Skip to main content
. 2022 Nov 19;28(1):7. doi: 10.1007/s10664-022-10229-z

Table 10.

Multi-label classification: performance metrics of RF classifier

multi-label classification:
best performing RF classifier
labels precision recall F1-score support
helper_functions 0.91 0.82 0.86 286
load_data 0.88 0.66 0.75 191
data_preprocessing 0.69 0.75 0.72 437
data_exploration 0.80 0.79 0.79 801
modelling 0.78 0.58 0.67 361
evaluation 0.74 0.30 0.43 171
prediction 0.77 0.33 0.47 90
result_visualization 0.43 0.16 0.24 97
save_results 0.84 0.53 0.65 30
comment_only 1.00 0.86 0.93 37
micro avg 0.78 0.67 0.72 2501
macro avg 0.78 0.58 0.65 2501
weighted avg 0.78 0.67 0.71 2501
samples avg 0.74 0.71 0.71 2501