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Abstract

Background.—Population-based short-term air pollution health studies often have limited 

spatiotemporally representative exposure data, leading to concerns of exposure measurement error.

Objective.—To compare the use of monitoring and modeled exposure metrics in time-series 

analyses of air pollution and cardiorespiratory emergency department (ED) visits.

Methods.—We obtained daily counts of ED visits for Atlanta, GA during 2009–2013. We 

leveraged daily ZIP code level concentration estimates for eight pollutants from nine exposure 

metrics. Metrics included central monitor (CM), monitor-based (inverse distance weighting, 

kriging), model-based [community multiscale air quality (CMAQ), land use regression (LUR)], 

and satellite-based measures. We used Poisson models to estimate air pollution health associations 

using the different exposure metrics. The approach involved: (1) assessing CM-based associations, 

(2) determining if non-CM metrics can reproduce CM-based associations, and (3) identifying 

potential value added of incorporating full spatiotemporal information provided by non-CM 

metrics.

Results.—Using CM exposures, we observed associations between cardiovascular ED visits 

and carbon monoxide, nitrogen dioxide, fine particulate matter, elemental and organic carbon, 
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and between respiratory ED visits and ozone. Non-CM metrics were largely able to reproduce 

CM-based associations, although some unexpected results using CMAQ- and LUR-based metrics 

reduced confidence in these data for some spatiotemporally-variable pollutants. Associations with 

nitrogen dioxide and sulfur dioxide were only detected, or were stronger, when using metrics that 

incorporate all available monitoring data (i.e., inverse distance weighting and kriging).

Significance.—The use of routinely-collected ambient monitoring data for exposure assignment 

in time-series studies of large metropolitan areas is a sound approach, particularly when data from 

multiple monitors are available. More sophisticated approaches derived from CMAQ, LUR, or 

satellites may add value when monitoring data are inadequate and if paired with thorough data 

characterization. These results are useful for interpretation of existing literature and for improving 

exposure assessment in future studies.
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INTRODUCTION

Substantial evidence supports short-term associations of ambient air pollution and health, 

including cardiovascular and respiratory illnesses (1, 2). Contributing to this body 

of evidence are population-based studies that relate day-to-day changes in ambient 

concentrations to indicators of population health for a community, such as daily counts of 

deaths or hospitalizations. These studies have had considerable weight in setting of National 

Ambient Air Quality Standards (NAAQS) in the US (3). Ideally, communities represented 

in these studies are reflective of all populations of concern; this includes populations of 

different geographic extents ranging from those living in specific neighborhoods within a 

city, to entire metropolitan statistical areas, and rural regions.

A common challenge in short-term health effect studies is the limited availability of spatially 

representative air pollution exposure data for the study population. The most commonly 

available data are compliance monitoring data routinely-collected by state and federal 

agencies. Monitoring data provide highly accurate time series of pollutant concentrations at 

the monitoring site, and thus make these data highly relevant for temporal studies. However, 

these measurements are inherently limited in that they may not represent concentrations 

across space. Their ability to reflect population-level exposure for a given study area 

depends on the density (numbers and placement) of the monitors and pollutant variability 

over space. For pollutants that vary little over space [e.g., ozone (O3), a secondary 

pollutant, or fine particulate matter (PM2.5), which has predominant contributions from 

secondary particle components, such as sulfate and nitrate] (4), limited monitors may 

represent concentrations across a large study area reasonably well. For pollutants that 

vary substantially over space such as primary pollutants emitted directly from mobile 

or stationary sources [e.g., nitrogen dioxide (NO2) or sulfur dioxide (SO2)] (4), limited 

measurement locations are unlikely to accurately represent concentrations across a large 

study area over which health outcomes are aggregated.
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For studies relying on air monitoring alone, the exposure and health outcome data are 

often misaligned in space, leading to concerns of exposure measurement error (5). Spatial 

misalignment can contribute to exposure measurement error that biases observed health 

effect associations to different degrees for different pollutants (5–7). Simulation studies in 

the Atlanta metropolitan area have estimated that error due to uncaptured pollutant spatial 

variability leads to 43–68% reductions in observed health effect estimates for primary 

pollutants (e.g., NO2, SO2) compared to only 16% for secondary pollutants (e.g., O3) when 

assigning exposures based on central monitors (6). Exposure measurement error due to 

spatial misalignment is likely to be non-constant across days; for example, the higher spatial 

contrast in traffic pollutant concentrations when traffic pollution is high will result in greater 

measurement error compared to when traffic pollution is low.

