No No No
9 22 Female Unknown No No No No No
10 21 Female Yes Yes No No No No
11 19 Female No Yes Yes No No No
12 64 Female Yes Yes Yes No No No Late-onset 

ataxia
13 19 Female No Yes/17 Unknown No No No
14 24 Male No Yes/22 No No No No

The age column indicates when patients were included in the study. The age under “when” indicates when the phenotype developed. DM, diabetes 
mellitus; OA, optic nerve atrophy; D, deafness; NB, neurogenic bladder; DI, diabetes insipidus.

https://doi.org/10.1172/jci.insight.156549
https://insight.jci.org/articles/view/156549#sd


4

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(18):e156549  https://doi.org/10.1172/jci.insight.156549

but more stability compared with the known autosomal recessive variant p.P885L, which is pathogenic  
and is associated with a typical form of  Wolfram syndrome (34, 35) (Figure 2, A and B). Both p.R558C 
and p.P885L expression could be rescued by incubating cells at reduced temperature, supporting a folding 
defect conferred by the variants (Figure 2C). Treatment with a proteasome inhibitor, bortezomib, increased 
WFS1 protein levels from both variants, and the fold change for p.P885L was higher than for p.R558C (Fig-
ure 2D), indicating that proteasomal degradation of  p.R558C is less than p.P885L. To confirm this observa-
tion, we performed a cycloheximide (CHX) chase assay using HA-tagged WFS1 variants. After inhibiting 
translation of  nascent protein by CHX treatment, the protein levels of  p.R558C and p.P885L were rapidly 
decreased within 2 hours (Figure 2E). However, the rate of  p.P885L decay was higher than p.R558C (Fig-
ure 2E). Also, the basal expression of  p.P885L was lower before CHX treatment compared with wild-type 
and p.R558C, all consistent with more rapid degradation of  p.P885L (Figure 2E).

Next, we examined if  the WFS1 variants endogenously expressed in cells would show similar post-
translational stabilities. We obtained peripheral blood mononuclear cells (PBMCs) from 3 patients carrying 
pathogenic variants in the WFS1 gene (W024: c.1672C>T, c.1672C>T; W392: c.1672C>T, c.1672C>T; 
W121: c.1672C>T, c.2654C>T) and generated iPSCs (Table 2 and Supplemental Figure 2). Consistent 
with our clinical investigation, patients W024, W392, and W121 had mild phenotypes of  Wolfram syn-
drome (Table 2). Western blot analysis revealed a reduction in WFS1 protein levels for W024, W392, and 
W121 compared with 2 control iPSC lines (BJFF.6 and AN1.1) (Figure 2F). Of  the 3 patient lines, WFS1 
protein level in W121 was less than W024 and W392 (Figure 2F). WFS1 mRNA was not significantly 
decreased in W024 and W392 compared to control lines but was reduced for W121 (Figure 2G). We also 
performed the actinomycin D (ActD) chase assay to determine WFS1 mRNA stabilities in each iPSC line. 
WFS1 mRNA decay was higher than that in control line AN1.1, but similar to control line BJFF.6 (Figure 
2H). On the other hand, corresponding to endogenous WFS1 expression, WFS1 mRNA in W121 was more 
unstable than both control lines (Figure 2H). Taken together, the WFS1 c.1672C>T, p.R558C variant led to 
reduced expression of  defective WFS1 protein, which was driven by posttranslation protein degradation, 
but not mRNA alterations, designating the variant as class A2.

A combination treatment of  4-PBA and TUDCA ameliorates cellular function in neural progenitor cells with 
c.1672C>T, p.R558C variant. Wolfram syndrome is recognized as an ER disorder (6, 36, 37). Given that 
the ER and mitochondria interact both physiologically and functionally to maintain cellular homeostasis 
and determine cell fate under pathophysiological conditions, pathogenic WFS1 variants cause not only 
ER dysfunction but also dysregulation of  mitochondrial dynamics and appropriate function (38, 39). This 
evidence suggests that a combination drug modulating multiple targets simultaneously in the cell could be 
an effective treatment candidate for Wolfram syndrome. Chemical chaperones, such as 4-PBA and TUD-
CA, are well known to rescue or stabilize the native conformation of  proteins by interacting with exposed 
hydrophobic segments of  the unfolded protein (40). In addition to its chaperone activity, 4-PBA exhibits 
histone deacetylase–inhibitory (HDAC-inhibitory) activity, which transcriptionally induces the expression 
of  molecular chaperones (41). TUDCA has been reported to reduce reactive oxygen species formation 
(42), prevent mitochondrial dysfunction (43), and inhibit apoptosis through the intrinsic (44) and extrinsic 
pathways (45). It has been shown that 4-PBA can improve insulin synthesis in iPSC-derived β cells from 
patients with typical Wolfram syndrome (46). We, therefore, hypothesized that a combination treatment 
of  4-PBA and TUDCA would have an additive effect on the restoration of  reduced WFS1 expression and 
organelle dysfunction. Specifically, the combination treatment would be expected to affect pathogenic 
WFS1 variants that target protein-level degradation, such as WFS1 p.R558C (Figure 3A).

