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A B S T R A C T   

Alzheimer’s disease (AD) is the leading cause of dementia globally, with a growing morbidity burden that may 
exceed diagnosis and management capabilities. The situation worsens when AD patient fatalities are exposed to 
COVID-19. Because of differences in clinical features and patient condition, a patient’s recovery from COVID-19 
with or without AD varies greatly. Thus, this situation stimulates a spectrum of imbalanced data. The inclusion of 
different features in the class imbalance offers substantial problems for developing of a classification framework. 
This study proposes a framework to handle class imbalance and select the most suitable and representative 
datasets for the hybrid model. Under this framework, various state-of-the-art resample techniques were utilized 
to balance the datasets, and three sets of data were finally selected. We developed a novel hybrid deep learning 
model AD-CovNet using Long Short-Term Memory (LSTM) and Multi-layer Perceptron (MLP) algorithms that 
delineate three unique datasets of COVID-19 and AD-COVID-19 patient fatality predictions. This proposed model 
achieved 97% accuracy, 97% precision, 97% recall, and 97% F1-score for Dataset I; 97% accuracy, 97% pre-
cision, 96% recall, and 96% F1-score for Dataset II; and 86% accuracy, 88% precision, 88% recall, and 86% F1- 
score for Dataset III. In addition, AdaBoost, XGBoost, and Random Forest models were utilized to evaluate the 
risk factors associated with AD-COVID-19 patients, and the outcome outperformed diagnostic performance. The 
risk factors predicted by the models showed significant clinical importance and relevance to mortality. 
Furthermore, the proposed hybrid model’s performance was evaluated using a statistical significance test and 
compared to previously published works. Overall, the uniqueness of the large dataset, the effectiveness of the 
deep learning architecture, and the accuracy and performance of the hybrid model showcase the first cohesive 
work that can formulate better predictions and help in clinical decision-making.   

1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder that 
mainly prevalent among the elderly population aged 60 or older at 
higher risk. Evidence suggests that two histopathological findings 
(deposition of Amyloid beta-protein and Tau-protein, increased calcium 
ion concentration) are principally responsible for the abnormal changes 
in the brain of AD patients [1]. The global prevalence of all cases of 

dementia has been projected to reach almost 65.7 million by 2030 and 
115.4 million by 2050, doubling every 20 years with a tremendous 
financial burden [2]. Alone in the U.S., the number of cases of Alz-
heimer’s dementia is expected to reach a benchmark of 13.8 million 
accompanying people aged 65 and older [1]. However, the early 
emergence of the infectious severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) in late December 2019, has altered this estimation 
to a significant degree. According to the Centers for Disease Control and 
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Prevention (CDC), the number of deaths in the US due to AD and other 
dementias escalated by approximately 16% during the pandemic, 
compared with the average of the past five years (2015–2019) [3]. It is a 
matter of great concern because this substantial increase in AD in the 
older population will not only affect the individual’s personal life but 
also may result in different socioeconomic burdens [1]. 

However, the direct association of the fatality rate of AD patients 
with COVID-19 (AD-COVID-19) has been studied on a small scale. In one 
study, 31 AD patients (80.36 ± 8.77 years old) were diagnosed with 
COVID-19, and 13 among them (41.9%) died due to respiratory com-
plications [4]. Another study estimated the proportion of death to be 
19% among 260 patients with COVID-19 and AD [5]. Many studies have 
identified associated risk factors based on demographic characteristics 
of different cohorts separately responsible for AD and COVID-19. For 
example, the equivalent risk factors include older age (>60 years), de-
mentia, cardiovascular disease (CVD), hypertension, obesity, genetic 
factors (SNPs) [6], diabetes, and smoking [7,8]. Understanding the 
complexity of AD patients with COVID-19 distress, it is pivotal to spe-
cifically recognize the risk factors which are common in both diseases. A 
substantial magnitude of positive associations between AD patients with 
COVID-19 deaths came from a comparative study that analyzed 17,456, 
515 individual records in a cohort [9]. 

Scientists have speculated several neurobiochemical cross-talks be-
tween COVID-19 and AD. Transsynaptic transfer via olfactory nerve or 
expression of angiotensin-converting enzyme 2 (ACE2) receptor in the 
vascular endothelium of the blood-brain-barrier (BBB) could be the 
route of viral entry into the brain [10]. Several pathophysiological 
changes induced by SARS-CoV-2 can aggravate neurodegeneration in 
AD patients, increasing the risk of having high viral load and fatality risk 
[11]. However, theoretical postulations are drawn from empirical data 
seldom resonate with the complexity of natural biological systems. Thus, 
it is essential to harness the heterogeneity of biological data to produce 
qualitative and quantitative predictions. 