Approaches to handle such measurement error include: 1) restriction of study areas to 

specific distances from monitors (8–10); 2) application of statistical methods to estimate and 

adjust health effects estimates for spatial misalignment error (5, 11); and 3) application of 

modeled daily air pollution estimates that provide greater study area coverage (12–19). The 

latter presents opportunities for directly limiting exposure measurement error in population-

based time-series studies with geographically expansive study areas. However, the impact 

on epidemiologic findings of different types of exposure metrics across different patient 

populations with varying spatiotemporal profiles is understudied. Specifically, few studies to 

our knowledge have compared and interpreted the use of different types of exposure metrics 

in time-series analyses of multiple pollutants and outcomes (15, 20, 21).

To address this gap, we leveraged a long-standing study of air pollution and emergency 

department (ED) visits in Atlanta, Georgia (22–27). Our study area includes the 20-county 

Atlanta metropolitan statistical area (1999 definition), comprising 15,790 square kilometers 

and a population of 5,110,183 persons in 2010 (28). While we do not include rural counties 

outside of the MSA, the Atlanta MSA includes territories and populations that may be 

rural. County population density ranges from relatively high (e.g., 2,586 persons/sq. mile 

in DeKalb County) to relatively low (126 persons/sq. mile in Pickens County). While the 

majority of the population (66%) resides in the five most densely populated central counties 

of the city (Clayton, Cobb, DeKalb, Fulton, Gwinnett), a sizeable percent of the population 

(44%) resides in outer counties.

Building on previous exposure modeling efforts (29, 30), Yu and colleagues developed a set 

of nine daily exposure metrics, using a range of monitoring- and model-based approaches, 

for eight pollutants for the 2009–2013 period for our study area (31). Here, we applied these 

outputs to epidemiologic analyses of cardiorespiratory ED visits, and compared the resulting 

health effect estimates across exposure metrics. Our assessment involved a 3-step approach: 

(1) estimating associations using concentrations from a central monitor (CM), a common 

method for characterizing daily air pollution in time-series studies (32); (2) determining 

if non-CM exposure metrics can reproduce CM-based associations; and (3) identifying 

potential value added of incorporating the full spatiotemporal information provided by 

non-CM exposure metrics.
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MATERIALS AND METHODS

Emergency Department Visit Data

We obtained daily counts of cardiorespiratory ED visits for patients living in 192 residential 

ZIP codes located wholly or partially within the 20-county Atlanta area for the period 

January 1, 2009 to December 15, 2013 (n=1800 days). Data were aggregated from 

individual-level hospital billing records obtained through the Georgia Hospital Association 

(26, 33). During the 2009–2013 time period, 38 of 39 hospitals were represented, capturing 

over 95% of all ED visits in the study area. We identified outcomes based on patient 

billing records with primary International Classification of Diseases, 9th Revision (ICD-9) 

diagnosis codes for: cardiovascular disease (CVD, ICD-9 codes: 410–414, 427, 428, 433–

437, 440, 443–445, 447) and respiratory disease (RESP, ICD-9 codes 460–519).

Air Pollution Exposure Metrics

Air pollution exposure metric estimation approaches are provided in detail by 

Dharmalingam and colleagues (31). Brief descriptions of the nine metrics and how we 

applied them for this analysis, are provided below. Daily pollutant measures from each 

metric included 1-hour maximum concentrations of carbon monoxide (CO), NO2, and SO2; 

8-hour average maximum O3; and 24-hour average PM2.5, PM2.5 sulfate (SO4), PM2.5 

elemental carbon (EC), and PM2.5 organic carbon (OC).

1. Central Monitor (CM).—The Jefferson St. (JST) site, part of the SouthEastern 

Aerosol Research and Characterization (SEARCH) network, was selected as the central 

monitoring site. The JST site is located in a central urbanized area of Atlanta approximately 

2.3 km away from the nearest major roadway and provided daily concentrations for all 

pollutants of interest.

2. Site Average (SA).—The SA metric averaged daily concentration data from all 

monitors located inside the 20-county Atlanta region, obtained from the U.S. Environmental 

Protection Agency (USEPA) and the Southeastern Aerosol Research and Characterization 

(SEARCH) study (34, 35). Data were available from 19 monitors, with the number of 

monitors per pollutant varying: CO=4, NO2=5, SO2=5, O3=10, PM2.5=14, SO4=3, EC=3, 

and OC=3 [Supplemental Table S1; see also Dharmalingam et al. (2022) Figure S2 (31)].