We first tested if  P+T stabilized WFS1 protein using the HiBiT-tagged reporters. The incubation 
with P+T significantly increased the steady-state levels of  WFS1 p.R558C protein but not WT or a 
NanoLuc control expressed from an identical plasmid backbone (Figure 3B). Although the treatment 
slightly increased the steady-state levels of  WFS1 p.P885L as well, it was not statistically significant  
(P = 0.0697, Supplemental Figure 3A). We also screened the NCATS Pharmaceutical Collection (~2,000 
compounds), which includes approved drugs as well as 4-PBA, but not TUDCA, and found a small num-
ber of  compounds that increased WFS1 p.R558C protein level, of  which disulfiram was the top hit, but 
the magnitude of  effect was similar to P+T (Supplemental Figure 3, B and C, and Supplemental Data 
1). We next compared endogenous WFS1 protein levels in iPSCs treated with P+T. The P+T treatment 
significantly increased WFS1 protein levels in iPSCs derived from all 3 patient lines (Figure 3C). Of  note, 
WFS1 protein levels in W024 and W392 were restored as great as control lines (Figure 3C). Additionally, 
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Figure 2. WFS1 p.R558C is more stable in the cell compared with p.P885L variant. (A) Diagram of WFS1 protein showing the location of 2 variants, 
R558C and P885L. (B) Thermal profiles of WFS1 variants (WT, R558C, and P885L) measured using SplitLuc-tagged reporters expressed in HEK293T 
cells (data from 3 independent experiments). (C) Luminescence intensities of WFS1 variants in cells incubated at 30°C and 37°C for 24 hours (n = 12, 
***P < 0.001 and ****P < 0.0001 by unpaired t test). (D) Fold change of luminescence intensities of WFS1 variants treated with a proteasome inhib-
itor, bortezomib, for 24 hours (**P < 0.01 and ***P < 0.001 by unpaired t test compared with untreated). (E) (Left) Representative blotting image of 
WFS1 (HA) and α-Tubulin in CHX chase assay. Lower panel of WFS1 (HA) is long-exposure image. (Right) A quantification of relative WFS1 protein  
level normalized with α-Tubulin. (n =3, *P < 0.05, **P < 0.01, and ****P < 0.0001 by 2-way ANOVA.) (F) (Upper) Representative blotting image of 
WFS1 and α-Tubulin in iPSCs. (Lower) Quantification of relative WFS1 protein level normalized with α-Tubulin (n = 3, **P < 0.01 and ****P < 0.0001 by 
1-way ANOVA compared with BJFF.6, †††P < 0.001 and ††††P < 0.0001 by 1-way ANOVA compared with AN1.1, #P < 0.05 and ##P < 0.01 by 1-way ANOVA). 
(G) Relative mRNA level of WFS1 in iPSCs. (n = 7, ****P < 0.0001 by 1-way ANOVA compared with BJFF.6, ††††P < 0.0001 by 1-way ANOVA compared 
with AN1.1, #P < 0.05 and ##P < 0.01 by 1-way ANOVA.) (H) Relative mRNA level of WFS1 in ActD chase assay (n = 3, *P < 0.05 by 1-way ANOVA com-
pared with BJFF.6, ###P < 0.001 by 1-way ANOVA compared with AN1.1).

https://doi.org/10.1172/jci.insight.156549
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mRNA level was increased by the P+T treatment (Figure 3D). We previously described organelle dys-
function preceding cell death in neural progenitor cells (NPCs) differentiated from iPSCs derived from 
patients with typical Wolfram syndrome (11). NPCs differentiated from the 3 patient lines and control 
line (AN1.1) expressed NPC markers NESTIN and SOX1 (Figure 3E and Supplemental Figure 4A). 
They showed a similar pattern of  WFS1 expression in iPSCs of  these lines (Supplemental Figure 4B). 
Interestingly, the expression of  ER stress marker genes, BiP and spliced XBP1 (sXBP1), was not greatly 
changed among the lines, but CHOP, an ER stress–induced apoptosis gene, was significantly increased 
in each of  the 3 patient lines (Supplemental Figure 4C). The other ER stress–induced apoptosis gene, 
TXNIP, was increased in W392 and W121 compared with AN1.1 (Supplemental Figure 4C).

Next, we examined if  a combination treatment of  4-PBA and TUDCA would restore organelle func-
tions in NPCs derived from the 3 patient iPSC lines. The expression of  BiP and sXBP1 was not affected by 
the P+T treatment, whereas CHOP and TXNIP were significantly decreased in each of  the 3 patient lines 
(Figure 3F). We also measured the oxygen consumption rate (OCR) of  NPCs to further assess mitochon-
drial function. Increased OCRs were observed throughout the assay in each of  the 3 patient lines with the 
P+T treatment (Figure 3G). To investigate whether increased OCR was caused by increased mitochondrial 
number or improved mitochondrial function, we measured mitochondrial DNA contents and mitochondri-
al membrane potentials in the NPCs treated with or without P+T. Interestingly, mitochondrial DNA was 
increased in W024 and W392 NPCs by the treatment (Supplemental Figure 5A), whereas the mitochon-
drial membrane potentials were not affected (Supplemental Figure 5B). In W121 NPCs, both mitochon-
drial DNA and membrane potentials were increased by the treatment (Supplemental Figure 5, A and B). 
Besides these improvements, the P+T treatment inhibited apoptosis, as indicated by caspase-3/7 activity 
and cleaved caspase-3 protein levels, in each of  the 3 patient lines (Figure 3H and Supplemental Figure 5C).