State-of-the-art supervised learning models such as ANN, random 
forest, AdaBoost, XGBoost, MLP, unsupervised learning models LSTM, 
and RNN are utilized to understand the disease pattern and prognosis. 
However, all these models exhibit individual limitations. For example, 
ANN unexplained functioning of the network, hence ANN reduces trust 
in the network. Random Forest is less interpretable than a single deci-
sion tree. A trained forest may require significant memory for storage, 
due to the need for retaining the information from several hundred in-
dividual trees. Adaboost has the potential to overfit the training set 
because its objective is to minimize errors on the training set. XGBoost 
does not perform well on sparse and unstructured data. In this essence, 
researchers have explored Deep learning (DL) algorithms to make an 
advancement for predicting more complex biological relationships. It 
has revolutionized this experience by substituting the need for human 
intervention [12] and offering the flexibility of customizing different 
algorithms. DL overcomes a lot of problems faced in the arena of medical 
science such as its overwhelming classical statistical models (i.e., t-test, 
ANOVA, Chi-square test) and traditional software (i.e., SPSS, Stata) 
which are frequently used by health professionals to carry out their 
primary data analysis. Moreover, if the number of input variables ex-
pands with increasing data and sample size, the inference becomes more 
inaccurate [13]. DL also alleviates the need for ‘clinical chart review’ 
commonly practiced by physicians who oversee previous medical re-
cords to make assumptions about a disease or a health condition, classify 
risk factors and recommend treatments or medications [14]. In addition, 
as often labeled data are scarce and expensive in the field of healthcare, 
DL can harness the potential of rapidly accumulating, inexpensive un-
labeled data to improve the generalized performance [15]. In healthcare 
systems, data repositories are dynamic. This multi-layered strategy en-
ables DL models to complete classification tasks such as identifying 
subtle abnormalities in kidney images, grouping patients with risk-based 
cohorts, or highlighting relationships between symptoms and outcomes 
within massive amounts of unstructured data. 

In recent years, deep learning architectures and algorithms have 
evolved based on their application in different fields; speech recogni-
tion, image processing, and solving biological questions [16,17]. In 
biological conditions, their risk association may rely upon other inde-
pendent causal factors which deeply correlate with the disease. But 
diverse and imbalanced datasets often restrict model performance [18]. 
The key reasons are two folds: (1) the optimum results for the unbal-
anced class are difficult to achieve because the model/algorithm can’t 
get the chance to look at the underlying class and (2) DL poses an issue 
when creating a validation or test sample because it is difficult to have 
representation across classes when the number of observations for a few 
classes is extremely low. The nature of medical big data and rational-
izing the time dependency in collecting patient records have posed se-
vere concerns among medical practitioners, researchers, and health 
professionals. Thus, we have chosen to develop a hybrid model using 
AD-CovNet. We exerted two different neural networks, combined them, 
and proposed a novel hybrid AD-CovNet algorithm for classification and 
risk factor identification. It is hypothesized that the hybrid AD-CovNet 
model will perform significantly better than its counterparts to represent 
the complex interdependence of fatality of AD patients in COVID-19. 
Thus, three research questions (RQs) are formulated to measure the 
effectiveness of the proposed approach for state-of-the-art approaches: 

RQ1: How imbalanced data can be handled efficiently and ready for 
the DL models or find the suitable approaches to balance the dataset 
prepared for DL models processing? 
RQ2: How efficient hybrid model AD-CovNet is capable of classifying 
AD-COVID-19 fatality? 
RQ3: What are potential risk factors associated with AD-COVID-19 
fatality? 

2. Related works 

Earlier studies regarding AD risk factor prediction were conducted 
based on standard machine learning models. A study by Casanova et al. 
used regularized logistic regression (RLR) as a classifier and proposed a 
new risk scoring method called AD Pattern Similarity (AD-PS) scores to 
geometrically represent a disease probability map (hypercube) [19]. 
The position of these metrics inside the hypercube depicts the risk of 
developing AD. Another study by Mahyoub et al. performed a study on 
ADNI dataset applying four different ML models, namely, Random 
Forest (RF), Support Vector Machines, Neural Networks, and 
Multi-Layer Perceptron (MLP). Lifestyle and behavior patterns and 
APOE4 gene were classified as critical risk factors for developing AD 
[20]. But it did not discuss the accuracy of the machine learning models. 
The number of studies exerting deep learning algorithms on AD datasets 
is relatively low. 