3. Inverse Distance Weighting (IDW).—IDW is a spatial interpolation method in 

which pollutant concentrations are inferred at unknown locations. In this study, daily 

pollutant concentration data were interpolated to the centroids of each of the 192 Atlanta 

study area ZIP codes using observations collected from all USEPA and SEARCH monitors 

located within the 200 km radius of the study area. Data were available from 141 monitors, 

with the number of monitors per pollutant varying: CO=12, NO2=12, SO2=23, O3=76, 

PM2.5=88, SO4=27, EC=27, and OC=24 [see Dharmalingam et al. (2022) Figure S2 (31)].

4. Kriging (KRIG).—Kriging is also a spatial interpolation method, which unlike IDW, 

uses optimal weights derived from observed spatial dependence. For each pollutant, 

Kriging prediction was based on a parametric variogram, estimated using binned empirical 

Ebelt et al. Page 4

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



semivariance. The fitted variogram model for each pollutant was then used to estimate daily 

pollutant concentrations at ZIP code centroids.

5. Community Multiscale Air Quality Model (CMAQ).—CMAQ is a chemical 

transport air quality model driven by emissions and meteorology. Here, we used a 12 

km gridded product generated by the USEPA and the Centers for Disease Control and 

Prevention as part of the Public Health Air Surveillance Evaluation study (36, 37). The 12 

km resolution CMAQ data were mapped to ZIP codes via area-weighting to obtain daily 

concentrations for each pollutant at each ZIP code. Since the CMAQ model itself generally 

does not incorporate observations, daily temporal variability in pollutant concentrations is 

purely modeled and is generally not reproduced well (31). As a result, we do not consider 

raw CMAQ as a directly suitable metric for daily time-series applications, however we 

include it as a comparison with the next two CMAQ-based metrics that do incorporate 

monitoring information.

6. CMAQ-Kriging (CMAQKR).—The CMAQKR approach uses observations and 

Kriging to adjust CMAQ model outputs. Specifically, daily ratios of CMAQ/observations 

were calculated at all monitor locations within the 200 km radius study domain. These ratios 

were then interpolated to all 12 km CMAQ grid cell centroids using Kriging. Daily CMAQ 

concentrations at each grid cell were adjusted proportionately using the interpolated ratios, 

and then mapped to ZIP codes via area-weighting to obtain daily concentrations for each 

pollutant at each ZIP code.

7. CMAQ Data Fusion (CMAQDF).—We collected a ready-to-use CMAQDF data 

product (developed by the Georgia Institute of Technology) for this study for 2009–2013 

(29, 38). The CMAQDF approach is designed to correct for modeling biases/errors within 

CMAQ data. It also accounts for the potential for specific locations being consistently 

impacted by very local sources leading to observations higher than surrounding areas. In 

CMAQDF, two concentration fields were developed. The first field assimilated temporal 

variations of observation data and spatial structure from CMAQ results, and the second 

field incorporated spatial and temporal variations of CMAQ data which were also scaled 

using observation data to correct for modeling biases. The two developed fields were then 

fused together using weighting factors that vary over space based on their ability to predict 

temporal variations.

8. Land Use Regression (LUR) – NO2 and PM2.5 only.—LUR is a potentially 

computationally-intensive empirical supervised multiple regression approach to simulate 

traffic-related pollutant concentration fields when sufficient measurement locations are 

available. Here, sufficient locations and computing resources were available to estimate NO2 

and PM2.5. In LUR, concentration measurement data are related to spatially or temporally 

varying candidate predictor variables. Candidate predictor variables included land use 

(elevation, population, land cover types and roadway types), meteorological parameters 

(visibility, boundary layer height, precipitation, radiations, pressure, humidity, temperature, 

wind), pollutant emission data and output data from the CMAQ model. Using LUR, we 
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estimated daily concentrations of NO2 and PM2.5 at 1 km grid cells covering the study area, 

and then mapped concentrations to ZIP codes via area-weighting.

9. Aerosol Optical Depth (AOD) – PM2.5 only.—Use of satellite observational data 

has gained popularity in exposure modeling over the past decade due to their broad spatial 

coverage (39–41). Essentially, the AOD approach is based on a regression that associates 

satellite AOD data with available ground-based observational data. In this study, we applied 

a Bayesian-based calibration method (42) with 1-km resolution AOD data obtained from 

the Multiangle Implementation of Atmospheric Correction (MAIAC) (43) downscaled from 

MODIS data. Using this approach, we estimated daily concentrations of PM2.5 at 1 km 

grid cells covering the study area, and then mapped concentrations to ZIP codes via area-

weighting.