To define if  a combination treatment of  4-PBA and TUDCA is valuable, we compared P+T efficacies 
with a single treatment with either 4-PBA or TUDCA. The P+T effect on endogenous WFS1 protein levels 
was the greatest in each of  the 3 patient iPSC lines (Supplemental Figure 6A). Of  note, WFS1 protein levels 
were significantly increased in W392 and W121 by the P+T treatment compared with a single treatment 
with each compound (Supplemental Figure 6A). The expression of  ER stress–induced apoptosis genes was 
similar regardless of  single or combination treatments in W024 and W392 NPCs, whereas only the P+T 
treatment significantly decreased ER stress–induced apoptosis gene expression in W121 (Supplemental 
Figure 6B). Mitochondrial DNA was not greatly changed by any single treatment in each of  the 3 patient 
lines (Supplemental Figure 5A). Although we confirmed the increase of  mitochondrial membrane poten-
tials in W121 NPCs by the P+T treatment, it was not observed by a single treatment with each compound 
(Supplemental Figure 5B). Last, a single treatment with 4-PBA inhibited apoptosis in all 3 patient lines, 
and TUDCA also decreased apoptosis in W392 (Figure 3H and Supplemental Figure 5C). However, the 
magnitude of  inhibition was the largest in the P+T treatment in each of  3 patient lines (Figure 3H and Sup-
plemental Figure 5C). In addition, we confirmed the P+T treatment reduced caspase-3/7 activity in NPCs 
derived from patients with typical Wolfram syndrome (Supplemental Figure 7, A and B). In summary, a 
combination treatment of  4-PBA and TUDCA increased WFS1 expression and inhibited apoptosis by 
mitigating ER stress and mitochondrial dysfunction, which was more beneficial than a single treatment of  
either 4-PBA or TUDCA alone, though there were some variabilities among cell lines.

A combination treatment of  4-PBA and TUDCA improves insulin secretion and survival in stem cell–derived 
β cells with WFS1 c.1672C>T, p.R558C variant. The majority of  patients with Wolfram syndrome develop 
diabetes mellitus due to the pathogenic WFS1 variants causing detrimental effects in pancreatic β cells (13, 
14, 20). To evaluate the impact of  the WFS1 c.1672C>T, p.R558C variant on β cells, we generated stem 

Table 2. Information on the 3 patients, including the genetic location of autosomal recessive pathogenic variants in WFS1 and 
symptoms

Pt no. Carrier Sex Allele 1 WFS1 Allele 2 WFS1 DM OA
W024 12 Female c. 1672C>T; p.R558C c. 1672C>T; p.R558C No Only seen on MRI
W392 16 Male c. 1672C>T; p.R558C c. 1672C>T; p.R558C No Yes
W121 12 Female c. 1672C>T; p.R558C c. 2654C>T; p.P885L Prediabetes No

The ages indicate when patients were included in the study.
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Figure 3. A combination treatment with 4-PBA 
and TUDCA mitigates detrimental effect of WFS1 
c.1672C>T, p.R558C variant. (A) A schematic of Wol-
fram syndrome etiology and the targets to modulate 
by a combination treatment of 4-PBA and TUDCA 
(P+T). (B) Expression of HiBiT-tagged WFS1 protein 
after treatment with 500 μM 4-PBA and 50 μM TUDCA 
(P+T) for 24 hours. NanoLuc levels, expressed from an 
identical plasmid backbone, were examined (n = 48, 
P value by unpaired t test). (C) (Left) Representative 
blotting images of WFS1 and α-Tubulin in iPSCs treated 
with or without P+T for 48 hours. (Right) Quantification 
of WFS1 protein levels normalized with α-Tubulin. (n 
= 3, *P < 0.05 by unpaired t test compared with Ctrl.) 
(D) Relative mRNA levels of WFS1 in iPSCs treated 
with or without P+T for 48 hours (n = 5, **P < 0.01 by 
unpaired t test compared with Ctrl). (E) Representative 
immunofluorescence images of neural progenitor cell 
(NPC) markers in NPCs differentiated from patient-de-
rived iPSCs. Scale bar: 100 μm. (F) Quantitative PCR 
analysis of ER stress–related genes in NPCs treated 
with or without P+T for 48 hours. (n = 6, *P < 0.05, **P 
< 0.01, and ****P < 0.0001 by unpaired t test compared 
with Ctrl.) (G) Mitochondrial respiration of NPCs 
treated with or without P+T for 48 hours represented 
as percentage of baseline oxygen consumption rate 
(OCR) measurements. Respiration was interrogated 
by measuring changes in relative OCR multiple times, 
every 8.5 minutes, after injection with oligomycin 
(OM), FCCP, and antimycin A (AA)/rotenone (R) (n = 3, 
W024: ***P < 0.001, W392: *P < 0.05, and W121: *P < 
0.05 by unpaired t test compared with Ctrl AUC). (H) 
Caspase-3/7 activity normalized by cell viability in NPCs 
treated with or without either of 4-PBA, TUDCA, or P+T 
for 48 hours. (n = 7; ***P < 0.001 and ****P < 0.0001 by 
1-way ANOVA compared with Ctrl; #P < 0.05, ##P < 0.01, 
and ####P < 0.0001 by 1-way ANOVA.)
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Figure 4. Insulin secretion is increased by a combination treatment of 4-PBA and TUDCA in SC-islets with WFS1 c.1672C>T, p.R558C variant. (A) 
Representative flow cytometry dot plots and (B) quantified fraction of cells expressing or coexpressing pancreatic β cell or committed endocrine cell 
markers for AN1.1 (n = 4), W024 (n = 3), and W121 (n = 3) stage 6 SC-islets (*P < 0.05 and ****P < 0.0001 by 2-way ANOVA compared with AN1.1;  
#P < 0.05, ##P < 0.01, and ####P < 0.0001 by 2-way ANOVA). (C) (Left) Representative blotting image of WFS1 and α-Tubulin in stage 6 SC-islets. (Right) 
Quantification of relative WFS1 protein level normalized with α-Tubulin (n = 3, *P < 0.05 and ***P < 0.001 by 1-way ANOVA compared with AN1.1;  
#P < 0.05 by 1-way ANOVA). (D) Relative mRNA levels of WFS1 in stage 6 SC-islets (n = 4, **P < 0.01 by 1-way ANOVA compared with AN1.1). (E) Static 
GSIS functional assessment of AN1.1 (n = 7), W024 (n = 6), and W121 (n = 8) stage 6 SC-islets (*P < 0.05 and ***P < 0.001 by 2-way ANOVA compared 
with 2 mM of each line; ##P < 0.01 and ####P < 0.0001 by 2-way ANOVA). (F) A schematic of P+T verification in SC-islets. (G) (Upper) Representative 
blotting images of WFS1 and α-Tubulin in stage 6 SC-islets treated with or without P+T for 7 days. (Lower) Quantification of WFS1 protein levels nor-
malized with α-Tubulin. (n = 3, *P < 0.05 by unpaired t test compared with Ctrl.) (H) Caspase-3/7 activity normalized by cell viability in stage 6 SC-islets 
treated with or without P+T for 7 days (n = 3, ***P < 0.001 and ****P < 0.0001 by unpaired t test compared with Ctrl). (I) Static GSIS functional assess-
ment of W024 (n = 5) and W121 (n = 4) treated with or without P+T for 7 days. (*P < 0.05 by by unpaired t test compared with 2 mM of each condition; 
#P < 0.05 and ##P < 0.01 by 2-way unpaired t test.) CP, C-peptide.
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cell–derived pancreatic islets (SC-islets) from W024 and W121 iPSCs and AN1.1 iPSCs as a control. We 
previously developed a 6-stage differentiation strategy, incorporating cytoskeleton modulation, to produce 
SC-islets containing hormone-secreting endocrine cell types, including insulin-positive stem cell–derived β 
(SC-β), glucagon-positive stem cell–derived α, and somatostatin-positive stem cell–derived δ cells (47, 48) 

