Table 4.
Models | AUC (95% CI) | Accuracy | Precision | F1-score | Recall-rate | Specificity |
---|---|---|---|---|---|---|
Training set | ||||||
XGBoost | 0.791 (0.776–0.806) | 0.739 | 0.690 | 0.663 | 0.638 | 0.894 |
SVM | 0.733 (0.707–0.750) | 0.732 | 0.696 | 0.640 | 0.593 | 0.944 |
KNN | 0.719 (0.702–0.737) | 0.738 | 0.727 | 0.653 | 0.592 | 0.961 |
LR | 0.747 (0.733–0.763) | 0.728 | 0.671 | 0.646 | 0.623 | 0.888 |
RF | 0.772 (0.757–0.787) | 0.734 | 0.713 | 0.645 | 0.589 | 0.956 |
LightGBM | 0.772 (0.757–0.787) | 0.736 | 0.691 | 0.653 | 0.619 | 0.916 |
| ||||||
Test set | ||||||
XGBoost | 0.829 (0.818–0.843) | 0.770 | 0.738 | 0.706 | 0.677 | 0.912 |
SVM | 0.791 (0.778–0.805) | 0.755 | 0.755 | 0.681 | 0.620 | 0.960 |
KNN | 0.634 (0.618–0.653) | 0.715 | 0.666 | 0.607 | 0.558 | 0.955 |
LR | 0.795 (0.780–0.808) | 0.748 | 0.706 | 0.675 | 0.647 | 0.905 |
RF | 0.821 (0.808–0.833) | 0.740 | 0.745 | 0.659 | 0.591 | 0.969 |
LightGBM | 0.826 (0.813–0.839) | 0.759 | 0.729 | 0.687 | 0.650 | 0.925 |
Abbreviations: XGBoost, extreme gradient boosting; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; RF, random forest; LightGBM, light gradient boosting machine; LNM, lymph node metastasis.