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Abstract 

Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute 
an interconnected communication network to fine-tune growth and development in response to the ever-changing 
environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species 
and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various 
aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other 
hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones 
often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with 
increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress 
tolerance. In this review, we highlight recent work on organelle–phytohormone interactions focusing on the major 
stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.

Keywords:  Abscisic acid (ABA), chloroplast, ethylene, jasmonates, mitochondria, plant organelles, phytohormones, plastids, 
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Introduction

Organelles have essential functions in most cellular processes 
including growth and development of plants. As a consequence 
of their endosymbiotic origin, mitochondria and chloroplasts 
carry their own genomes. However, the majority of organel-
lar proteins are now nucleus encoded (Zimorski et al., 2014). 
Development and plant fitness require the coordination of 
organellar functions, including coordinated expression of genes 

encoded in the three genomes of the plant cell.  Therefore, 
organelles constantly transmit their physiological state as in-
tracellular signals to the nucleus for the coordination of gene 
expression. The discovery of stress-related organellar signals led 
to the assumption that plant organelles are one of the primary 
sites for sensing environmental changes (reviewed in Kleine 
and Leister, 2016; Kmiecik et al., 2016; Crawford et al., 2018; 
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Dopp et al., 2021; Li and Kim, 2022). Work has revealed dif-
ferent stress-related organelle signaling components such 
as the carotenoid oxidation byproducts (Ramel et al., 2012), 
phosphoadenosine 5ʹ-phosphate (PAP) (Estavillo et al., 2011), 
executer-mediated response to singlet oxygen (Lee Keun et al., 
2007), and the isoprenoid-precursor methylerythritol cyclodi-
phosphate (Xiao et al., 2012).

In addition to their role as environmental sensors, organelles 
(especially chloroplasts) are the main hub for the metabolism 
of several phytohormone precursors, as illustrated in Fig. 1 
(for a recent review see Fàbregas and Fernie, 2021). Phytohor-
mones are associated with various physiological and metabolic 
processes (Cackett et al., 2022), and it is becoming clear that 
they constitute a network that is interconnected at multiple 
levels. Antagonistic and synergistic interactions between dif-
ferent hormones have been described during biotic (Berens 
et al., 2017; Aerts et al., 2021) and abiotic stress. For example, 
synergistic effects of jasmonic acid (JA) with salicylic acid (SA) 
were found in the high-light response (D’Alessandro et al., 
2020), or between abscisic acid (ABA) and JA in the drought-
stress response (Liu et al., 2016), while antagonistic effects of 
ABA and cytokinins have been reported under drought stress 

(Huang et al., 2018). Finally, ethylene was shown to modulate 
the activity of SA in the pathogen response (Ramšak et al., 
2018).

Classically, hormone signaling is discussed in a historical con-
text where specific hormones are often viewed in a particular 
developmental or stress context. For this review, however, it 
seemed more reasonable for us to structure organelle–hormone 
signals to cover (i) direct signaling connections, (ii) indirect sig-
nals, and (iii) other, more complex signaling interactions (Fig. 2). 
Direct signals include metabolites of exclusive organellar origin 
that serve as key precursors for the final steps of plant hor-
mone biosynthesis. The active forms of the hormones present 
the source of the signal, triggering a receptor-based signaling 
cascade leading to an integrated transcriptional response. The 
regulated genes could be exclusively under the control of a cer-
tain hormonal signaling cascade, controlled by retrograde signals 
from organelles, or controlled by both input pathways. Alterna-
tively, in an indirect mechanism, the second messenger metabo-
lites of organellar origin are perceived by receptors elsewhere in 
the cytoplasm and thereby act as signals leading to a modulation 
of biosynthetic activities of enzymes involved in hormone bi-
osynthesis. The elicitation of organellar second messengers may 

Fig. 1. The chloroplast as metabolic hub for phytohormone precursors. Numerous phytohormone pathways start with secondary metabolism in plastids: 
xanthoxine biosynthesis via the xanthophyll cycle—the precursor of ABA; chorismate biosynthesis—the precursor of SA and auxin (IAA); oxidized lipids 
such as linolenic acid—the precursor of jasmonates (via JA); cystathionine—the precursor for methionine and thus ethylene. ACC: 1-aminocyclopropane 
1-carboxylate; IAA, indole-3-acetic acid; OPDA, oxophytodienoic acid; SAM, S-adenosyl-l-methionine. 
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be triggered via anterograde signals. Similar to the direct signal-
ing pathways, the resulting integrated transcriptional response is 
a combination of exclusively hormone-derived transcriptional 
changes, transcriptional changes elicited by organellar retro-
grade signals, and a combination of both. Finally, transcriptional 
changes may require a functional hormonal signaling cascade 
and a functional organellar retrograde signaling cascade at the 
same time to provide an integrated transcriptional response 
in order to react to an environmental change, thus illustrating 
more complex signaling interactions (Fig. 2).

In this review, we summarize recent work on organelle–
phytohormone interactions to highlight and address open 
questions within these interwoven signaling cascades, concen-
trating on the stress-related hormones ABA, jasmonates, SA, 
and ethylene. However, other phytohormones also have tight 
relations to plant organelles, and the impact of auxin, cyto-
kinins, gibberellins, and strigolactones on photosynthesis and 
photoprotection was covered in a recent review by Müller and 
Munné-Bosch (2021).

Abscisic acid

ABA was identified in the 1960s as an endogenous signal 
(Ohkuma et al., 1963). Since then, numerous functions 

of ABA in plant development and adaptation have been 
described, including reprogramming of gene expression, pro-
tection of photosynthesis, stomatal closure, maturation of 
seeds, and primary root growth (for recent reviews on ABA 
see Ma et al., 2018; Seo and Marion-Poll, 2019; Cardoso et al., 
2020). Besides these diverse functions, meta-analysis of mi-
croarray studies under different operational retrograde sig-
naling conditions, such as transition from low light to high 
light intensities, abolishment of the tetrapyrrole pathway 
by gabaculine treatment, or manipulation of electron flow 
via mutation of the Ser/Thr protein kinase STN7, identi-
fied ABA as a major component within the core network of 
inter-organelle signaling of Arabidopsis (Gläßer et al., 2014). 
Many nuclear genes that encode organellar proteins related to 
photosynthesis carry ABA responsive elements in their pro-
moter (Koussevitzky et al., 2007), and exogenously applied 
ABA represses the transcription of almost all genes encoded 
by the plastome in Arabidopsis and barley (Yamburenko et al., 
2013; Yamburenko et al., 2015). Therefore, it is no surprise 
that ABA is important in coordinating the response of the 
organelle that produces the intermediates for its own bio-
synthesis (the chloroplast) and that ABA signaling is linked 
with inter-organelle communication via direct and indirect 
connections.