Figure 5. Single-cell transcriptional evaluation of a combination treatment with 4-PBA and TUDCA on SC-β cells. (A) Uniform manifold approximation 
and projection (UMAP) plot from unsupervised clustering of combined transcriptional data from scRNA-Seq of W024, Ctrl (green); W024, P+T (blue); 
W121, Ctrl (purple); and W121, P+T (red) SC-β cell populations. Lower plots are UMAP plots split by experimental conditions. (B) Violin plots detailing 
log-normalized gene expression of β cell genes in the same populations as A. Log fold change and P values for violin plots are available in Supplemental 
Table 2. (C) Violin plots detailing log-normalized gene expression of ER stress and apoptotic genes in the same populations as A. Log fold change and P 
values for violin plots are available in Supplemental Table 3. (D) Gene Ontology (GO) and Reactome GSEA, quantified by the normalized enrichment score 
(NES), for pathways upregulated in the combined population of W024 and W121 SC-β cells treated with (pink) or without (blue) P+T. NES values,  
P values, FDR q values, and gene set lists are available in Supplemental Table 4.
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(Supplemental Figure 8A). The W024 and W121 stage 6 SC-islets produced C-peptide+ cells coexpressing 
β cell differentiation marker (NKX6.1) and committed endocrine cell marker (chromogranin A, CHGA). 
The β cell population was similar between W024 and control SC-islets but reduced in the W121 line (Fig-
ure 4, A and B). WFS1 protein was expressed in SC-islets derived from all 3 lines, with greater expression 
detected in control SC-islets (Figure 4C). Of  note, WFS1 protein level was significantly higher in W024 
SC-islets when compared with W121 (Figure 4C). However, both patient-derived SC-islets (W024 and 
W121) showed a significant reduction of  WFS1 mRNA levels (Figure 4D), which was not observed in 
W024 iPSCs and NPCs (Figure 2G and Supplemental Figure 4B). We previously demonstrated the robust 
increase of  WFS1 expression during the SC-islet differentiation from stage 5 to stage 6 (49), suggesting that 
WFS1 expression in SC-islets could be much higher than iPSCs and NPCs. Previous studies showed WFS1 
deficiency causes mild dilation of  the ER in β cells (19, 50, 51). Electron microscopic analyses displayed 
well-formed ER structures in AN1.1 SC-islets (Supplemental Figure 9). On the other hand, ERs in W024 
and W121 SC-islets were distorted, fragmented, and dilated (Supplemental Figure 9). We tested the func-
tional capacity of  the SC-islets in response to high glucose (20 mM) using the GSIS assay. Throughout 
GSIS, W024 and W121 SC-islets secreted less insulin compared with control SC-islets. W024 SC-islets 
were able to increase their insulin secretion in response to the glucose stimulus, whereas W121 SC-islets 
were not capable of  a glucose-stimulated response (Figure 4E). These data suggest the WFS1 c.1672C>T, 
p.R558C variant has a milder effect on β cell insulin secretion than the WFS1 c.2654C>T, p.P885L variant.

Next, we tested if  the P+T treatment is effective in ameliorating W024 and W121 SC-islet dysfunction 
(Figure 4F). WFS1 protein expression was restored in the treated SC-islets, as observed in both the W024 
and W121 iPSCs (Figure 4G). We observed the dilated ER was remitted in some W024 and W121 SC-islet 
cells treated with P+T (Supplemental Figure 9). In addition, the P+T treatment greatly inhibited cell death 
in the W024 and W121 SC-islets (Figure 4H). As expected with greater WFS1 protein, the insulin secretion 
of  W024 and W121 SC-islets in low and high glucose was increased by the P+T treatment (Figure 4I). 
However, insulin content was increased only in W121 SC-islets by the P+T treatment (Supplemental Fig-
ure 8B). The proinsulin/insulin ratio was not changed in either W024 or W121 SC-islets by the treatment 
(Supplemental Figure 8C), suggesting P+T does not alter insulin processing. We also measured OCRs of  
W024 and W121 treated with P+T. Although W024 showed a trend of  slight increase in oxygen consump-
tion over the assay by P+T treatment, neither W024 nor W121 showed significant improvement by the 
treatment (Supplemental Figure 8D). In summary, P+T treatment restored WFS1 expression and increased 
insulin secretion capabilities of  W024 and W121 SC-islets.