Qiu et al. used the concept of a disease probability map to diagnose 
the status of AD. They collected four different datasets and individually 
applied a fully convolutional network (FCN) with six convolutional 
layers for classification and model training from patches of neuro-
imaging data [21]. Model performance increased when non-imaging 
features such as gender, age, and Mini-Mental State Examination 
(MMSE) scores, were incorporated alongside the probability map. Usu-
ally, CNNs are more prevalent in the field of harnessing neuroimaging 
data. Thus, a comparison between the traditional CNN and FCN-MLP 
model revealed the latter had more efficiency. On the other hand, 
Wang et al. used clinical documentation of patient-level data obtained 
from electronic health records (EHRs) [22]. It focused on RNN’s accu-
racy for text classification to rank essential topics which could be held 
accountable for the risk of death for patients with Alzheimer 
disease-related dementias. The recorded AUC scores were 0.978, 0.956, 
and 0.943 for 6-month, 1-year, and 2-year fatality prediction models, 
respectively. 

Like studies regarding AD, the identification of fatality-related risk 
factors for COVID-19 patients has also been addressed through different 
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ML approaches. Dabbah et al. included a cohort of 11,245 COVID-19 
positive cases and implemented Random Forest (RF) and Cox Propor-
tional Hazard (CPH) ML algorithm. RF model had better accuracy and 
stability based on the AUC (0.90) and F-β statistic score [23]. Mahdavi 
et al. [24], Bertsimas et al. [25], and Kar et al. [26] conducted their 
analysis based on the clinical information collected from hospital re-
cords. Mahdavi et al. separately measured the accuracy of the SVM 
model to predict the COVID-19 fatality risk based on invasive, 
non-invasive, and combined features. Non-invasive features like oxygen 
saturation (SpO2), age, and cardiovascular diseases together with 
increased levels of blood urea nitrogen (BUN), lactate dehydrogenase 
(LDH), and partial thromboplastin time (PTT) had a higher predomi-
nance towards fatality. The authors showed that the non-invasive model 
had better performance despite having fewer features because individ-
ual weights of those features were more elevated in terms of fatality 
prediction. 

By contrast, Bertsimas et al. and Kar et al. used the Extreme Gradient 
Boosting (XGB) algorithm on overall selected features without dividing 
them according to their invasiveness. These studies showed XGB model 
demonstrated better performance in terms of AUC, accuracy, and spec-
ificity scores, for training and testing datasets. Liang et al. displayed a 
deep learning Cox proportional hazard (CPH) model in a COVID-19 
positive cohort [27]. They extracted ten critical risk factors and evalu-
ated their performance according to the model. Among these features, 
age (>49 years), dyspnea, cancer history, and Chronic Obstructive 
Pulmonary Disease (COPD) had the highest magnitude of risk. Naseem 
et al. introduced a new framework to add new features (Neo-V) based on 
existing features within a predefined dataset. A coalition of this frame-
work with a deep neural network (Deep-Neo-V) had the highest accu-
racy, precision, AUC-ROC score, compared to 5 conventional ML models 
[28]. Zhang et al. and Wang et al. harnessed the features of radiologic 
(CT-scan) images for COVID-19 diagnosis by two different approaches. 
Zhang et al. used a five-layer deep convolutional neural network 
(DCNN) with stochastic pooling [29]. Conversely, Wang et al. applied 
wavelet Renyi entropy (WRE) for feature extraction and combined 
feedforward neural network (FNN) with a three-segment bio-
geography-based optimization (3SBBO) to train the classifier [30]. 