Fig. 2. Direct/indirect signals in regulation of gene expression. Different types of connections between organelles and hormone signaling affect gene 
expression. (A) Direct signals: hormone levels, depending on precursor metabolites for hormone biosynthesis of exclusive organellar origin, regulate a 
subset of genes (yellow) while another subset of genes is controlled by retrograde signals from organelles (green), and a third subset of genes is regulated 
by both input pathways (blue). (B) Indirect signals: hormone levels regulating a subset of genes are indirectly altered via second messenger molecules of 
organellar origin, modulating the enzymes relevant for hormone biosynthesis. (C) Other signaling connections: transcriptional changes that do not fall into 
(A, B) but require a functional hormonal signaling cascade and a functional organellar retrograde signaling cascade at the same time.
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Direct connection of chloroplast functions and ABA 
biosynthesis

The biosynthetic pathway of ABA is closely associated 
with plastid functions and starts with the hydroxylation of 
β-carotene to zeaxanthin, followed by subsequent conver-
sion to violaxanthin through the xanthophyll cycle (Fig. 
3; for details see Seo and Marion-Poll, 2019). Violaxan-
thin is then cleaved by 9-cis-epoxycarotenoid dioxygenase 
(NCED), which leads to xanthoxin. The oxidative cleavage 
via NCED is the first irreversible conversion step towards 
ABA and well accepted as a bottleneck in ABA biosynthesis 
(Endo et al., 2008). Finally, xanthoxin is transferred to the 
cytosol by an unknown process, where it is converted first 
to abscisic aldehyde and then to ABA. The ABA precursors 
xanthoxin and abscisic aldehyde can be found in numerous 
plant tissues, but reciprocal grafting of ABA biosynthetic 
mutants with wild type plants showed that leaves are the 

predominant site for the final steps of ABA biosynthesis 
(McAdam et al., 2016).

Several components of the ABA biosynthesis pathway are 
directly connected to chloroplast function and signaling. For 
instance, one of the most rapid components of the photo-oxi-
dative stress response is decreased pH in the thylakoid lumen 
via non-photochemical quenching to rebalance photosyn-
thesis (Ruban et al., 1992). The low pH affects the xanthophyll 
cycle by activating violaxanthin de-epoxidase, which converts 
violaxanthin into zeaxanthin and thereby counteracts the first 
steps of ABA biosynthesis (Pastori et al., 2003).

Indirect connection of chloroplast and ABA signaling

Besides the direct control of ABA precursor availability by 
chloroplast functions, ABA biosynthesis is also under the indi-
rect control by pathways that are modulated by organelles. One 
example is the impact of the circadian clock, which is under 

Fig. 3. The role of organelles in abscisic acid (ABA) signaling. ABA biosynthesis is initiated in chloroplasts by the non-mevalonate (MEP−) pathway 
and continuous via phytoene, lycopene, β-carotene, and zeaxanthin biosynthesis. The xanthophyll cycle converts zeaxanthin into violaxanthin, which 
is converted into xanthoxin. In the cytosol, xanthoxin is the substrate for the synthesis of ABA aldehyde and finally ABA. ABA is perceived through 
receptors from the RCAR/PYR/PYL family and PP2C co-receptors, which in turn activate SnRK2s and ABFs by phosphorylation. Chloroplast signals 
and functions, such as the SAL–PAP pathway and NPQ, control ABA biosynthesis and signaling. AAO, ABA-aldehyde oxidase; ABF, ABA responsive 
element-binding factor; LHY, late hypocotyl elongation factor; NCED, 9-cis-epoxycarotenoid dioxygenase; NPQ, non-photochemical quenching; 
PAP, 3ʹ-phosphoadenosine-5ʹ-phosphate; PP2C, protein phosphatase 2C; SAL1, dinucleotide phosphatase/inositol phosphate phosphatase; SDR, 
short chain dehydrogenase; SLAC1, slow anion channel-associated 1; SnRK2s, SNF1-related protein kinases; VDE, violaxanthin de-epoxidase; XRN, 
exoribonucleases; ZEP, zeaxanthin epoxidase.
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the control of chloroplast functions. Genome-wide binding 
analysis in Arabidopsis revealed that several genes involved in 
ABA biosynthesis are controlled by the LATE HYPOCOTYL 
ELONGATION FACTOR (LHY), an important component 
of the molecular clock in plants (Adams et al., 2018). Sub-
sequent analysis with LHY overexpression and loss of func-
tion lines revealed that LHY negatively effects transcription 
of NCED3, the gene for the most abundant NCED in Arabi-
dopsis (Adams et al., 2018). In addition, LHY overexpression 
represses the accumulation of ABA during drought. Pertur-
bation of chloroplast-related functions by chemicals such as 
3-(3,4-dichlorophenyl)-1,1-dimethylurea, paraquat, and ascor-
bate modifies the pace of nuclear-driven circadian oscillations 
(Philippou et al., 2020), which led to the hypothesis that the 
circadian rhythm could act as an additional feedback mech-
anism from chloroplasts on ABA biosynthesis, due to connec-
tion of chloroplast functions and the circadian clock.

In addition to ABA biosynthesis, ABA signaling is widely 
interconnected with retrograde signals from chloroplasts. For 
instance, PAP signaling supports the ABA response pathway 
during stomatal closure and seed maturation via activation of 
the slow anion channel, SLAC1 (Pornsiriwong et al., 2017). 
PAP is a 3ʹ-phosphorylated-nucleotide that is maintained at 
very low levels by the action of the phosphatase SAL1 (also 
called ALX8, FIERY1, and HOS2). During photo-oxidative 
stress, SAL1 is inactivated by oxidation, which in turn leads to 
an accumulation of PAP and triggers several chloroplast stress 
signals, such as high expression of the H2O2 scavenger ascor-
bate peroxidase 2 under excess light (Estavillo et al., 2011). 
ABA is known as a major player in stomatal closure, as several 
ABA-insensitive mutants showed abolished stomatal closure 
under drought conditions (Chater et al., 2015). Pornsiriwong 
et al. (2017) showed that SAL1 inactivation/PAP accumulation 
can restore the guard cell responsiveness in the ABA-insensitive 
mutant lines ost1-2 and abi1-1 via interaction with the ABA 
signaling pathway downstream of these genes by the phospho-
rylation and activation of SLAC1.

Promoter and transcript analysis of 2-Cys PEROXIRE-
DOXIN A (2CPA), encoding a highly abundant reactive oxygen 
species (ROS) scavenger in chloroplasts, revealed that its expres-
sion is controlled by ABA together with the cellular redox state 
(Baier et al., 2004). External application of ABA decreased the 
expression of 2CPA and consequently several ABA-insensitive 
mutants showed an increased expression of 2CPA (Baier et al., 
2004). To what extent ABA-controlled expression of 2CPA 
could potentially feed back on the redox-responsive SAL1 in-
activation/PAP accumulation is an open question.

Complex interactions: ABA signaling, plastid 
development, and nuclear interaction

Besides the direct connection of chloroplast functions with 
ABA biosynthesis and the indirect connection of ABA with 
operational retrograde signals, ABA itself can also shape plastid 

development and properties, which can be hypothesized 
as being an additional, more complex layer of ABA control 
within retrograde and anterograde signaling.