Epidemiological Study Approach

The goal of this study was to estimate and compare associations of air pollution and 

cardiorespiratory ED visits across exposure metrics. The epidemiologic model used to 

estimate the associations is described below. The study approach consisted of three steps that 

facilitated the comparison of effect estimates across exposure metrics.

Step 1. CM Analysis.—First, we estimated the pollutant-outcome relationships for the 

central monitor. The daily CM value of each pollutant, from the JST monitoring station, was 

assigned to all 192 study area ZIP codes (i.e., same daily values for each ZIP code). With 

the CM metric, any potential spatiotemporal concentration variability in the study area is 

neglected.

Step 2. Central ZIP Analysis.—Second, we determined if the non-CM exposure metrics 

were able to reproduce the CM-based associations. For this analysis, we assigned the daily 

value of each pollutant from the non-CM exposure metrics at the ZIP code that houses 

the JST central monitor (ZIP code 30318) to all 192 ZIP codes (i.e., same daily values 

for each ZIP code). Therefore, this approach again neglects any potential spatiotemporal 

concentration variabilities. This step is analogous to Step 1, but with exposures assigned 

using each of the non-CM metrics estimated at the same location. If the non-CM metrics 

estimate daily concentrations near the CM well, observed health effect estimates should be 

similar.

Step 3. Full Spatial Analysis.—Finally, to assess potential value added of utilizing 

exposure metrics with spatial information, for each non-CM exposure metric we assigned 

the daily ZIP code-specific pollution value to each study area ZIP code (i.e., allowing 

different daily values for each ZIP code). Unlike the previous two steps, this approach 

incorporates spatiotemporal information in health effects estimation and therefore we 

anticipated either similar or stronger health effect estimates compared to the previous two 

steps. [Note that the SA metric results from this approach were identical to those from the 

Central ZIP approach (Step 2) given that the SA provided only one value per day for the 

entire study area].
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To facilitate comparisons, exposure metrics were matched for missing values by pollutant. 

For example, if data for a certain pollutant (e.g., NO2) were missing for one exposure metric 

(e.g., CM) for a specific date, the data for the other exposure metrics for that pollutant were 

also set to missing for that date; the resulting sample size (ZIP code-days) was the same for 

all metrics for a given pollutant.

Epidemiologic Model

Main Model.—We used Poisson generalized linear models to estimate associations 

between daily measures of air pollution and daily counts of ED visits for cardiovascular 

and respiratory outcomes, following the 3-step epidemiological study approach. For each 

study approach, the form of the model was the same:

log E Y kt = β0 + β1pollutionkt + ∑k
β2kZipk + ∑n

β3nℎospitalnt

+ ∑m
β4mdow−ℎmt + ∑o

β5oseasonot + ∑mo
β6mo dowℎmt * seasonot

+ ∑7p β7pℎolidayotℎpt + ∑q β8qmaxT−l0qt + β9minT−ma17t + β10minT−ma17t
2

+ β11minT−ma17t
3 + β12meanDT _ma07t + β13meanDT _ma07t

2 + β14meanDT
_ma07t

3+g γ1, …, γN; timet

Eq. 1

where Ykt was the count of ED visits in ZIP code k on day t for CVD or RESP. Pollution 
referred to the moving average (of lag days 0–7) concentrations for a given pollutant-metric-

assignment of interest in ZIP code k on day t. The geographical area (zip) from which 

ED counts were spatially aggregated was represented by indicator variables, to control for 

spatially-varying factors and enable the analysis to rely solely on temporal contrasts; this 

also stringently controlled for spatial autocorrelation in the baseline ED visits across ZIP 

codes. The models included indicator variables for hospital to account for any entry and 

exit of hospitals during the study period, day of week and federal holidays (dow_h), season 
(Winter=Dec-Feb, Spring=Mar-May, Summer=June-Aug, Autumn=Sep-Nov), an interaction 

between dow_h and season, and additional holiday indicators (holiday_oth) for New Year’s 