Cellular stress is mitigated by a combination treatment of  4-PBA and TUDCA in SC-islets with WFS1 
c.1672C>T, p.R558C variant. We performed multiplexed single-cell RNA sequencing (scRNA-Seq) using 
the 10x Genomics platform to investigate genotype-phenotype correlations and the efficacy of  the P+T 
combination treatment on SC-β cells more precisely. We utilized cell hashing, which applies oligo-tagged 
antibodies to the cell surface proteins of  individual samples, thus allowing detection of  individual  

Figure 6. In vivo verification of a combination treatment with chemical chaperones. (A) Intraperitoneal glucose tolerance test (IP-GTT) with WT or 
Wfs1-KO mice at baseline and 1 month after feeding with either control chow or food containing 4-PBA: 0.338% and TUDCA: 0.225% (P+T chow). (B) 
AUCs of the IP-GTT (KO, Ctrl: n = 12; KO, P+T: n = 12; WT: n = 7; **P < 0.01 and ***P < 0.001 by 1-way ANOVA; ##P < 0.01 and ####P < 0.0001 by 1-way 
ANOVA compared with WT: Baseline; ††††P < 0.0001 by 1-way ANOVA compared with WT: 1 month).
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samples within a pooled cell population (52). We sequenced 4 biological replicates per cell line from 
independent differentiations, treated with or without P+T for 7 days. In total, we sequenced 16 samples 
with 8 samples in each pooled population, which were submitted separately based on the cell line. In 
total, we sequenced 13,951 stage 6 SC-islet cells differentiated from W024 and W121 iPSCs to study the 
effects of  P+T treatment (W024: 2,619 cells; W024, P+T: 3,158 cells; W121: 3,625 cells; and W121, 
P+T: 4,549 cells; 4 biological replicates for each sample). The scRNA-Seq data were analyzed using 
dimensionality reduction and unsupervised clustering to classify individual cells into cell populations 
based on similarities in their transcriptome profiles. The cell types were identified by aligning the top 
upregulated genes in each cell cluster population with published pancreatic transcriptome data (53, 54). 
After identifying the β cell population in each sample, we combined the 2,329 SC-β cells from the 4 
experimental conditions (W024: 377 cells; W024, P+T: 220 cells; W121: 749 cells; and W121, P+T: 680 
cells) and performed principal component analysis and unsupervised clustering. The β cells clustered 
together based on genetic background, regardless of  combination treatment (Figure 5A), suggesting the 
β cell transcriptional profile was not greatly changed in response to P+T.

Next, we evaluated the key β cell genes and ER stress markers. WFS1 pathogenic variants cause ER 
stress, resulting in altered expression of  β cell genes in SC-β cells (49). Expression of  the insulin gene (INS), 
crucial transcription factors for β cell differentiation (ISL1, NKX6.1, NKX2.2, and PDX1), β cell matura-
tion genes (MT1X and ERO1B), and a β cell function gene (GCK) was similar between untreated W024 
and W121 SC-β cells (Figure 5B and Supplemental Table 2). Interestingly, the expression of  SLC30A8, an 
alternate β cell maturation gene, was significantly higher in W024 SC-β cells compared with W121 (Figure 
5B and Supplemental Table 2). The P+T treatment did not change the gene expression for many genes in 
W024 SC-β cells (Figure 5B and Supplemental Table 2). On the other hand, MT1X and ERO1B were highly 
expressed in W121 SC-β cells treated with P+T compared with untreated (Figure 5B and Supplemental 
Table 2). Unlike WFS1 protein levels in SC-islets, WFS1 transcription within the SC-β cell population 
was similar between both W024 and W121 SC-β cells (Figure 4C, Figure 5C, and Supplemental Table 3). 
Some ER stress markers (TXNIP and BiP) were highly expressed in W121 SC-β cells compared with W024 
(Figure 5C and Supplemental Table 3), whereas other ER stress markers (ATF6, ATF4, CHOP, GADD34A, 
TRIB3, and HERPUD1) and apoptotic (CASP) genes were not statistically different between both W024 
and W121 SC-β cells (Figure 5C and Supplemental Table 3). The expression of  WFS1, ER stress markers, 
and apoptotic genes was not statistically altered by the P+T treatment in either W024 or W121 SC-β cells 
(Figure 5C and Supplemental Table 3).

We performed gene set enrichment analysis (GSEA) on the SC-β cells. Gene sets pertaining to NMD, 
ubiquitination-mediated protein degradation, and oxidative stress were enriched in the untreated SC-β cells 
compared with the P+T-treated SC-β cells (Figure 5D and Supplemental Table 4). Interestingly, we found 
the inflammation and the selective mitochondrial autophagy (mitophagy) pathways were also enriched 
in the untreated SC-β cell population (Figure 5D, Supplemental Figure 10, and Supplemental Table 4). 
Although we did not observe major changes in the expression of  ER stress markers and apoptotic genes in 
W024 and W121 SC-β cells treated with P+T, gene sets pertaining to apoptosis and ER stress were enriched 
in the untreated SC-β cells (Figure 5D, Supplemental Figure 10, and Supplemental Table 4). Of  note, gene 
sets related to insulin secretion and β cell development were enriched in the P+T-treated SC-β cell popu-
lation (Figure 5D, Supplemental Figure 10, and Supplemental Table 4). Additionally, gene sets related to 
regulation of  cytosolic K+ and Ca2+ levels were increased, and these levels play an important role in β cell 
differentiation and function (55–57) (Supplemental Figure 10 and Supplemental Table 4). Collectively, P+T 
treatment mitigated cellular stress increased by pathogenic WFS1 variants without changing β cell identity, 
which resulted in increased β cell and insulin secretion in W024 and W121 SC-β cells.