Transient expression of redox biosensors in the cytosol, the 
chloroplast stroma, and the nucleus revealed that photosynthe-
sis-derived H2O2 in the chloroplast directly alters the H2O2 
content of the nucleus, without affecting the cytosolic redox 
pool (Exposito-Rodriguez et al., 2017). It is proposed that the 
transfer of H2O2 occurs as a retrograde signal via the tubular 
structures of the chloroplast known as stromules. Gray et al. 
(2012) showed that ABA triggers the formation of chloro-
plast–nucleus complexes via stromules in tobacco and wheat 
seedlings. Vice versa, treatment with inhibitors of ABA bio-
synthesis prevents stromule formation under stress conditions. 
Recent work with strigolactone mutant lines and strigolactone 
biosynthesis inhibitors furthermore showed that ABA-induced 
stromule formation depends on active strigolactone biosyn-
thesis in plastids, indicating crosstalk between ABA and strigo-
lactones in this process (Vismans et al., 2016).

Besides signals from mature chloroplasts in response to en-
vironmental constraints (referred to as operational retrograde 
signals), retrograde signaling pathways also act during chloro-
plast development to control transcription of nucleus-encoded 
genes related to photosynthesis (referred to as biogenic ret-
rograde signals). These biogenic signals are mainly studied by 
inhibition of carotenoid biosynthesis with norflourazon and 
by inhibition of the translation machinery in plastids with lin-
comycin (Susek et al., 1993). Screens for mutant lines that are 
insensitive to norflourazon and lincomycin revealed six gene 
loci, called GENOME UNCOUPLED 1–6 (GUN1–6). The 
majority of photosynthesis-related nucleus-encoded genes are 
repressed by ABA treatments (Yamburenko et al., 2015). Due 
to a certain overlap of misregulated genes between gun1-1 and 
abi4 knockout plants and suppression of the gun1-1 phenotype 
in ABA INSENSITIVE 4 (ABI4) overexpression plants, it was 
proposed that ABA signaling via the transcription factor ABI4 
is an important downstream component of GUN1-mediated 
chloroplast biogenesis (Koussevitzky et al., 2007). However, 
recent work has re-evaluated the role of the ABA signaling 
component ABI4 in chloroplast biogenesis. Analysis of the phe-
notype of four different ABI4 alleles (abi4-102, abi4-1, abi4-2, 
and abi4-4) questions a role of ABI4 in GUN1-mediated bi-
ogenic control of photosynthesis-related, nucleus-encoded 
genes (Kacprzak et al., 2019). On the other hand, Zhu et al. 
(2020) showed recently that ABI5 overexpression suppresses 
chloroplast development and expression of photosynthesis-
related genes in potato (Solanum tuberosum). Overall, the exact 
way that ABA is integrated in the biogenic control of chloro-
plast morphogenesis is still an open question.

ABA signaling and mitochondrial stress response

Inhibition of mitochondrial electron transport, for example 
by the chemical antimycin A, can trigger the transcription of 
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 mitochondrial stress-responsive genes. The best-known ex-
ample is the increased transcript abundance of the nucleus-
encoded ALTERNATIVE OXIDASE 1A (AOX1a) after 
perturbation of mitochondrial electron transport (Clifton et al., 
2006). A forward genetic screen identified several REGULA-
TORS OF AOX1A (RAOs) genes and thereby components of 
mitochondrial retrograde signaling. One of the first identified 
RAOs is the DREB transcription factor ABI4 (Giraud et al., 
2009). Application of ABA leads to suppression of ABI4 expres-
sion and by that releases the repression of AOX1a, suggesting 
a positive role of ABA in mitochondrial retrograde signaling 
(Yao et al., 2015). It has also been reported that the induction 
of ABI4 and AOX1A transcription depends on RETARDED-
ROOT GROWTH-LIKE FACTOR 1 (RRL1), a mitochon-
dria-localized protein involved in mitochondrial retrograde 
signaling (Yao et al., 2015). Nevertheless, the full impact of 
ABA on mitochondrial function is still under investigation.

Jasmonates

Direct connection of organellar functions and 
jasmonate biosynthesis

Jasmonate is a collective term used for jasmonic acid (JA) 
and a diverse set of precursors and derivatives. They regulate 
a plethora of processes ranging from defense against stresses 
to the regulation of plant growth and development (reviewed 
in Wasternack and Hause, 2013; Koo, 2018). The first com-
mitted precursors of JA, 12-oxophytodienoic acid (cis-OPDA) 
and dinor-12-oxo-10,15(Z)-phytodienoic acid (dnOPDA), 
are made in chloroplasts (Fig. 4). As they are oxylipin deriva-
tives, their biosynthesis starts with free fatty acids released from 
membrane lipids by the action of various lipases. In the so-
called octadecanoid pathway, the initial substrate of cis-OPDA 
is α-linolenic acid (C18:3) released from the chloroplast galac-
tolipids monogalactosyldiacylglycerol (MGDG) and digalacto-
syldiacylglycerol (DGDG). By contrast, dnOPDA is synthesized 
via a parallel hexadecanoid pathway from the less abundant 
16:3 fatty acid roughanic acid (Bannenberg et al., 2009). Jas-
monate synthesis seems to be closely interconnected with the 
MDGD/DGDG ratio since a mutant defective in DGDG pro-
duction displays an increased production of cis-OPDA, as well 
as JA and jasmonoyl isoleucine (JA-Ile) (Lin et al., 2016).

Both OPDA variants can be found esterified to galactolipids 
(reviewed in Genva et al., 2019). First identified in Arabidop-
sis and called arabidopsides, they have now also been detected 
in other plants. Due to their rapid increase upon certain bi-
otic stresses, a role in plant defense was suggested. Oxylipins 
also have been found as glutathione (GSH) conjugates whose 
amount increases upon pathogen attack (Davoine et al., 2005). 
cis-OPDA–GSH conjugates are transported into the vacuole 
for either sequestration or degradation (Ohkama-Ohtsu et al., 
2011). While the exact function of cis-OPDA–GSH and the 
arabidopsides remains elusive, they could be involved in the re-

moval of a stimulus-induced excess of OPDA, or vice versa be 
an additional source for rapid jasmonate formation (Böttcher 
and Weiler, 2007).

Formation of JA from cis- and dnOPDA is continued in 
the peroxisome and the cytosol by two different routes (Fig. 
4). Conjugation of JA to Ile by JASMONATE-RESISTANT 
1 (JAR1), and to a lesser extent by other GH3 family pro-
teins such as GH3.10, generates JA-Ile (Staswick and Tiryaki, 
2004; Delfin et al., 2022). Isoleucine is derived from threonine 
and methionine made in chloroplasts. Thus, JA-Ile formation 
is independently connected twice to chloroplast metabolism. 
Most studies suggest that JA-Ile is the major biologically active 
JA derivative because it can promote the formation of SCF–
COI1–JAZ co-receptor complexes involved in jasmonate-
mediated transcriptional regulation (reviewed in Koo, 2018).