Day, Independence Day, Veterans Day, Thanksgiving, and Christmas Day when different 

from the date of the federal holiday. Meteorology was controlled using indicator variables 

for same-day (lag 0) maximum temperature (maxT_l0, for each degree Celsius), and 

cubic terms for the moving averages of minimum temperature (lags 1–7, minT_ma17) 

and mean dew point temperature (lags 0–7, meanDT_ma07). Finally, long-term trends in 

case presentation rates (time) were controlled with parametric cubic splines with monthly 

knots for CVD ED visits and bi-monthly (2 knots per month) for RESP ED visits. Variance 

estimates were scaled to account for Poisson overdispersion. These modeling decisions (e.g., 

choice of a priori lags, meteorological control, and time trend control) were derived largely 

from our previous analyses (15, 22, 23, 45–47). We ran this model for each outcome, 

pollutant, exposure metric, and study approach combination. We scaled rate ratios (RR) and 

95% confidence intervals (CI) to increases in pollutant concentrations as follows: 250 ppb 

for CO; 10 ppb for NO2; 4 ppb for SO2; 15 ppb for O3; 5 μg/m3 for PM2.5; 1 μg/m3 for SO4; 

0.5 μg/m3 for EC; and 1 μg/m3 for OC.

Sensitivity Analyses.—To assess robustness of our results to different model 

specifications, we considered two sets of sensitivity analyses based on the ‘Full Spatial 
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Analysis’ approach. We tested different lag structures for air pollution: lag 0, moving 

average of lag days 0–2, and moving average of lag days 0–5, and compared the results to 

the moving average of lag days 0–7 in our base model (Eq. 1). Meteorological controls were 

adjusted to match the lag structure of air pollution exposure in these analyses. In addition, 

we tested different specifications of temporal controls compared to our base model (Eq. 1): 

controlling for time using parametric cubic splines with two knots per month (for CVD ED 

visits) and one knot per month (for RESP ED visits); controlling for temperature with cubic 

terms for the moving average of mean temperature (lag days 0–7); and adding product terms 

for season*temperature. All epidemiological analyses were conducted in SAS V9.4 (SAS 

Institute, Inc., Cary, NC, USA).

RESULTS

ED Visit Summary

During 2009–2013, there were 230,718 ED visits (average of 128 visits/day) for CVD and 

1,068,026 ED visits (average of 593 visits/day) for RESP. Figure 1 presents time-series plots 

of daily visit counts for each outcome. The visits were made by patients residing across the 

192 ZIP codes, with ZIP code-level daily averages ranging from <1 to 2 for CVD and <1 to 

11 for RESP. ED visit counts among the outcomes were similarly distributed over the study 

area (Supplemental Figure S1), with a high spatial correlation of total ZIP code-level visit 

counts between the two outcomes (r = 0.896). While similarly distributed over space, the 

outcomes were weakly correlated over time; the average ZIP code-level Pearson correlation 

of daily CVD and RESP ED visit counts was 0.016 (Supplemental Figure S1).

Air Pollution Levels

Table 1 presents summary concentrations for each pollutant-metric combination. Median 

levels and IQRs of primary pollutants (e.g., CO, NO2, SO2) differed across metrics more 

than for pollutants with secondary contributions (e.g., O3, PM2.5). Maps of ZIP code average 

pollutant concentrations by exposure metric are presented by Dharmalingam et al. (31). Note 

that data availability for OC (N of 86,976 ZIP code-days) was less than for other pollutants 

(N>340,000 ZIP code-days), due to lower monitoring coverage.

At the Central ZIP code (ZIP 30318), pollutant concentrations from the different exposure 

metrics were generally well correlated with the CM (Supplemental Table S2, blue shading). 

IDW, KRIG, and CMAQKR values were the most correlated with CM values for all 

pollutants (r>0.97). SA values were also correlated with CM values for all pollutants 

(r>0.80), but at slightly lower levels due to the influence of monitors located away from 

the CM. CMAQ values were least correlated with CM values (r = 0.47–0.79).

When considering the full spatial information of the exposure metrics data, pollutant 

concentrations from the different exposure metrics were also well correlated (Supplemental 

Table S2, red shading), although not as strongly as at the Central ZIP code. ZIP 

code-level correlations previously reported by Dharmalingam et al. (31) showed that for 

many pollutants, correlations were strongest in the city center and weakest towards the 

outskirts. In general, for spatiotemporally heterogeneous pollutants (such as CO, NO2, SO2, 
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EC), correlations among exposure metrics were more variable than for spatiotemporally 

homogeneous pollutants (such as O3, PM2.5, SO4
2−, and OC).

Associations of Air Pollution and Cardiovascular ED Visits

Estimated associations of air pollution and ED visits for cardiovascular diseases are 

presented in Figure 2 and Supplemental Table S3. Rate ratios from models using the CM 

analysis approach (Figure 2, black RRs) were positive for several pollutants (i.e., CO, NO2, 

PM2.5, EC and OC).