All the previous works were separately carried out among AD and 
COVID-19 patients. To identify the risk factors of AD, most of the works 
were based on neuroimaging data and heavily emphasized the abnormal 
structural changes in the brain. On the contrary, fatality related risk 
factors for COVID-19 were identified based on the demographic and 
medical records for COVID-19 survivors and non-survivors. Neverthe-
less, all these studies were amenable to several limitations. Most of the 
previous works lack to tackle the following few key challenges. Extant 
studies primarily focus on traditional ML models and small population 
sizes. In standard ML, well-defined features influence performance 

results. However, the greater the complexity of the data, the more 
difficult is to select optimal features. A limited number of articles have 
been highlighted or discussed regarding the dataset imbalance. It is 
important to note that if the data is imbalanced, the chance of misdi-
agnosis increases and sensitivity decreases. In a few instances, only 
SMOTE was utilized to establish the balance of the data. Till today, no 
studies have been reported which depict the complex interrelationship 
among comorbidities between AD and COVID-19 patients. 

The followings are the key contributions of the study: 

• The study explored state-of-the-art resampling techniques and uti-
lized evaluation metrics (R2 and RMSE) to balance large imbalanced 
datasets. This dataset is large compared to the existing literature and 
unbalanced. The data balancing approach considered can be trusted 
by domain experts.  

• The study developed a novel hybrid DL model AD-CovNet using 
LSTM-MLP for the classification of COVID-19 and AD patients based 
on a real dataset. The models are optimized by utilizing sweeping 
hyperparameters throughout the experiment.  

• The study presented a robust approach to detect risk factors from 
coexisting heterogeneous feature sets associated with COVID-19 and 
AD patients without removing feature subsets.  

• The study demonstrated a possibility of implementing DL models in 
clinical practice by producing superior performance and accuracy, 
and risk factors for COVID- 19 and AD patients with clear medical 
significance. 

The following sections are mentioned as follows: Section 3 describes 
the dataset and Section 4 highlights the research methods. Data 
balancing approaches are indicated in Section 5. Section 6 explains the 
model and model performance evaluation are shown in Section 7. Risks 
are analyzed in Section 8. Finally, Sections 9 and 10 highlight the dis-
cussion and conclusion. 

3. Dataset description 

The dataset utilized in this study was retrieved from TriNetX. It is a 
health research database that contains de-identified medical records 
from over 50 million people and the majority of them are from the 
United States. The data was taken on April 14, 2021, although infor-
mation up to February 17, 2021, was utilized [31]. Pre-major COVID-19 
variant dissemination and vaccination caused the huge infection [14]. 
There were no imputations for missing data. The dataset includes adult 
patients aged 18 and above, with the median age of the AD patient 
population being 50. Initially, we received a dataset of 388,029 
COVID-19 patients. However, 188 individuals with undetermined 
gender were excluded. To limit selection bias, we did not apply any 

Fig. 1. Distribution of data.  
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further exclusion criteria. We identified 387,841 patients with 
COVID-19, among them 4174 had AD, 2765 had vascular dementia, 375 
had DLB, and 235 had FTD. As depicted in Fig. 1, the entire data set is a 
practical example of imbalance class. 

4. Research methodology 

The proposed classification framework comprises four subsystems 
(Fig. 2). The first subsystem explains data characterization and 

categorization. This subsystem describes how data is arranged between 
AD fatalities and AD-COVID-19 fatalities. The second subsystem ad-
dresses the approach of imbalanced data handling. Various balancing 
algorithms have been utilized to identify the best possible representation 
of the data using statistical indicators (R2 and RMSE). The balancing 
subsystem is used to oversample the minority class samples of the un-
balanced dataset. Subsequently, these approaches support selecting 
datasets that will identify the best balancing algorithm and can repre-
sent the suitable dataset for classification. The third subsystem 

Fig. 2. Proposed research methodology.  

Fig. 3. R2 and RMSE values of different sets of data using SMOTE- ENN only.  
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highlights the model development of DL algorithms using LSTM and 
MLP. The risk factors specified in Table 1 are identified, and their 
clinical significance is evaluated. In addition, risk factors associated with 
COVID-19 along with AD data are identified based on the three-feature 
selection algorithm (AdaBoost, Random Forest, and XGBoost). Finally, 
the fourth subsystem reflects the performance matrices (Accuracy, 
Precision sensitivity, F1-score, and AUC curve) among the four models. 