A combination treatment of  4-PBA and TUDCA delays the diabetic phenotype progression in Wfs1-deficient 
mice. Finally, we verified the efficacy of  our combination treatment with chemical chaperones with an 
in vivo study. The field lacks a c.1672C>T, p.R558C variant WFS1 mutation mouse model. Therefore, 
we employed 129S6 whole-body Wfs1-knockout (Wfs1-KO) mice. This mouse model develops progressive 
glucose intolerance during adolescence, hence a mouse model of  Wolfram syndrome (20). We showed 
Wfs1-KO mice developed glucose intolerance at 5–6 weeks old (Figure 6, A and B). In addition, Wfs1-KO 
mice did not show glucose-stimulated increase of  the serum insulin level, which was lower than that of  
WT (Supplemental Figure 11A). We treated the mice at 5–6 weeks old with P+T chow (4-PBA: 0.338% 
and TUDCA: 0.225%) for 1 month. Both groups of  Wfs1-KO mice consumed similar amounts of  chow  
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(Supplemental Figure 11B). After feeding for 1 month, Wfs1-KO mice fed with control chow developed 
more severe glucose intolerance (Figure 6, A and B). Conversely, an IP-GTT blood glucose curve was 
similar to the baseline outcome in Wfs1-KO mice fed with P+T chow (Figure 6, A and B), indicating that 
P+T chow delayed the progression of  the diabetic phenotype. Body weight and insulin sensitivity were 
not greatly changed by the P+T chow (Supplemental Figure 11, C–E). The basal level of  serum insulin (0 
minutes) was higher in Wfs1-KO mice fed with P+T chow as compared with control chow (Supplemen-
tal Figure 11F). Compared with baseline, serum insulin level at 30 minutes following glucose injection 
was decreased in Wfs1-KO mice fed with control chow, whereas it was similar in the mice fed with P+T 
chow (Supplemental Figure 11G). Collectively, we observed delays in the Wolfram diabetic phenotype in  
Wfs1-KO mice when using the P+T treatment. Therefore, we expect the combination treatment to be effi-
cacious against diabetic Wolfram phenotypes caused by the WFS1 c.1672C>T, p.R558C variant in vivo.

Discussion
In this study, we characterize a likely unique pathogenic WFS1 c.1672C>T, p.R558C variant, which is asso-
ciated with a mild form of  Wolfram syndrome and highly prevalent in the Ashkenazi Jewish population. 
Molecular investigation revealed WFS1 p.R558C had a greater posttranslational stability in cells compared 
with another pathogenic variant, WFS1 c.2654C>T, p.P885L. Based on the molecular characterization of  
WFS1 p.R558C, we hypothesized a combination treatment of  2 chemical chaperones, 4-PBA and TUDCA, 
could provide a treatment for Wolfram syndrome. We demonstrated that a combination treatment of  4-PBA 
and TUDCA increased WFS1 expression within the cell, ameliorating organelle dysfunction and the asso-
ciated apoptosis. We also identified that patient SC-islets demonstrated genotype-phenotype relationships 
that correlated with clinical observations, and a combination treatment with 4-PBA and TUDCA improved 
insulin secretion in this cellular model of  Wolfram syndrome.

Wolfram syndrome is a very rare genetic disorder. In the United Kingdom, the prevalence is 1:770,000, 
and the carrier frequency of  pathogenic WFS1 variants is 1:354 (4). The prevalence in the North American 
population is estimated to be 1:100,000 (58). We observed greater carrier frequency of  the WFS1 c.1672 C>T, 
p.R558C variant in the Ashkenazi Jewish population with a frequency of  1:43 as compared with 1:76 in 
the Ashkenazi/Sephardi Jewish population and 1:2,268 in the Sephardi population. Although present in the 
Sephardi population, as shown in 6 carriers out of  13,608 Sephardi patients tested, we suspect that the low fre-
quency of  WFS1 c.1672 C>T, p.R558C variant might be explained by historical admixture with Ashkenazim. 
Forgotten or suppressed admixture of  Gentile and Jewish people was previously exhibited in a study focusing 
on genome-wide Jewish genetic signature (59).

WFS1 is subjected to a ubiquitin-proteasomal degradation by SMAD specific E3 ubiquitin protein ligase 
1 (Smurf1), a HECT-type ligase, which recognizes the degron within the C-terminal luminal region of  WFS1 
(aa 671–700) (60). Missense mutations in the degron or truncating mutations lacking the degron are resistant 
to Smurf1-mediated degradation (60). Other WFS1 variants that retain the functional degron can lead to 
complete depletion or degradation of  the WFS1 protein by NMD or proteasomal degradation (31, 32). Our 
study demonstrated WFS1 p.R558C protein is also subjected to proteasomal degradation. However, the deg-
radation rate was lower than the WFS1 p.P885L variant. Additionally, WFS1 p.R558C protein was detected 
while conducting in vivo and in vitro experiments, indicating that a portion of  the WFS1 p.R558C protein 
escapes proteasomal degradation. The remaining WFS1 p.R558C protein may compensate for the loss of  
wild-type WFS1 function. This hypothesis is consistent with the observation that clinically, patients carry-
ing the homozygous WFS1 c.1672 C>T, p.R558C variant have mild or less severe phenotypes of  Wolfram 
syndrome. Our findings strongly suggest that alternate degron-retaining pathogenic WFS1 variants require 
further protein expression characterization to determine the genotype-phenotype correlation.

