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Advances in the diagnosis of herpes simplex stromal necrotising keratitis: 
A feasibility study on deep learning approach

Radhika Natarajan, Hiren D Matai, Sundaresan Raman1, Subham Kumar1, Swetha Ravichandran, 
Samyuktha Swaminathan2, John Sahaya Rani Alex3

Access this article online
Website:  
www.ijo.in
DOI:  
10.4103/ijo.IJO_178_22
PMID:  
*****

Quick Response Code:

Purpose: Infectious keratitis, especially viral keratitis (VK), in resource‑limited settings, can be a challenge 
to diagnose and carries a high risk of misdiagnosis contributing to significant ocular morbidity. We aimed to 
employ and study the application of artificial intelligence‑based deep learning (DL) algorithms to diagnose 
VK. Methods: A single‑center retrospective study was conducted in a tertiary care center from January 2017 
to December 2019 employing DL algorithm to diagnose VK from slit‑lamp (SL) photographs. Three hundred 
and seven diffusely illuminated SL photographs from 285 eyes with polymerase chain reaction–proven 
herpes simplex viral stromal necrotizing keratitis  (HSVNK) and culture‑proven nonviral keratitis  (NVK) 
were included. Patients having only HSV epithelial dendrites, endothelitis, mixed infection, and those 
with no SL photographs were excluded. DenseNet is a convolutional neural network, and the two main 
image datasets were divided into two subsets, one for training and the other for testing the algorithm. The 
performance of DenseNet was also compared with ResNet and Inception. Sensitivity, specificity, receiver 
operating characteristic  (ROC) curve, and the area under the curve (AUC) were calculated. Results: The 
accuracy of DenseNet on the test dataset was 72%, and it performed better than ResNet and Inception in the 
given task. The AUC for HSVNK was 0.73 with a sensitivity of 69.6% and specificity of 76.5%. The results 
were also validated using gradient‑weighted class activation mapping  (Grad‑CAM), which successfully 
visualized the regions of input, which are significant for accurate predictions from these DL‑based models. 
Conclusion: DL algorithm can be a positive aid to diagnose VK, especially in primary care centers where 
appropriate laboratory facilities or expert manpower are not available.
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Herpes simplex viral  (HSV) keratitis is a common viral 
infection of the cornea. Stromal HSV infection has infective 
and immune components and is often a recurrent and 
potentially blinding corneal disease, especially necrotizing 
stromal HSV keratitis.[1] Unlike most other microbial keratitis 
that mandate corneal scraping, diagnosis of epithelial HSV 
infection is largely based on clinical appearance and corneal 
staining of dendrites. However, stromal infection can mimic 
bacterial and fungal keratitis, making treatment difficult and 
delayed. Recurrent stromal HSV infection can also alter the 
typical clinical appearance of the disease due to vascularization 
and scarring. Laboratory tests such as immunofluorescent 
microscopy and polymerase chain reaction  (PCR) to detect 
the viral genome are expensive and are reserved for atypical 
and recurrent cases.[2,3]

Artificial intelligence‑based deep learning (DL) algorithms 
are increasingly being employed in medical diagnostics. 
Recent literature describes DL‑based diagnosis of microbial 
keratitis, especially fungal corneal ulcers, after analysis of 
high‑resolution slit‑lamp photographs.[4,5] We have tried to 
study a similar application in active and confirmed HSV stromal 
necrotizing keratitis (HSVNK) as these are usually diagnosed 
by primary care physicians based on clinical presentation rather 
than investigations. Application of DL‑based methods as an 
ancillary tool to clinical and, at times, laboratory methods in 
HSVNK could facilitate diagnosis and prompt early speciality 
referral to initiate appropriate treatment of this morbid disease.

Methods
A retrospective study was conducted with diffusely illuminated 
slit‑lamp images with 8 MP resolution of patients who had 
microbiologically proven infectious keratitis and presented to 
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our hospital from January 2017 to December 2019. Our study 
adhered to the Declaration of Helsinki and was approved by 
our Institutional Review Board and Ethical Committee. An 
informed consent to acquire and use the slit‑lamp images for the 
purpose of medical research and education had been obtained 
from the patients. Digital slit‑lamp photographs were acquired 
using the Topcon D series slit lamp with a beam splitter and 
an attached 8.1 MP digital camera via a DC‑3 digital camera 
attachment. The device functioning is driven by the DC‑3 EZ 
Capture software.

We included patients who had presented with infectious 
keratitis and had PCR‑proven active HSVNK and culture‑proven 
nonviral keratitis (NVK). All cases selected in both groups were 
symptomatic patients with active corneal infiltration. Resolving 
or scarred infections or those that were microbiologically 
negative were not included in the study.

As DL models need more data, a total of 307 images from 
285 eyes were used. Out of these, 177 (57.7%) images were from 
the HSVNK category and the remaining 130 images belonged 
to the NVK category, which included 43  (14.0%) bacterial 
and 87 (28.3%) fungal keratitis. Patients who had only HSV 
epithelial dendrites, endothelitis, mixed infection, pythium 
keratitis, acanthamoeba keratitis, and those with no slit‑lamp 
photographs were excluded from the study.