JA and JA-Ile are both substrates for further derivatization. 
Although these compounds are mainly considered as catabolic 
intermediates, bioactivity has nevertheless been suggested for 
some of them (reviewed in Koo, 2018; Wasternack and Hause, 
2013). A notable derivative is methyl jasmonate (MeJA), a vola-
tile communication molecule, present for example in essential 
oils of the jasmine flowers, where it was the first jasmonate 
ever identified (Demole and Stoll, 1962). After uptake into 
the cell, MeJA is converted to JA (Tamogami et al., 2008), 
thereby facilitating the external induction of jasmonate sig-
naling. Interestingly, an intermediate of cis-OPDA synthesis, 
13(S)-hydroperoxylinenic acid (13-HPOT), also gives rise to 
various volatiles important in the odors of fruits and vegetables 
(Matsui, 2006). It is not known, however, how the formation 
of these volatiles is interconnected with jasmonate biosynthesis 
and/or jasmonate signaling.

Jasmonate-mediated transcriptional changes are known to 
affect a wide range of cellular processes including organellar 
functions and expression of nucleus-encoded organellar pro-
teins. However, comparatively little is known about organel-
lar processes directly regulated by jasmonate signaling. Several 
studies showed differential effects of external jasmonate appli-
cation, JAR1 overexpression, or jasmonate signaling suppression 
on the expression of nucleus-encoded photosynthesis-related 
genes (Attaran et al., 2014; Sirhindi et al., 2020; Mahmud et al., 
2022). Recent findings on Arabidopsis also showed enhanced 
expression of most of the chloroplast-encoded genes by 
JA treatment (Zander et al., 2020) or JAR1 overexpression 
(Mahmud et al., 2022). It remains unclear whether this is a 
direct effect on the transcription of these genes within the or-
ganelle.

The effect of jasmonate on chlorophyll degradation has 
been known for a very long time (Ueda and Kato, 1980). Sev-
eral studies have since reported that JA signaling influences 
leaf senescence by induction of SENESCENCE-ASSOCI-
ATED GENES (SAGs) and CHLOROPHYLL CATABOLIC 
GENES (CCGs) involved in chlorophyll breakdown (Shan 
et al., 2011; Zhu et al., 2015). Regulation occurs via increase in 
the expression of JA-Ile-dependent MYC type  transcription 
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factors, which in turn modulate the expression of genes that 
facilitate chlorophyll breakdown (Zhu et al., 2015). Regula-
tion also occurs more indirectly by MYC-mediated increase in 
expression of some NAC type transcription factors that were 
found to regulate leaf senescence. Indeed, a partially overlap-
ping set of genes seems to be regulated by MYC2/3/4 and 
NAC019/055/072. By contrast, expression of RUBISCO 
ACTIVASE (RCA) was down-regulated by jasmonate in a 
COI1-dependent manner (Shan et al., 2011). Since the rca1 
mutant displays typical senescence-related features and several 
senescence-promoting genes show up-regulation in the mu-
tant, RCA could play an important role in jasmonate-induced 
de-greening (Shan et al., 2011).

Indirect mechanisms of jasmonate function

Jasmonate signaling is best described for the direct effect of JA-
Ile on gene transcription via the SCF–COI1–JAZ co-receptor 
complex. Very little is known about indirect jasmonate signal-
ing or other functions related to chloroplasts or mitochondria 
as depicted in Fig. 2B, C.

Besides JA-Ile, the most bioactive jasmonate, biological 
functions have been suggested for the chloroplast-derived 
precursor OPDA (recently reviewed in Maynard et al., 2018; 
Liu and Park, 2021). OPDA is found in marine algae, terres-
trial algae, mosses, and ferns, but the full jasmonate synthesis 
pathway is absent in these organisms. Recent work suggested 

Fig. 4. The role of organelles in jasmonate signaling. The term jasmonate comprises JA and JA-Ile as well as several precursors and catabolic derivatives 
some of which also possess bioactivity. Jasmonate biosynthesis is initiated in chloroplasts by oxidation of C18:3 (octadecanoid pathway) and C16:3 
(hexadecanoid pathway) fatty acids derived from galactolipids, which are converted in several steps to the first committed precursor, OPDA. The MDGD/
DGDG ratio, but also conjugation of OPDA to GSH or esterification to galactolipids (arabidopsides), affects OPDA homeostasis. Biosynthesis of JA 
continues in peroxisomes by β-oxidation of OPC-8:0 and OPC-6:0. A minor, less well described bypass pathway of JA formation involves tnOPDA 
and 4,5-ddh-JA. JA-Ile, the most bioactive of the jasmonates, is finally synthesized in the cytosol from JA and isoleucine, the latter being derived 
from methionine also made in chloroplasts. Ultimately, JA-Ile exerts its action in the nucleus by promoting the formation of SCFCOI1–JAZ co-receptor 
complexes and thus releasing JAZ-dependent gene suppression. 4,5ddh-JA, 4,5-didehydro-jasmonate; 10,11-EHT, 10,11(S)-epoxy-hexadecatrienoic 
acid; 11-HPHT, 11(S)-hydroperoxy-hexadecatrienoic acid; 12,13-EOT, 12,13(S)-epoxy-octadecatrienoic acid; 13-HPOT, 13(S)-hydroperoxylinolenic acid; 
α-LEA, α-linolenic acid; AOC, allene oxide cyclase; AOS, allene oxide synthase; DGDG, digalactosyl-diacylglycerol; GH3.10, glycoside hydrolase 3 gene 
family 10; HPL, hydroperoxide lyase; JA, jasmonic acid; JA-Glc, glycosylated jasmonate; JAR1, jasmonate-resistant 1; JASSY, chloroplast jasmonate 
transporter; LOX, lipoxygenases; MeJA, methyl jasmonate; MGDG, monogalactosyldiacylglycerol; OPC, 3-oxo-2-(20-[Z]-pentenyl)-cyclopentane-1-
octanoic acid; OPCL1, OPC-8:0 CoA ligase 1; OPDA, oxophytodienoic acid; OPR, OPDA reductase; PXA1, peroxisomal ABC-transporter 1.
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that dnOPDA is the evolutionary precursor of JA-Ile and can 
interact with the COI receptor orthologs of mosses (Monte 
et al. 2018; Inagaki et al., 2021). These findings indicate that 
the origin of jasmonate signaling can be directly connected to 
the chloroplast.