Most of  the studies conducting experimental genotype-phenotype correlation analysis employ overex-
pression of  mutant WFS1 proteins in transfected cell lines such as HEK293T, HeLa, and COS7 (60, 61). 
This system is incapable of  evaluating detrimental effects of  pathogenic WFS1 variants on physiological 
functions in disease-relevant cells. In pursuit of  more reliable models and achieving a deeper understanding 
of  Wolfram phenotypes, we have studied patient-derived, disease-relevant cells. SC-islets, containing SC-β 
cells, differentiated from patient iPSCs with homozygous WFS1 c.1672C>T, p.R558C variant (W024), 
displayed insufficient β cell function and similar differentiation efficiency compared to control SC-islets. 
W024 SC-islet phenotypes were milder than W121 SC-islets differentiated from the heterozygous WFS1 
c.1672C>T, c.2654C>T variant iPSC line, indicating that our SC-islets capture Wolfram phenotypes based 
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on pathogenic WFS1 variants and could model genotype-phenotype correlation analysis and drug discov-
ery in vitro. The diabetes stem cell field has recently leveraged this technology to correct the WFS1 patho-
genic variant using CRISPR/Cas9 gene-edited SC-islets from a patient with Wolfram syndrome to reverse 
preexisting diabetes in a mouse (49). Stem cell technology and genetic engineering have also been used for 
correcting and studying other pathogenic variants (62).

We demonstrated that a combination treatment of  4-PBA and TUDCA was efficacious against the 
WFS1 c.1672C>T variant. In our screening, the disulfiram molecule stabilized the WFS1 protein. The sta-
bilization is likely due to the inhibitory function of  disulfiram on NPL4, an adaptor of  p97/VCP segregase, 
which is essential for ER-associated degradation (ERAD) (63, 64). ERAD is a crucial system aiming to 
mitigate ER stress. Indeed, some studies showed that disulfiram induces ER stress followed by apoptosis 
(65, 66). On the other hand, 4-PBA and TUDCA stabilize proteins by facilitating protein folding thereby 
mitigating ER stress. Numerous studies have demonstrated that 4-PBA and TUDCA are promising for the 
treatment of  diabetes mellitus and other ER stress–related neurodegenerative diseases (67–70). However, 
most chaperone treatment studies used an individual chaperone and a single-dose treatment. A combination 
treatment with these compounds has rarely been attempted. Combining several compounds is a common 
cancer treatment strategy, aiming to yield additive or synergistic efficacy (71). Recently, a study reported  
that a combination treatment of  4-PBA and TUDCA resulted in slower functional decline of  patients with 
amyotrophic lateral sclerosis, an ER stress–related disease (72). In our study, 4-PBA and TUDCA increased 
WFS1 protein as well as mRNA levels in the patient-derived iPSCs. We predict this increase of  WFS1 
mRNA level is induced by 4-PBA activity as an HDAC inhibitor, which selectively promotes gene tran-
scription (41, 73). Alternatively, WFS1 and ER stress marker expression in SC-β cells was not statistically 
significantly altered by the combination treatment with 4-PBA and TUDCA in our scRNA-Seq analysis. 
This could be due to variability in the scRNA-Seq data set. Genes not in a consistent steady-state manner 
cause variable detection, which is commonly observed in ER stress–inducible genes (74, 75). Additionally, 
current scRNA-Seq technology detects only approximately 10% of  the cellular mRNA molecules, resulting 
in difficulties in detecting genes with small expression within a single cell (76). Therefore, the scRNA-Seq 
data set may be limited in the number of  gene transcript copies detected for ER stress markers and WFS1, 
thus underestimating the impact of  4-PBA and TUDCA on ER stress in the SC-β cells.

GSEA revealed a combination treatment of  4-PBA and TUDCA downregulated mitophagy, ER stress, 
and apoptosis. Mitophagy mediates clearance of  damaged mitochondria in the cells (77). Pathogenic WFS1 
variants have been reported to cause mitochondrial dysfunction (38, 39), and we showed a combination 
treatment of  4-PBA and TUDCA restored mitochondrial function in NPCs, implying that mitophagy 
could be reduced by preventing mitochondrial dysfunction. Additionally, in GSEA, several inflammatory 
pathways were reduced by a combination treatment of  4-PBA and TUDCA. We and others recently report-
ed elevated expression and serum levels of  inflammatory cytokines in patients with Wolfram syndrome 
(27, 78). ER stress and mitochondrial dysfunction have been well known to cause inflammation (79–82). 
It is possible that the several inflammatory pathways were downregulated as a consequence of  reduced ER 
stress and restored organelle function by a combination treatment of  4-PBA and TUDCA. In summary, 
a combination treatment of  4-PBA and TUDCA mitigated various cellular stresses the WFS1 c.1672C>T, 
p.R558C variant caused, resulting in improved insulin secretion.

We previously reported on the restoration of  Wolfram phenotypes by correcting pathogenic WFS1 vari-
ants with CRISPR/Cas9 in SC-islets derived from patients with typical Wolfram syndrome (49). When com-
paring the functional assessments and scRNA-Seq analyses, a combination treatment of  4-PBA and TUDCA 
had a milder effect compared with CRISPR/Cas9 gene correction. This is expected because CRISPR/Cas9 
correction directly intervenes on the cause of  Wolfram syndrome. However, the combination treatment of  
4-PBA and TUDCA as a therapeutic is advantageous for ease of  administration. Furthermore, prolonged 
4-PBA and TUDCA administration could delay additional symptom onset, including hearing loss and neu-
rodegeneration, which typically manifests at later stages of  the disease. Therefore, verifying efficacy of  the 
combination treatment on other relevant cell types and pathogenic WFS1 variants is warranted.