Data preprocessing and analysis
Two datasets comprising HSVNK and NVK with two subsets 
in each category, one for training and the other one for 
testing, were employed. Out of the 307 images, 177 images 
were in the HSVNK category, while 130 were in the NVK 
category (consisting of proven fungal and bacterial keratitis 
images). Two hundred and sixty‑seven images were used for 
training the DL models. Forty images were used in total for 
testing, with 20 images from each category picked at random. 
The training data consisted of 157 viral keratitis images and 
110 NVK images. While the training data was slightly skewed, 
the test data had an equal split between viral and nonviral 
images. As a part of preprocessing, all the images were resized 
to 224 × 224 and normalized between zero and one.

Model
Convolutional neural networks (CNNs) are DL architectures 
which are extensively utilized in the field of computer vision.[6] 
There are many DL models such as AlexNet, VGGNet, ResNet, 
and the Inception architectures. DenseNet‑201 is a CNN 

which is 201 layers deep.[7] Its architecture is shown in Fig. 1.[8] 
DenseNet has demonstrated better performance than the other 
models because of its implicitly modeled deep supervision 
and feature reuse.[9] ResNet‑50 and the GoogleNet Inception 
models were trained on this dataset as well to come up with a 
comprehensive evaluation of these techniques and to determine 
the best model.

Training
Transfer learning was employed to train the CNN.[10] This was 
because the training dataset being small, training the entire 
model from the scratch would have led to severe overfitting. 
DenseNet‑201 and the other models were pretrained on 
ImageNet.[11] For all the models, the last 1000‑node layer with 
SoftMax activation was replaced with a single node with 
sigmoid activation for the purpose of binary classification. The 
last layer was fine‑tuned (trained from the scratch), while the 
rest of the layers were frozen.

There were various hyperparameters. Adam optimizer with 
an initial learning rate of 0.0001 was used. The loss function and 
the activation function used were categorical cross‑entropy and 
Rectified Linear Unit (ReLU), respectively. All the models were 
trained for 375 epochs each. The validation accuracy saturates 
beyond 350 epochs, which is why training was carried out only 
till that point. The batch size was 32. Batch Normalization was 
used. Dropout was used as regularization to prevent overfitting. 
For an effective comparison, these hyperparameters were the 
same across the three models.

The model was trained using Google Colab, and the 
Graphics Processing Unit (GPU) used was NVIDIA Tesla K80. 
The code was written in Keras.[12]

Dataset
The dataset consisted of infectious keratitis images, a scaled 
down sample image of which is shown in Fig. 2. They were 
labeled as viral, bacterial, and fungal images based on clinical 
history and microbiology. The  Artificial Intelligence (AI) model 
was used to classify the data into HSVNK and NVK images.

Training
Cross validation was used for training the model. It involved 
dividing the training data into a particular number of groups, 
followed by taking out one group for validation and training the 
model on the other groups. The model weights were updated 
accordingly, and these steps were repeated till all the groups 

Figure 1: DenseNet‑201 architecture: CP refers to the convolutional block, D refers to a dense block, T refers to a transition layer, and FCL 
refers to a fully connected layer
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were covered (for validation). The model was fine‑tuned for 
350 epochs on the training data. The test data was not seen 
by the network and was used exclusively for validating its 
performance.

Comparison with other algorithms
The performance of DenseNet was compared with DL networks 
such as ResNet and Inception.[13,14] Since the target dataset was 
quite different from the original dataset on which the models 
were trained, the last few layers were fine‑tuned on the new 
dataset.

The diagnostic performance of the algorithm was also 
evaluated using the area under the receiver operating 
characteristic  (ROC) curve  (AUC) with 95% confidence 
intervals (CIs). The sensitivity, specificity, and accuracy of the 
model were calculated.

Results
DenseNet gave an accuracy of 72% on the test dataset, which 
is shown in Fig.  3. ResNet gave an accuracy of 50% on the 
test dataset, compared to 60% on the training data. Inception 
performed better, giving an accuracy of 62.5% on the test 
dataset. This is because of the depth of the model as it was 
able to capture features more effectively compared to the 
50‑layered ResNet model. DenseNet performed better than the 
other models particularly because of its ability to model deep 
representations more effectively, as discussed above. It does 
not suffer from overfitting, as the validation accuracy increases 
with the increasing number of epochs. Toward the end, it began 
to saturate, which is when the model training was stopped.

The ROC curve [Fig. 4] plots the true‑positive rate (sensitivity) 
on the y‑axis and the false‑positive rate (100 − specificity) for 
different cutoff points of a parameter on the x‑axis. AUC 
between 0.7 and 0.8 is considered statistically significant. 
The AUC for HSVNK was 0.73  (95% CI: 0.568–0.892) with 
a sensitivity of 69.6%, specificity of 76.5%, and an accuracy 

of 72.5%. The AUC value was 0.6, indicating a fairly good 
performance.