OPDA signaling seems to act both independently of and 
in concert with JA-Ile and it moreover affects the transcrip-
tion of both COI1-dependent and -independent genes (Taki 
et al., 2005; Stinzi et al., 2001). Indeed, a signaling function of 
OPDA independent of JA was already suggested in the 1990s 
(reviewed in Bӧttcher and Pollmann, 2009). Many aspects of 
this OPDA-mediated signaling are not well understood but 
there is evidence for an action by binding to proteins such 
as 13-lipoxygenase, cyclophilin 20-3, thioredoxin (TRX)-m4, 
and peroxiredoxin (Dückershoff et al., 2008). Park et al. (2013) 
subsequently described that reversible binding of OPDA to 
cyclophilin 20-3 promotes the formation of a complex be-
tween cysteine synthase and O-acetylserine (thiol) lyase B. This 
leads to an increase in thiol metabolites and the cellular redox 
potential (Park et al., 2013). This redox change then plays a 
role in the expression of OPDA-dependent genes. By contrast, 
OPDAylation describes the covalent binding of OPDA to pro-
tein thiols (Maynard et al., 2021). Such thiols are targets of mul-
tiple post-translational modifications as part of what is called 
the thiol switch, and OPDAylation could be another player in 
this regulatory system. Recently, Knieper et al. (2022) analysed 
the in vitro interaction of several redox transmitters with OPDA 
under physiological OPDA concentrations. They obtained ev-
idence for OPDAylation of both the cytosolic TRX-h3 and 
TRX-h5 and the chloroplastic TRX-f1 and TRX-m4. The in 
vivo relevance of this finding needs to be further analysed, but 
overall these works substantiate the signaling role of OPDA 
and suggest a close connection to redox-mediated processes.

Extracellular ATP (eATP) acts as a ‘damage-associated mo-
lecular pattern’ signal and is associated with a number of sec-
ondary messengers. Wounding, which induces ATP release, also 
induces expression of jasmonate-dependent genes. Tripathi 
et al. (2018) recently demonstrated that eATP activates these 
genes not via jasmonate biosynthesis but by direct enhance-
ment of COI1–JAZ1 interaction followed by JAZ1 protein 
degradation. Moreover, this effect likely involves the secondary 
messengers Ca2+, NO, and ROS induced by eATP (Tripathi 
et al., 2018).

Proteomic studies suggested that the effect of MeJA applica-
tion on root growth includes a reduction of proteins involved 
in ATP synthesis, thus affecting mitochondrial energy metab-
olism (Cho et al., 2007; Ruiz-May et al., 2011). Early on it was 
suggested that jasmonate signaling induces H2O2 production 
upon herbivory (Orozco-Cárdenas et al., 2001), and similarly 
jasmonate-induced ROS production in mitochondria was sug-
gested to play a role in defense-related programmed cell death 
(Zhang and Xing, 2008). Also, MeJA-induced inhibition of 
root growth at least in hairy-root cultures is believed to involve 
cell death. Loyola-Vargas et al. (2012) found that treatment of 

hairy roots with MeJA enhances mitochondrial H2O2 accu-
mulation together with an increased activity of corresponding 
anti-oxidant enzymes, and concluded that jasmonate signaling 
induced the oxidative burst that subsequently alters the mito-
chondrial proteome and mitochondrial function.

Mechanisms not directly related to jasmonate-mediated 
transcriptional regulation also seem to be involved in the in-
itiation of jasmonate biosynthesis. Recently, Kimberlin et al. 
(2022) suggested that post-transcriptional processes, such as 
protein stability, play a role in the regulation of lipases that in-
itiate the fast release of α-linolenic acid from chloroplast lipids 
upon wounding. Indeed, they suggest that positive feedforward 
mechanisms, i.e. jasmonate-mediated transcriptional activation 
of jasmonate biosynthesis pathway enzymes, have a fine-tuning 
role and exclude not only the lipases but also JAR1. However, 
these non-transcriptional regulations involved in regulating 
OPDA formation are not well understood.

Ethylene

Ethylene (IUPAC name: ethene) plays a central regulatory role 
throughout the whole plant life cycle from germination to in-
tegration of environmental changes to fruit ripening. Given 
its importance, the role of ethylene in plant growth, its bi-
osynthesis pathways, and its downstream signaling pathways 
have been under constant investigation since its discovery as 
a plant growth factor by Neljubow (1901). That research led 
to a wealth of knowledge in plant ethylene signaling, which 
is reviewed in recent publications (Bakshi et al., 2015; Binder, 
2020; Pattyn et al., 2021). Currently, ethylene is increasingly 
recognized also as an important mediator of stress signaling, 
with connections to plastid as well as mitochondrial signaling.

Direct signaling connections

Ethylene biosynthesis is usually described as a linear two step 
reaction in the cytosol where aminocyclopropane 1-car-
boxylate synthase (ACS) converts S-adenosyl-l-methionine 
(SAM) to 1-aminocyclopropane 1-carboxylate (ACC) and 
5ʹ-methylthioadenosine (MTA) (Adams and Yang, 1979; Boller 
et al., 1979). Subsequently, 1-aminocyclopropane 1-carboxylate 
oxidase (ACO) converts ACC to ethylene, H2O, HCN, and 
CO2 in the presence of oxygen (Hamilton et al., 1991; Ververi-
dis and John, 1991; Bannenberg et al., 2009) (Fig. 5). How-
ever, SAM homeostasis is directly linked to the plastid via the 
methionine synthesis pathway. Also, a putative plastidial SAM 
importer was found to bind Ca2+, indicating stress-adaptive 
regulation (Stael et al., 2011). Plastidial de novo synthesis of me-
thionine requires the formation of cystathionine from cysteine 
and phospho-homoserine by catalysis through cystathionine 
γ-synthase (CGS). Cystathionine β-lyase (CBL) then cataly-
ses the conversion of cystathionine to homocysteine. Finally, 
methionine synthase (MS) methylates homocysteine, using 
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5-methyltetrahydrofolate as a methyl donor, into methionine 
(Hesse and Hoefgen, 2003), which is then exported to the 
cytosol. While there are three MS isoenzymes in Arabidopsis 
with AtMS3 localized in the plastid and AtMS1 and 2 localized 
in the cytosol (Hesse and Hoefgen, 2003; Ravanel et al., 2004), 
CGS and CBL are exclusively localized in the plastid and were 
shown to be embedded in a complex regulatory network with 
other plastid localized biochemical pathways (Ravanel et al., 
1998; Watanabe et al., 2021).

A wealth of data support the notion that SAM levels in-
fluence ethylene production in the cytoplasm, and the cyto-
plasmic Yang cycle seems to have a primary impact on the 
SAM levels and subsequent ethylene biosynthesis. Yang cycle-
mediated MTA recycling is especially important for plants nat-
urally producing a high ethylene level, like ripening tomato and 
rice, which is demonstrated by Yang cycle gene up-regulation. 
In Arabidopsis, Yang cycle genes are not ethylene dependent; 

however, presumably during increased demand for ET, elevated 
ethylene biosynthesis induces MTA recycling, in order not to 
inhibit ACS activity (for a recent review see Pattyn et al., 2021). 
Despite the importance of cytoplasmic SAM and ACC levels 
for ethylene signaling, there are data that suggest at a direct role 
of the plastid in ethylene precursor production under certain 
conditions. In tomato, Barry et al. (2012) described a lutescent 
2 loss of function mutant that displays slower chloroplast de-
velopment and altered fruit ripening compared with wild type. 
Lutescent 2 was found to be the ortholog of the Arabidopsis 
EGY1 gene, which encodes a plastid thylakoid membrane-
localized zinc-dependent M50 type metalloprotease (Chen 
et al., 2005). Similar to leaf tissue, also in tomato fruits the 
plastid development was impaired in the lutescent 2 mutant in-
dicated by reduced photosynthetic rates or by whitish fruits 
instead of green ones at the onset of fruit formation. Ethylene 
levels in the fruits of lutescent 2 plants were reduced about 30% 