When applying Central ZIP values from the non-CM exposure metrics, models largely 

reproduced the CM-based associations (Figure 2, blue RRs). For NO2, for example, all 

RRs were positive and ranged from 1.010 (95% CI: 0.999–1.021) to 1.018 (95% CI: 0.996–

1.040) per 10 ppb increase across metrics. The reproducibility of CM-based associations 

lend support to the non-CM exposure metrics in their ability to capture health-relevant 

temporal contrasts similar to the CM. The only exception was for CMAQ SO2, for which 

Central ZIP exposures showed a positive association with CVD ED visits; given the lack 

of observed association using CM SO2 data, this result was unexpected and reduces our 

confidence in the use of CMAQ SO2 in this health study application.

When utilizing the full spatial information of exposure metrics (Figure 2, red RRs), 

estimated associations were largely similar to those estimated with Central ZIP data. 

However, for several pollutants (CO, NO2, and EC), estimated associations – especially 

the three CMAQ-derived estimates and LUR – were considerably weaker when utilizing the 

full spatial data.

Associations of Air Pollution and Respiratory ED Visits

Estimated associations of air pollution and ED visits for respiratory diseases are presented 

in Figure 3 and Supplemental Table S3. Rate ratios from models using the CM analysis 

approach were positive only for O3 (Figure 3, black RRs).

When applying Central ZIP values from the non-CM exposure metrics, models again largely 

reproduced the CM-based associations (Figure 3, blue RRs). For some pollutant-metrics 

(i.e., CMAQ NO2, CMAQDF NO2, LUR NO2, CMAQ SO2, and CMAQ EC), estimated 

associations were unexpectedly different from the CM-based associations. For example, 

while the RR for CM NO2 [0.996 (95% CI: 0.989–1.002) per 10 ppb increase] was 

consistent with the null, RRs for NO2 when using CMAQ [1.010 (95% CI: 1.003–1.016)], 

CMAQDF [1.012 (95% CI: 1.005–1.019)], and LUR [1.023 (95% CI: 1.010–1.036)] were 

considerably stronger. Again, these results reduce our confidence in the CMAQ- and LUR-

based metrics for these pollutants in this health study application.

When utilizing the full spatial resolution of exposure metrics (Figure 3, red RRs), estimated 

associations showed largely similar patterns across exposure metrics as those using Central 

ZIP code assignment. Some important differences were noted. In particular, associations 

with NO2 and SO2 were only detected when assigning IDW and KRIG exposures utilizing 

their full spatial information; associations with O3 were also stronger when utilizing these 

metrics. For example, the RR for full spatial KRIG NO2 [1.026 (95% CI: 1.018–1.034) per 
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10 ppb increase] was considerably stronger than that for Central ZIP KRIG NO2 [0.996 

(95% CI: 0.989–1.002)].

Sensitivity Analyses

The observed pattern of associations across exposure metrics for both outcomes was largely 

unchanged when considering different exposure windows (Supplemental Figures S2 and 

S3), with the moving average of lag days 0–7 exposure window generally providing 

the strongest estimated association among different outcome-pollutant-exposure metric 

combinations. Similarly, the observed pattern of associations across exposure metrics was 

largely unchanged when considering different temporal control specifications in the model 

(Supplemental Figures S4 and S5). In general, less stringent time control (monthly knots for 

splines) led to stronger observed outcome-pollutant associations for RESP, and less stringent 

temperature control (moving average of mean temperature for lag days 0–7) also led to 

stronger observed outcome-pollutant associations.

DISCUSSION

In this study, we compared associations of cardiorespiratory ED visits and exposure to 

8 ambient air pollutants estimated using multiple approaches in 20-county Atlanta, GA 

during 2009–2013. We utilized exposure metrics that varied considerably in complexity, 

both in terms of inputs required, computational resources needed, ease of implementation, 

and availability and ease of use to public health researchers (31). Using central monitor 

data, the simplest and common metric for characterizing daily air pollution in time-series 

studies (32), we observed a number of anticipated associations, including between CVD and 

combustion-related gases and particles (CO, NO2, PM2.5, EC and OC) as well as between 

RESP and O3. To understand whether the effort and resources required for more complex 

exposure metrics development is warranted for the purpose of short-term air pollution health 

effects studies, we compared the use of the CM metric to non-CM metrics in a step-wise 

approach.