Visualization of the results was also attempted using 
gradient‑weighted class activation mapping (Grad‑CAM) for 
validation of results  [Fig.  5]. They were generated for two 
images in each category of the test dataset. All these images 
were classified correctly by the model. The red and yellow 
colors in the Grad‑CAM images signify the regions of maximum 
activation, that is, the regions that affected the classification of 
the model to the greatest extent. The regions in blue and yellow 
are those that contributed to a lesser extent. The rest of the 
image, which is not highlighted, was not used for classification. 
However, Grad‑CAM–based visual representation was an 
ancillary outcome reported and not a driving tool for this study.

Discussion
HSV 1 is an important causative agent which can infect all the 
layers of the cornea and lead to recurrent episodes.[15] HSV 
stromal keratitis is a corneal infection of variable severity 
and is a potentially blinding condition. Though stromal HSV 
is classified into immune and ulcerative necrotic types, quite 
often, the infective and immune components of this disease 
coexist. The diagnosis of HSV stromal keratitis compared to 
bacterial or fungal keratitis is difficult in some respects. Firstly, 
the infection looks morphologically different in different layers 
of the cornea.[15] Secondly, HSV necrotizing stromal keratitis 
infection can look like bacterial or fungal keratitis. Also, 
infective and immune components could present variably in 
the same eye. Lastly, multiple recurrences can mar the typical 
clinical appearance owing to scarring and vascularization.[16]

As epithelial integrity is important for resolution and 
owing to limited and expensive methods of microbiological 
diagnosis, HSV keratitis largely remains a clinical diagnosis. 
Corneal scraping for PCR is usually done for atypical or 
nonresponding disease. Confocal microscopy, which can be 
employed in diagnosing fungal keratitis, is of limited value 
in HSV keratitis.[17]

CNNs are DL architectures which are extensively utilized for 
classification tasks. DenseNet is one such CNN. It was thought 
that developing DL algorithms to detect HSVNK could help 

Figure 2: Sample image from the dataset

Figure  3: Graph showing the performance of DenseNet with an 
accuracy of 72% in correctly diagnosing herpes simplex viral stromal 
necrotizing keratitis
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in clinical diagnosis and would aid early referral by general 
ophthalmologists to cornea speciality. The first study using 
neural networks for diagnosis of infective keratitis utilized 
many clinical and lab parameters, but no photographs.[18] More 
recent work on the same lines utilized clinical pictures and DL 
algorithms to diagnose fungal keratitis.[4,5]

In our study, DL was used to diagnose microbiologically 
proven HSV keratitis using slit‑lamp pictures with diffuse 
white light illumination. Good‑quality photos and expert 
clinical diagnosis are imperative for successful and accurate 
DL‑based machine learning.

The limited number of images and the retrospective 
nature are definite limitations of the current study. With 
more images of infectious keratitis, including slit‑illuminated 
and fluorescein‑stained ones, the model can be fine‑tuned to 
incorporate this information and improve its performance. The 
scope for improvement when more images are available is shown 
in the graph in Fig. 3. Depending on how close the newly acquired 
images are to the original distribution, the corresponding layers 
could be chosen for fine‑tuning. Should there be a large variation, 
more layers could be unfrozen and fine‑tuned.

But considering the difficulty of this task, an encouraging 
baseline performance was given by our model since viral, fungal, 
and bacterial keratitis can appear clinically similar to each other 
and an expert cornea specialist would be required to differentiate 
between them. However, there is a room for considerable 
improvement to be able to perform close to specialists and 
become an aid for accurately diagnosing such diseases.

Grad‑CAM increases the explainability of the DL models 
by visualizing the regions of input that are significant for 
predictions from these models.[19] We believe that this would 
improve the efficiency of the primary clinician in the setting of 

an outpatient department by producing a visual explanation 
of the pathological areas detected by CNNs.

Conclusion
To the best of our knowledge, this is the first study highlighting 
the utility of artificial intelligence in the diagnosis of HSV 
stromal necrotising keratitis, which has a varying spectrum of 
presentation and hence runs a risk of misdiagnosis. Artificial 
intelligence and DL‑based detection can be an additional tool 
aiding in better clinical diagnosis.

This could positively support recognition of infectious 
HSV keratitis, particularly by general ophthalmologists with 

Figure 5:  (1a) Slit‑lamp image of NVK.  (2a, 3a, 4a) Slit‑lamp images 
of HSVNK. (1b, 2b, 3b, 4b) Corresponding heat maps on Grad‑CAM. 
The regions in red and yellow are the regions with maximum activity, 
while those in blue and green show activities of lesser degree. 
Grad‑CAM = gradient‑weighted class activation mapping, HSVNK = herpes 
simplex viral stromal necrotizing keratitis, NVK = nonviral keratitis

Figure  4: ROC curve showing the AUC for herpes simplex 
viral necrotizing stromal keratitis. AUC  =  area under the curve, 
ROC = receiver operating characteristic
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limited speciality experience and in primary care centers where 
appropriate laboratory facilities are nonexistent, and would 
help in early speciality referral of patients with this potentially 
blinding disease.
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