5. Data preprocessing 

5.1. Data imbalance handling 

If the class attribute categories are not equally represented, the 
classification performance will be skewed. In such instances, the size of 
the abundant class is either lowered (undersampling) or expanded 
(oversampling). The primary goal of class balancing is to increase the 
frequency of the minority class while decreasing the frequency of the 

dominant class. Balancing has been done to ensure that each class has 
roughly the same number of instances. The literature also demonstrates 
a mix of under and over-sampling. Table 2 summarizes the most 
frequent rebalancing strategies used, as well as their benefits and 
drawbacks. To stratify the imbalanced data, we employed six resampling 
techniques – Random oversampling, Undersampling, SMOTE, STOME- 
ADASYN, STOME-TOMEK, and SMOTE-ENN. Considering all these 
techniques is to establish and identify the best resampling techniques to 
identify the best representative sets. In this essence, two key perfor-
mance indicators R2 and RMSE are used. 

5.2. Evaluation metrics 

5.2.1. R2 

R Square is a measure of not only Goodness-of-Fit but also how well 
the model explains the behavior (or variance) of the unbalanced data 
and dependent variables. The formula of R2 is as follows: 

R2 = 1 −

( ∑n
i=1(yi − ŷi)

2)ln
( ∑n

i=1(yi − tŷi)
2)ln

(1)  

5.2.2. RMSE 
The Root Mean Square Error represents the square root of the 

average of the square of the differences between predicted values and 
observed values. It can assess the reliability of model predictions. The 
RMSE calculation formula is as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(ŷi − yi)
2

N

√

(2)  

Table 1 
Dataset description.  

Attribute Type Description 

Chf Binary Congestive heart failure 
carit Binary Cardiac arrhythmias 
valv Binary Valvular disease 
pcd Binary Pulmonary circulation disorders 
pvd Binary Peripheral vascular disorders 
hypunc Binary Hypertension, uncomplicated 
hypc Binary Peripheral vascular disorders 
para Binary Paralysis 
ond Binary Other neurological disorders 
cpd Binary Chronic pulmonary disease 
diabunc Binary Diabetes, uncomplicated 
diabc Binary Diabetes, complicated 
hypothy Binary Hypothyroidism 
rf Binary Renal failure 
ld Binary Liver disease 
pud Binary Peptic ulcer disease, excluding bleeding 
aids Binary AIDS/HIV 
lymph Binary Lymphoma 
metacanc Binary Metastatic cancer 
solidtum Binary Solid tumor, without metastasis 
rheumd Binary Rheumatoid arthritis/collagen vascular disease 
coag Binary Coagulopathy 
obes Binary Obesity 
wloss Binary Weight loss 
fed Binary Fluid and electrolyte disorders 
blane Binary Blood loss anemia 
dane Binary Deficiency anemia 
alcohol Binary Alcohol abuse 
drug Binary Drug abuse 
psycho Binary Psychoses 
depre Binary Depression 
score Numeric A non-weighted version of the Elixhauser score 
index Binary A non-weighted version of the grouped Elixhauser index 
wscore_ahrq Numeric A weighted version of the Elixhauser score using the 

AHRQ algorithm 
wscore_vw Numeric A weighted version of the Elixhauser score using the 

algorithm in van Walraven 
windex_ahrq Binary A weighted version of the grouped Elixhauser index 

using the AHRQ algorithm 
windex_vw Binary A weighted version of the grouped Elixhauser index 

using the algorithm in van Walraven 
Age Numeric Age 
Gender Nominal 0: Male, 1: Female, 2: Third gender 
Ethnicity Nominal Ethnicity 
Fatality Binary Fatality 
Race Nominal Race 
ad Binary Alzheimer’s disease  

Table 2 
Definition and characterization of resampling techniques.  

Sl. 
No. 

Resample 
technique 

Key features Pros and cons 

1 Random Over- 
Sampling  

• Randomly select and 
replace examples from 
the minority class and 
add them to the training 
dataset.  

• Oversampling 
introduces duplicate 
samples.  

• No information loss.  
• Chances of overfitting 

are high  
• Gradually slow down 

the training. 

2 Random 
undersampling  

• Removes number of 
samples.  

• Cause the model to lose 
out on learning essential 
concepts.  

• Reduces the run time of 
the model. 

3 SMOTE  • Generates synthetic 
samples for the minority 
class.  

• Overfitting is reduced.  
• No information loss.  
• The efficiency of the 

high-dimensional data 
is low. 

4 SMOTE- 
ADASYN  

• A hybrid version of 
SMOTE. 

5 SMOTE-Tomek  • A Hybrid technique of 
SMOTE.  

• Clean overlapping data 
points for each of the 
classes.  

• Links the opposite class 
paired samples that are 
the closest neighbors to 
each other. 