In the Central ZIP analysis, we conducted analyses with exposures for all 192 study area 

ZIP codes assigned using values from the ZIP code that houses the JST central monitor. 

We anticipated similar health effect estimates for a given pollutant comparing results using 

non-CM exposures metrics from this approach to those using CM exposure data. That is, 

if the non-CM metrics estimate daily concentrations near the CM well, observed health 

effect estimates should be similar. More specifically, this approach enabled an assessment 

of whether temporal over-smoothing, a recognized concern for predictions from statistical 

models (e.g., KRIG, CMAQ) because of regression to the mean (44), affected health effect 

estimates compared to the CM that reflects accurate temporal variability in its specific 

location. Indeed, estimated associations were largely similar across metrics at the Central 

ZIP. The reproducibility of CM-based associations lend support to the non-CM exposure 

metrics in their ability to capture health-relevant temporal contrasts similar to the CM for 

most pollutants.

Exceptions to this were several unexpected results for both CVD and RESP associations 

with NO2, SO2, and EC exposures from CMAQ, CMAQDF, and LUR metrics. CMAQ and 
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LUR data in this study were developed at 12 km and 1 km grid cell resolutions, respectively, 

thus providing good spatial characterization of pollutant concentrations (31). However, the 

ability of CMAQ and LUR to capture daily variation in pollutant concentrations at ZIP codes 

relies mostly on input emissions and meteorology data (and associated chemical transport 

and transformation processes for CMAQ), all of which are expected to contain considerable 

uncertainties; hence their estimated temporal concentration variability may be poor. In 

previous work, for example, we found that raw CMAQ data do not perform as well in 

reproducing temporal pollutant concentration variations in the study region due to modeling 

biases and errors (31). Given that CMAQ and LUR in this study would not be anticipated 

to provide good estimates of temporal variability (30, 31), we would have expected similar 

or weaker health effect associations compared with those of other metrics. However, we 

in fact observed stronger associations of CVD-SO2, RESP-NO2, RESP-SO2, and RESP-EC 

with these metrics. While epidemiologic models of this study controlled strictly for time, 

the results may be highlighting complex temporal confounding, when pairing ED visit 

outcomes with modeled exposure metrics that have poor estimated temporal concentration 

variability. As such, health effect estimates derived from raw CMAQ and LUR data should 

be interpreted with caution. We note that CMAQKR and CMAQDF may partially overcome 

this shortfall when paired with rigorous time control in epidemiologic models, given their 

fusion to monitoring data, and were among the metrics with better performance in the 

evaluation by Dharmalingam et al. (31).

The Full Spatial analysis enabled a qualitative assessment of the potential value added in 

health effect estimation when incorporating the full spatial information provided by non-CM 

exposure metrics. We anticipated that use of full spatial data from the more complex multi-

monitor and model-based exposure metrics would result in stronger health effect estimates 

compared to CM or Central ZIP exposure assignment, as these were specifically developed 

to provide a better estimate of population exposure for our large study area. We observed 

some anticipated results. In particular, associations for RESP and NO2, SO2, and O3 were 

only detected or stronger when using IDW and KRIG full spatial data than when utilizing 

Central ZIP estimates for these pollutants. These results suggest that use of data from all 

monitors in and extended beyond the study area to generate ZIP code-specific concentration 

estimates, compared to relying on just on the central monitor may be important in observing 

health effects in some cases. We also observed some unanticipated results, most strikingly 

the weaker estimated associations for CVD when using full spatial CO, NO2, and EC 

CMAQ-based and LUR metrics compared to those from the Central ZIP approach. It is 

possible that relatively low pollution levels with less variation in the outskirts of the city 

(31) contributed to the weaker observed health effect associations for CVD when using full 

spatial resolution data, and the results may be indicative of non-linear pollutant-CVD health 

associations.

There are several limitations to consider in this study. Some differences in associations 

observed among pollutants and metrics may be impacted by uncertainties in scaling to 

some degree; we selected a common increment by which to standardize rate ratios for each 

pollutant. However, because of different exposure distributions by different metrics, the 

scaling may not reflect expected changes in exposure equally well. It is important to note 

that scaling does not impact direction of effects (i.e., positive vs. negative) or significance. 
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It is also important to note that this particular analysis focused on time-series design, where 

minimizing temporal errors in the metrics is the most important, and other study designs 

may be more affected by spatial errors.

Conclusions

We conducted a time-series study of cardiorespiratory ED visits and ambient air pollutants 

estimated using a variety of approaches in 20-county Atlanta, GA during 2009–2013. 