Fig. 5. The role of organelles in ethylene signaling. The chloroplast-localized enzyme cystathionine γ-synthase (CGS) catalyses the formation of 
cystathionine (CysT) from cysteine (Cys) and O-phosphohomoserine (OPH). Cystathionine is further transformed into homocysteine (Hcy) by cystathionine 
β-lyase (CBL). In the next step, the chloroplast-localized isoform of the methionine synthase 3 (MS3) forms methionine (Met), which in turn is 
transported out of the chloroplasts by SAMC1. In the cytoplasm Met is directly transformed into S-adenosylmethionine (SAM) by S-adenosylmethionine 
synthase (SAMS). SAM as main methyl donor is transported also back to the chloroplast by SAMC1. In the cytoplasm, SAM is converted into 
1-aminocyclopropane 1-carboxylate (ACC) by the rate limiting ACC synthases (ACSs). After phosphorylation by calcium-dependent kinases (CDPK) 
and/or MAP kinases (MPK), ACSs are stabilized and therefore activated. Dephosphorylation of ACSs by different protein phosphatases (PP2A, PP2C) 
destabilizes the protein and leads to an immediate loss of ACS activity. The by-product of the reaction conducted by ACS, 5ʹ-methylthioadenosine (MTA), 
enters the Yang cycle to be detoxified and recycled into Met. ACC oxidase (ACO) catalyses the final step from ACC to ethylene. The mitonuclear protein 
imbalance leads to increase of mitochondrial reactive oxygen species (ROS) level. As a consequence, the mitochondrial unfolded protein response 
(UPRmt) is initiated. The elevated ROS level activates MPK6, which in turn promotes ET production by two ways: by phosphorylation of ACS6 and 
increase in transcription of the ACS6 gene. Additionally, nuclear ETHYLENE INSENSITIVE 3 (EIN3), a major ethylene responsive transcription factor, also 
plays a part in anterograde signaling (dashed line) in the chloroplast. After dark to light transition, PHYB promotes EIN3 and PIF3 degradation leading to 
LHCA and LHCB expression and chloroplast development.
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 compared with the wild type, and application of exogenous eth-
ylene was enough to alleviate the delayed onset of the ripening 
phenotype of lutescent 2 fruits (Barry et al., 2012). Interestingly, 
characterization of the OrrDs mutant, a dominant transposon-
tagged tomato mutant deficient in the plastidial NADH de-
hydrogenase (Ndh) subunit NDH-M, revealed a delay in the 
onset of the fruit ripening phenotype as well as ~50% reduced 
ethylene levels emitted from fruits compared with the wild 
type (Nashilevitz et al., 2010). Based on the observation that 
precursors of methionine biosynthesis are reduced by ~30% in 
the OrrDS mutants, the authors concluded that the reduced eth-
ylene levels are likely the result of reduced plastid-dependent 
ethylene production (Nashilevitz et al., 2010). In summary, the 
data on plastid development-retarded mutants such as egy1 in 
Arabidopsis (Guo et al., 2008), lutescent 2 (Barry et al., 2012), 
and OrrDs (Nashilevitz et al., 2010) show that in none of these 
mutants does the triple response for etiolated seedlings seem 
to be altered, and ethylene-caused phenotypes can be rescued 
by application of exogenous ethylene. This indicates that eth-
ylene signaling seems to be functional and suggests that the 
ethylene-dependent phenotypes in these mutants are caused 
by reduced ethylene biosynthesis. A third indication for a role 
of the plastid in ethylene biosynthesis is that CGS transcript 
levels were found to be positively correlated with ethylene lev-
els in ripening tomato fruits in order to sustain a high level of 
methionine biosynthesis (Katz et al., 2006). However, in order 
to determine that indeed plastid-derived metabolites are the 
limiting factor in the ethylene biosynthesis pathway, the pos-
sibility of indirect regulation of the core ethylene biosynthesis 
pathway ACCs and ACOs has to be tested in these mutants. 
Therefore, given current state of knowledge, the direct signal-
ing connection originating from the metabolic capacity of the 
chloroplast and ethylene signaling remains hypothetical.

Indirect signaling connections

In contrast to the direct role of the chloroplast in ethylene 
signaling in a retrograde fashion, signaling via the ethylene 
responsive nuclear transcription factor ETHYLENE IN-
SENSITIVE 3 (EIN3) has an anterograde function in chlo-
roplast biogenesis itself. Liu et al. (2017) demonstrated that 
EIN3 interacts with PHYTOCHROME INTERACTING 
FACTOR3 (PIF3), a darkness-stabilized bHLH transcrip-
tion factor, to repress the expression of most light harvesting 
complex (LHC) genes in the dark, thereby repressing expres-
sion of these genes and blocking the transition from etio-
plasts to chloroplasts. Upon exposure to light, phytochrome 
B-dependent degradation of EIN3 and PIF3 leads to LHCA 
and LHCB transcription, promoting chloroplast development 
(Liu et al., 2017).

Plastids and mitochondria are also connected indirectly to 
ethylene signaling via second messenger-related mechanisms. 
The best described example for this is probably the mito-
chondrial unfolded protein response. In an elegant study using 

mutants and chemical treatments leading to impaired mito-
chondrial translation, Wang and Auwerx (2017) discovered that 
the mitochondrial unfolded protein response (UPRmt) leads 
to a transient ROS burst within the first 60 min of triggered 
stress in Arabidopsis. That correlated with an increased acti-
vating phosphorylation of MITOGEN ACTIVATED PRO-
TEIN KINASE 6 (MAPK6) in the same time frame. MAPK6 
activity led to an increase in transcription of ACS6, thereby 
activating the ethylene response leading to a part of the tran-
scriptional changes observed for the initially elicited UPRmt, 
ultimately restoring mitochondrial protein homeostasis (Wang 
and Auwerx, 2017).

With respect to plastid protein translational stress caused 
by lincomycin treatment Gommers et al. (2021) report a 
substantial overlap in gene expression between ACC-treated 
plants and lincomycin-treated plants as well as in their re-
spective phenotypes of cotyledon opening and hypocotyl 
length. Somewhat surprisingly, neither an increase in ethylene 
nor prolonged stabilization of EIN3 was reported after 3 d 
of lincomycin treatment, prompting the authors to hypoth-
esize an ethylene-independent response for activating clas-
sical ethylene-dependent genes downstream of EIN3/EIL1. 
Genetic analysis excluded GUN1-dependent retrograde sig-
naling for activation of the observed gene expression and cot-
yledon opening patterns. However, at this point it should be 
mentioned that Gommers et al. (2021) analysed ethylene and 
EIN3 levels on constitutively lincomycin-treated plants and 
the data presented in Wang and Auwerx (2017) suggest a short 
transient ethylene signal rather than a prolonged constitu-
tive one. Therefore, it still cannot be excluded that the actual 
ethylene signal might arise earlier in the lincomycin-treated 
plants.