6 SMOTE- ENN  • Hybrid technique.  
• Observations are 

removed from the 
sample space.  

• Utilizes ENN where the 
nearest neighbors of 
each majority class are 
estimated.  
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Table 3 
R2 and RMSE values of different sets of data using resampling algorithms.  

Resampling Algorithms Indicators 

R2 RMSE 

25K 50K 100K 200K 300K 25K 50K 100K 200K 300K 

Raw data 0.223 0.164 0.156 0.143 0.144 0.166 0.169 0.169 0.169 0.169 
Random Over-Sampling 0.577 0.509 0.498 0.487 0.492 0.324 0.35 0.354 0.357 0.356 
Under sampling 0.649 0.546 0.514 0.488 0.497 0.295 0.336 0.348 0.357 0.354 
SMOTE 0.681 0.639 0.624 0.603 0.605 0.282 0.3 0.306 0.314 0.313 
SMOTE- ADASYN 0.677 0.62 0.608 0.588 0.589 0.287 0.3 0.312 0.32 0.320 
SMOTE-Tomek 0.686 0.638 0.624 0.606 0.606 0.28 0.3 0.306 0.313 0.313 
SMOTE-ENN 0.772 0.756 0.748 0.751 0.748 0.221 0.231 0.243 0.251 0.258  

Fig. 4. Data resampling using SMOTE-ENN (A and B).  
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5.3. Baseline approach 

The dataset has been divided into 14 groups as a multiple of 25K (i.e., 
25K, 50K, 75K, …., 375K). The next step is to select different resampling 
algorithms to assess the best evaluation metric possible. In order to show 
the impact of the imbalance problem on regression more explicitly, we 
performed simple experiments using AdaBoost and XGBoost on the 14 
datasets utilizing each resampling technique. In the beginning, we 
analyzed the raw data and found an average R2 value of 0.166 (range 
0.144–0.223) and RMSE value of 0.168 (range 0.166–0.169). This rep-
resents highly imbalanced data. Subsequently, we performed all the 
resampling techniques (Table 2) used to calculate R2 and RMSE values. 
Table 3 depicts R2 and RMSE values of a different set of data. SMOTE- 
ENN showed the best performance among all resampling techniques 
having an average R2 and RMSE values of 0.755 and 0.240 respectively. 
Hence, we selected SMOTE-ENN as the best resample technique to bal-
ance the dataset for preprocessing to implement the DL models. Table 3 
depicts the result of the R2 and RMSE values against each group of 
datasets using XGBoost algorithm. 

5.4. Dataset balancing using SMOTE-ENN 

SMOTE–ENN algorithm works by combining the two data balancing 
techniques: SMOTE and ENN. SMOTE is an oversampling technique and 
edited nearest-neighbor (ENN) functions as an undersampling approach 
[32]. SMOTE calculates the distance between the random data and its 
k-nearest neighbors, selected from the minority class. ENN finds the 
k-nearest neighbor of the observed class and returns the majority class. 
Subsequently, unmatched classes are removed. This iterative process 
continues until the desired proportion of classes is achieved. To illustrate 
the SMOTE–ENN process, Fig. 4A depicts how SMOTE–ENN is generated 
in the synthetic sample (red color) with respect to two features, i.e., 
wscore_vw and wscore_ahrq to reach a certain proportion against the 
raw dataset. Fig. 4B depicts the raw data augmentation using SMOTE-
–ENN on the various dataset. For example, in the case of 100k data raw 
data, without and with mortality class, there are 96,458 and 3542 
respectively, that have been resampled to 74,301 and 90,644 respec-
tively. The previous ratio (96:3) was converted to 48:45. In addition, it is 
observed that almost similar ratios were maintained constantly for the 
respective groups of data using SMOTE-ENN. 

5.5. Selection of dataset 

As mentioned earlier, the evaluation metric R2 and RMSE values 
were identified by XGBoost. It is observed that the R2 value ranges from 
0.772 to 0.750 (±0.032) and the RMSE value ranges from 0.137 to 
0.1249 (±) derived from 14 sets of data groups. Hence, we have selected 
50K (R2 = 0.756 and RMSE = 0.146) and 200K (R2 = 0.743 and RMSE =
0.251) to classify the COVID-19 patient mortality with or without AD. 
Hence, three datasets have been selected for the analysis and are shown 
in Table 4. The reasons are two folds: (1) to represent the scale of 3.88 K, 
and (2) two different sets will give us efficient and comparable outcomes 
for performance evaluation of the DL models. In addition, the AD patient 
mortality due to COVID-19 (754 data) will be the third dataset in the 
study. 