Ultimately, associations observed with using the simplest CM exposure assignment were 

largely similar to those using more complex metrics. We found some evidence of better 

representation, in particular for NO2 and SO2, by monitoring-based metrics that incorporate 

all available monitoring data and interpolate to locations between monitors (i.e., IDW, 

KRIG). These findings are likely driven by the ability of air monitors to accurately 

characterize temporal contrasts at their location, which is the key exposure contrast for 

time-series health studies. Even though air monitors for most pollutants are often sparsely 

distributed over metropolitan regions in the US, our results suggest monitoring-based 

metrics are a sound exposure assignment approach. In locations where monitoring data 

are inadequate, our results provide some support for the use of CMAQ-, LUR-, and 

satellite-based metrics in time-series health studies. However, unexpected results using 

CMAQ- and LUR-based metrics for some pollutants (in particular, NO2, SO2, and EC) 

in their inability to reproduce associations observed using CM data temper our confidence. 

Use of these exposure metrics should be paired with thorough data characterization and 

validation within health analyses. We anticipate that the results of this research will be 

useful for interpretation of existing health effects literature and for improving exposure 

assessment in future air pollution epidemiology studies. Additional studies in other locations 

are warranted, especially for locations with different population spatial structures and 

monitoring availability and placement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IMPACT STATEMENT

This study compared and interpreted the use of monitoring and modeled exposure 

metrics in a daily time-series analysis of air pollution and cardiorespiratory emergency 

department visits. The results suggest that the use of routinely-collected ambient 

monitoring data in population-based short-term air pollution and health studies is a sound 

approach for exposure assignment in large metropolitan regions. CMAQ-, LUR-, and 

satellite-based metrics may allow for health effects estimation when monitoring data 

are sparse, if paired with thorough data characterization. These results are useful for 

interpretation of existing health effects literature and for improving exposure assessment 

in future air pollution epidemiology studies.

Ebelt et al. Page 17

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Time-series plots of daily ED visit counts for cardiovascular diseases (left) and respiratory 

diseases (right) in 20-county Atlanta during January 1, 2009 to December 15, 2013.
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Figure 2. Associations of air pollution and ED visits for cardiovascular diseases, comparing 
among pollutants, exposure metrics, and study approaches.
Exposure metrics included: Central Monitor (CM), Site Average (SA), Inverse Distance 

Weighting (IDW), Kriging (KRIG), Community Multiscale Air Quality model (CMAQ), 

CMAQ-kriging adjustment with observations (CMAQKR), CMAQ combined with 

monitoring data in a data fusion (CMAQDF), Land Use Regression (LUR), and satellite 

Aerosol Optical Depth (AOD). Study approaches included assigning: Central Monitor values 

to all 192 ZIP codes by day (black), Central ZIP Code values for each exposure metric to all 

192 ZIP codes by day (blue), and the Full Spatial information of the exposure metrics to the 

192 ZIP codes by day (red). All models controlled for time and meteorology as specified by 

the base model. Rate ratios (RR) and confidence intervals (CI) scaled to standard units: per 

250 ppb CO, 10 ppb NO2, 4 ppb SO2, 15 ppb O3, 5 μg/m3 PM2.5, 1 μg/m3 SO4
2−, 0.5 μg/m3 

EC, and 1 μg/m3 OC.
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Figure 3. Associations of air pollution and ED visits for respiratory diseases, comparing among 
pollutants, exposure metrics, and study approaches.
Exposure metrics included: Central Monitor (CM), Site Average (SA), Inverse Distance 

Weighting (IDW), Kriging (KRIG), Community Multiscale Air Quality model (CMAQ), 

CMAQ-kriging adjustment with observations (CMAQKR), CMAQ combined with 

monitoring data in a data fusion (CMAQDF), Land Use Regression (LUR), and satellite 

Aerosol Optical Depth (AOD). Study approaches included assigning: Central Monitor values 

to all 192 ZIP codes by day (black), Central ZIP Code values for each exposure metric to all 

192 ZIP codes by day (blue), and the Full Spatial information of the exposure metrics to the 

192 ZIP codes by day (red). All models controlled for time and meteorology as specified by 

the base model. Rate ratios (RR) and confidence intervals (CI) scaled to standard units: per 

250 ppb CO, 10 ppb NO2, 4 ppb SO2, 15 ppb O3, 5 μg/m3 PM2.5, 1 μg/m3 SO4
2−, 0.5 μg/m3 

EC, and 1 μg/m3 OC.
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