An interesting link between plastid-derived ROS and the 
ethylene response was observed in potato plants expressing 
cyanobacterial plastid-targeted flavodoxin (fld) (Arce et al., 
2022). In their meta-analysis of transcriptional profiles from 
fld-expressing Solanaceae, the authors detected common cis-
elements in the promoter regions of genes involved in eth-
ylene metabolism as a main target group of down-regulated 
transcripts due to fld expression and presumably reduced ROS 
levels in these plants (Arce et al., 2022). Unfortunately, the 
study lacked resolution to draw further conclusions for plastid-
derived ROS and ethylene signaling, but in our opinion it is 
an additional reason to further investigate the relation between 
these.

Parallel signaling connection

This third category of plastid/mitochondria/ethylene sig-
naling is intriguing because it requires both a functional eth-
ylene response and functional organellar signaling but both 
of them are seemingly independent of each other in the 
first place. The Arabidopsis ETHYLENE-DEPENDENT 
GRAVOTROPISM-DEFICIENT and YELLOW-GREEN1 
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(EGY1) gene encodes a thylakoid membrane-localized pro-
tease involved in chloroplast development in leaf mesophyll 
cells that was isolated as an ethylene-dependent gravitropism 
mutant (Chen et al., 2005). Surprisingly it turned out that 
the egy1 mutant displayed a wild type like triple response 
indicating that the ethylene signaling cascade is intact in 
these plants (Guo et al., 2008). Through careful observation 
the authors noticed that egy1 shows a severe delay in chlo-
roplast development in general. With respect to hypocotyl 
gravitropism the authors observed that the number, size, and 
starch levels of endodermal plastids were reduced compared 
with the wild type. Through application of exogenous su-
crose, starch fill levels of endodermal plastids were restored 
and in the presence of ethylene also the gravitropic response 
of the egy1 mutant (Guo et al., 2008). From these data we can 
conclude that in the case of ethylene-dependent hypocotyl 
gravitropism, ethylene signaling is necessary to keep cells in 
a state that allows them to bend, whereas the endodermal 
plastid allows the plant to sense the gravity vector in these 
hypocotyl cells.

Salicylic acid

Of all the hormones addressed, SA is the least character-
ized. At present, indirect or complex mechanisms are still 
under investigation. Accumulation of SA has several layers of 
effects, triggering changes in expression of multiple genes, 
including nucleus-encoded proteins that are translocated to 
mitochondria and chloroplasts as well as through direct in-
teraction with several proteins and biphasic accumulation of 
ROS in different subcellular compartments (Lu and Tsuda, 
2020).

Direct connection of organellar functions in salicylic 
acid synthesis

It is known that plants possess both an isochorismate synthase 
(ICS) and phenylalanine ammonia-lyase (PAL) pathway to 
synthesize SA, both starting from chorismate precursor (Zhang 
and Li, 2019) (Fig. 6). The ICS pathway is the primary route for 
SA production in Arabidopsis. However, the contribution of 
each pathway to the biosynthesis differs between plant species 
(Lefevere et al., 2020). In the well-studied ICS pathway, isocho-
rismate is produced from chorismate in chloroplasts and trans-
ported to the cytosol, where SA is synthesized (Rekhter et al., 
2019). Compartmentalization of the proteins responsible for 
the synthesis and transport control unidirectional forward flux 
to protect the pathway against evolutionary forces and path-
ogen perturbations (Rekhter et al., 2019). On the other hand, it 
is unclear whether the steps of the PAL pathway leading to the 
SA precursor phenylalanine take place in the chloroplast, cy-
tosol, or both simultaneously (Lefevere et al., 2020). However, 
in the next steps of the PAL pathway, cytosol and peroxisomes 

are involved in SA synthesis (Murphy et al., 2020). Once syn-
thesized, SA may undergo a number of chemical modifications 
including glucosylation, methylation, sulfonation, hydroxyla-
tion, and amino acid conjugation (D’Maris Amick et al., 2011). 
Some modifications inactivate SA in its regulatory roles to 
fine-tune SA activity, whereas others serve as temporary pools 
for its storage, such as SA glucoside, a vacuole-localized SA re-
serve (Ding and Ding, 2020).

Direct signaling connections: multiple regulatory 
feedback loops linking chloroplasts and SA signaling

SA signaling is known to be tightly interconnected with ROS 
signaling, which is also involved in several stress responses in-
cluding pathogen attack (Bleau and Spoel, 2021). The tran-
sient phase of ROS accumulation occurs within minutes after 
infection and is mostly apoplastic and tightly linked to the 
activities of RBOHs, plasma membrane NADPH oxidases 
(Kadota et al., 2014; Li et al., 2014). In potato, RBOHD and 
SA regulate the immune response through a complex reg-
ulatory feedback loop, as RBOHD is required for the spa-
tial accumulation of SA, and conversely, RBOHD is under 
the transcriptional regulation of SA (Lukan et al., 2020). 
RBOHD-dependent ROS production is also regulated by SA 
in Arabidopsis (Liu and He, 2016). The second, more sustained 
phase of ROS accumulation occurs in different compartments, 
including the apoplast, chloroplasts, mitochondria, and peroxi-
somes (Shapiguzov et al., 2012), and is associated with the 
establishment of defense responses and signaling for and/or 
execution of hypersensitive response cell death in incompat-
ible interactions (Lu and Yao, 2018). Whether SA plays a role 
in this signaling has not been fully deciphered yet. Assump-
tions that SA signaling is not involved in cell death execution 
(Ochsenbein et al., 2006; Yao and Greenberg, 2006; Zurbrig-
gen et al., 2009) were later questioned by Straus et al. (2010). 
They suggested that chloroplastic ROS acts as a flexible spati-
otemporal integration point leading to opposite SA signaling 
reactions in infected and surrounding tissue to control the 
propagation of cell death. Interestingly, in potato hypersensi-
tive response, ROS generated in the chloroplasts around the 
cell death zone are involved in two different SA-dependent 
and SA-independent plant response processes, which are spa-
tially regulated. Strongly oxidized disordered chloroplasts in 
the cells on the edge of the cell death zone play a role in 
SA-independent hypersensitive response programmed cell 
death signaling, while the cells with moderately oxidized 
chloroplasts farther away from the cell death zone evidence 
SA-dependent signal transmission to neighboring tissue at the 
transcriptional level (Lukan et al., 2020). Chloroplastic ROS is 
involved in the up-regulation of genes upstream of SA accu-
mulation through retrograde signaling, such as ENHANCED 
DISEASE SUSCEPTIBILITY1 (EDS1) (Ochsenbein et al., 
2006) and ENHANCED DISEASE SUSCEPTIBILITY5 
(EDS5) (Nomura et al., 2012).
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Indirect mechanisms: SA binds to proteins from 
different subcellular compartments