This study harnesses multiple iPSC-derived in vitro disease models and demonstrates efficacy of  a 
combination treatment of  4-PBA and TUDCA. The benefits of  this treatment may apply to other genetic 
ER stress–related diseases, such as Wolcott-Rallison syndrome. Moreover, our differentiation technology 
for in vitro disease models could be leveraged as a drug screening tool to discover new therapies or pave the 
way to personalized medicine strategies for patients with Wolfram syndrome.

https://doi.org/10.1172/jci.insight.156549
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Methods
iPSC lines. To generate iPSCs, we obtained PBMCs from patients with Wolfram syndrome. The iPSC 
lines were generated by the Genome Engineering and iPSC Center (GEiC) at Washington University in 
St. Louis with Sendai viral reprogramming. Control iPSC lines BJFF.6 and AN1.1 were obtained from 
the GEiC at Washington University in St. Louis. HEK293 cells were obtained from ATCC. Validation of  
pluripotency was performed using Pluripotent Stem Cell 4-Marker Immunocytochemistry Kit (Thermo 
Fisher Scientific; A24881).

Chemical chaperones. We obtained 4-PBA and TUDCA from Amylyx Pharmaceuticals Inc. We dis-
solved 4-PBA and TUDCA in PBS and used them at final concentrations of  500 μM and 50 μM, respec-
tively. Control conditions were treated with only PBS. The treatment time is described in the figure 
legends. Stock reagents were kept at 4°C and made fresh every 2 weeks. For animal experiments, we 
ordered Envigo custom-made chow containing 4-PBA and TUDCA (4-PBA: 34 mg/kg and TUDCA: 23 
mg/kg in Teklad global 18% protein rodent diet). The animals ate approximately 4 g of  diet per day, with 
a goal of  6 g 4-PBA/kg body weight/d and 4 g TUDCA/kg body weight/d. The same base diet without 
chemical chaperones was used as the control chow.

NPC differentiation. Undifferentiated stem cells were plated down on tissue culture plastic in mTeSR1 
(StemCell Technologies; 05850) and cultured in a humidified 5% CO2 and 37°C tissue culture incubator. 
NPC differentiation was performed as described previously (83, 84). Briefly, 4 × 104 to 6 × 104 cells per 
well were seeded onto V-bottom, 96-well plates (Corning) in NPC differentiation medium suppled with 
10 μM Y27632 (Tocris; 1254) to generate embryonic bodies (EBs) (day 0). On day 4, EBs were plated on 
6 cm dishes coated with poly-l-ornithine solution (20 μg/mL, MilliporeSigma) and laminin (1 μg/mL, 
Thermo Fisher Scientific) in NPC differentiation medium. On day 12, neural rosettes were detached 
from the dish using STEMdiff  Neural Rosette Selection Reagent (StemCell Technologies; 05832), and 
dissociated cells (NPCs) were plated on 6 cm dishes coated with Matrigel and laminin (5 μg/mL). 
NPC differentiation medium consists of  Neurobasal-A (Life Technologies; 10888022), 1× B27 supple-
ment without vitamin A (Life Technologies; 12587), 1% nonessential amino acids (Life Technologies; 
11140050), 0.1% 2-mercaptoethanol (Life Technologies; 21985-023), 1% PenStrep (Life Technologies; 
15140122), 1% Glutamax (Life Technologies 35050061), 10 μM SB-431542 (Tocris; 1614), and 100 
nM LDN-193189 (Tocris; 6053). After the differentiation, medium was changed every other day in 
the whole differentiation process. NPCs were maintained in STEMdiff  Neural Progenitor Medium 
(StemCell Technologies; 05833). Passage was performed with Accutase (MilliporeSigma; A6964) and 
medium was changed every day.

SC-islet differentiation. SC-islet differentiation was performed similarly to as we have previously 
reported (47, 48). Undifferentiated stem cells were plated down on tissue culture plastic in mTeSR1 
and cultured in a humidified 5% CO2, 37°C tissue culture incubator. Stem cell passaging occurred every 
3–4 days, with TrypLE (Life Technologies; 12-604-039) used for single-cell dispersion and Vi-Cell XR 
(Beckman Coulter) for counting. Undifferentiated stem cells were seeded at 0.52 × 106 cells/cm2 in 
mTeSR1 + 10 μM Y27632 (Abcam; ab120129) on Matrigel-coated (Corning; 356230) plates. On stage 6 
day 7, cells were single-cell dispersed with TrypLE and seeded in a 6-well plate at 5 × 106 cells per well 
with 4 mL of  stage 6 enriched serum-free medium per well. Cells continued culturing on an orbi-shaker 
(Benchmark) set at 100 rpm in a humidified tissue culture incubator at 5% CO2 and 37°C. Supplemental 
Table 7 contains subsequent feeding schedule, media formulations, and differentiation factors. Assays 
were carried out between stage 6 day 9 and 20.

Data availability. RNA-Seq data were deposited in the NCBI’s Gene Expression Omnibus database 
(GEO accession GSE212256).

Statistics. Statistical analysis was performed by 1-tailed unpaired and paired t tests and 1- and 2-way 
ANOVA with Tukey’s or Dunnett’s tests. Statistical tests are specified in figure legends. P < 0.05 was con-
sidered statistically significant. Data are shown as means ± SEM unless otherwise noted.

Study approval. For human study, patients and their parents or legal guardians, as appropriate, provided 
written informed consent before participating in this study, which was approved by the Human Research 
Protection Office at Washington University School of  Medicine in St. Louis (IRB ID 201107067). Animal 
experimentation was performed according to procedures approved by the Institutional Animal Care and 
Use Committee at the Washington University School of  Medicine in St. Louis (20-0334).

Further methods details are available in the Supplemental Methods.

https://doi.org/10.1172/jci.insight.156549
https://insight.jci.org/articles/view/156549#sd
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