Recently, multiple SA-binding proteins (SABPs) with dif-
ferent structures, localizations, and functions have been iden-
tified (Pokotylo et al., 2019). However, a direct function in 
plant physiology is currently not known for them all. Slay-
maker et al. (2002) identified SALICYLIC ACID-BINDING 
PROTEIN 3 (SABP3) as a chloroplast β-carbonic anhydrase, 

which exhibits antioxidant activity in the soluble fraction of 
purified tobacco leaf chloroplasts. They proposed it has role 
in plant defense, perhaps through antioxidant activity (Slay-
maker et al., 2002; DiMario et al., 2017). Treatment with SA 
altered the localization of the protein, which entered the cy-
toplasm, where interaction with SA and NONEXPRESSOR 
OF PATHOGENESIS-RELATED GENES 1 (NPR1) occurs 
(Medina-Puche et al., 2017). Another protein with antioxida-
tive activity in plant immunity and identified as a SABP is 

Fig. 6. The role of organelles in salicylic acid signaling. Overview of salicylic acid (SA) synthesis via the isochorismate synthase (ICS) and phenylalanine 
ammonia-lyase (PAL) pathways starting from chorismate. ICS converts chorismate into isochorismate (IC) in plastids. EDS5 exports IC from the plastid 
into the cytosol where PBS3 converts it into isochorismoyl-9-glutamate and further into SA by EPS1. The PAL pathway converts chorismate into 
prephenate by CM1 or CM2. Prephenate is converted into arogenate by PPA-AT and further to tyrosine by ADH or phenylalanine by ADT. CM1, ADH, 
and ADT are negatively regulated by their corresponding amino acid products. Tyrosine and phenylalanine are transported into the cytosol where PPY-AT 
converts them to phenylalanine. Phenylalanine produced from both plastidal and cytosolic pathways is further converted into trans-cinnamic acid by PAL 
and then into SA via ortho-coumaric intermediate or benzaldehyde and benzoic acid. SA can be converted into functional or non-functional metabolites 
such as SA-2-sulfonate, SA-Asp and MeSA, or can be stored in the vacuole as SAG, SGE, 2,3-DHBX, 2,3-DHBG, 2,5-DHBX and 2,5-DHBG. Higher 
SA levels induce monomerization of NPR1, translocation into the nucleus and NPR1-dependent gene expression through direct interactions with 
TGA transcription factors. The genes explicitly mentioned in the text are highlighted (boxed with bold line). AAO, aldehyde oxidase 4; ADH, arogenate 
dehydrogenase; ADT, arogenate dehydratase; AIM1, abnormal inflorescence meristem1; Asp, aspartic acid; BA2H, benzoic acid 2-hydroxylase; CM, 
chorismate mutase 1; DHBA, dihydroxy-benzaic acid; DHBG, dihydroxybenzoic acid glucoside; DHBX, dihydroxybenzoic acid xyloside; DLO, DMR6-
like oxygenase; DMR6, SA-5 hydrolase; EDS5, enhanced disease susceptibility 5; EPS1, enhanced Pseudomonas susceptibility 1; ICS, isochorismate 
synthase; MES, methylesterases; NPR1, Nonexpresser of PR gene 1; PAL, phenylalanine ammonia-lyase; PBS3, avrPphB susceptible3; PDT, prephenate 
dehydratase; PPA-AT, plant prephenate aminotransferases; PPY-AT, phenylpyruvate aminotransferase; SA, salicylic acid; SAG, SA 2-O-β-d-glucoside; 
SGE, salicylate glucose ester; UGT89A2, uridine diphosphate (UDP)-glucosyltransferase.



Plant organelles and phytohormones | 7177

glutathione S-transferase (GSTF) (Tian et al., 2012) with roles 
in the metabolism of antimicrobial compounds and detoxifi-
cation of mycotoxins (Gullner et al., 2018). Dixon et al. (2009) 
characterized AtGSTF2 and AtGSTF8 as chloroplastic pro-
teins and AtGSTF10 as vacuolar. SA binding inhibits GSTF 
activity, which modulates glutathione homeostasis and thus 
the cell redox state (Nazar et al., 2017). Another redox-related 
protein that binds SA is chloroplastic TRX-m1 (Manohar 
et al., 2015). The effect of SA binding on TRX-m1 activity 
has not yet been established; however, the activity of cytosolic 
TRX-h3 and TRX-h5 is required for NPR1 monomeriza-
tion (Tada et al., 2008). Other chloroplastic proteins that bind 
SA are glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
isoforms AtGAPA-1 and AtGAPA-2, which play a role in the 
Calvin cycle (Pokotylo et al., 2019). In humans, SA binding 
suppresses GAPDH translocation to the nucleus, which plays 
a role in the regulation of replication of some viruses (Choi 
et al., 2015), while the role of this interaction in plants has 
not yet been deciphered. Another interaction with a potential 
role in plant antivirus defenses is suppression of mitochondrial 
α-ketoglutarate dehydrogenase (KGDE2) by SA in tomato, 
which occurs through direct binding (Liao et al., 2015). In 
contrast to viral resistance, the results of a recent study in to-
mato showed that KGDE2 plays a negative role in plant basal 
defense against Pseudomonas syringae in association with the SA 
defense pathway (Ma et al., 2020). Whether this occurs through 
direct binding needs to be elucidated. The presence of SABPs 
exhibiting a wide range of affinities for SA, combined with the 
varying SA levels found in specific subcellular compartments, 
in different tissues, at different developmental stages, or during 
responses to environmental cues, provides tremendous flexi-
bility and multiple mechanisms through which SA effects can 
be utilized in plants.

Outlook

From the data published up to now, it can be concluded that 
phytohormone and organellar signaling works in concert at 
various levels. However, the studies discussed in this review also 
make clear that the connections between organellar and phy-
tohormone signaling depend on complex factors such as tissue 
type, developmental status, and environmental stress conditions 
(Aerts et al., 2021; Cackett et al., 2022). A fact that further makes 
comparisons between studies difficult is that often, although 
arising from the same signaling pathway, different components 
are monitored. Subsequently, from those singular datasets con-
clusions for the whole pathway are implied. However, with 
the wealth of knowledge we currently have on processes like 
phytohormone biosynthesis, perception, and signaling as well 
as their interconnections to other signaling pathways at various 
points and levels (Ludwików et al., 2014; Blázquez et al., 2020; 
Binder, 2020; Depaepe et al., 2021; Müller, 2021; Müller and 
Munné-Bosch, 2021; Cackett et al., 2022), it becomes clear that 

taking single elements of these pathways does not generally 
permit predictions for the whole interconnected signaling pro-
cess. These facts are increasingly being taken into consideration 
in current research and they will provide a more holistic frame-
work for how organelles such as mitochondria and plastids 
are connected to the core phytohormone responses. Linking 
hormonal signaling to intracellular organellar communication 
brings new perspectives to and better understanding of plant 
signaling networks. In particular, it shows how developmental 
processes and responses to stress can be modulated through 
the functional state of organelles. Taking this perspective into 
account, future experiments can be designed to capture direct 
and indirect connections at the metabolic, transcriptional, and 
physiological level. In a long-term perspective, this knowledge 
will guide future functional studies and lead to improved crop 
breeding strategies for stress resilience.
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