6. AD-CovNet description and execution process 

6.1. AD-CovNet description 

In the hybrid DL model development, we considered two key aspects. 
Firstly, finding the essential characteristics of heterogeneous data; sec-
ondly, constructing a good performance classifier model to accurately 
differentiate and classify the fatality data. AD-CovNet is the organic 
integration of LSTM and MLP. LSTM is mainly used so that data can be 
arranged in a sequence by utilizing its memory concept and MLPs are 
suitable for classification prediction problems where inputs are assigned 
a class or label. They are also suitable for regression prediction problems 
where a real-valued quantity is predicted given a set of inputs This 
hybrid model extracts the essence of binary code data, reduces the 
complexity of the model, and improves classification accuracy. 

The LSTM architecture comprises of self-connecting memory cells 
that can Recall values from the previous stages in the network. For 
example, LSTM possesses special multiplicative units called gates for 
controlling the flow of information (Fig. 5). An input gate, an output 
gate, and a forget gate are the basic components of each memory cell. 
The input gate controls the flow of input activations, while the output 
gate controls the flow of cell activations into the remaining network. 
Moreover, the forget gate scales the internal state of the cell, which is 
then returned to the cell as input through a self-recurrent connection. 
LSTM has three gates: 1. Input Gate(it), 2. Forget Gate (ft), 3. Output 
Gate (ot). The gate equations are as follows: 

Input Gates, 

it = σ(wi[ht− 1 , xt] + bt) (3)  

C’t =ReLu(wc[ht− 1, xt] + bc) (4)  

here, t = timestep, it = input gate at t, wi = weight matrix of sigmoid 
operator between input gate and output gate, bt = Bias vector at t, Ct the 
value generated by ReLU. wc = weight matrix of ReLU operator between 
cell state information and network output, bc = Bias vector at wc = . 
Forget gate operation. 

Forget Gates, 

ft = σ
(
wf [ht− 1xt] + bf

)
(4.1a)  

here, ft = forget gate at t, xt = input, ht− 1 = previous hidden state, wf 
weight matrix between forget gate and input gate. bf = connection bias 
at t. Cell state operation, 

Cell state Ct = ft*Ct− 1 + it*C’t (4.1b)  

here, Ct = cell state information, ft = forget gate at t, it = input gate at t. 
ct− 1 = previous timesteps, C’t = value generated by ReLU. Output gate 
operation. 

Output 

ot = σ(w0[ht− 1, xt] + b0) (4.2)  

ht = ot*tanh(Ct) (4.3)  

here, ot = Output gate at t, w0 = Weight matrix of output gate, b0 = bias 
vector at w0 and ht = LSTM output. 

MLP is built from the connections of artificial neurons, which are 
conceptually inferred from biological neurons, and these neurons are 
organized into layers. The input layer provides an ordered set (a vector) 
of predictor variables, and each neuron transmits its value to all the 
neurons organized in the middle layer. The middle neuron receives the 
product of the values that are supplied from the input neuron and the 
connection weight through the connections. Each neuron localized in 
the middle layer implements a logistic function on the sum of the 

Table 4 
Selected three datasets.  

Data Number of instances Features R2 and RMSE 

Dataset I 50,000 COVID-19 mortality 0.756 and 0.246 
Dataset II 200,000 COVID-19 mortality 0.751 and .248 
Dataset III 754 AD-COVID-19 mortality –  
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weighted inputs. Lastly, the output neuron applies the logistic function 
to the weighted sum of its inputs, and the outcome of this function 
subsequently becomes the final output. An MLP consists of three layers: 
input, hidden, and output. The general equation of MLP is: 

a= f (net)= f (n)= f
(
wT .p+ b

)
= f

(
∑R

i=1
wT

R.pR + b

)

= f (wT.p+ b) . (5) 

f denotes activation function, wT and b are weights and bias 
respectively. 

6.2. Model execution process 

The proposed AD-CovNet model consists of two hierarchy levels. The 
upper hierarchy LSTM level learns the relations amongst the features 
extracted from the dataset. The lower hierarchy MLP uses to learn the 
features for classification. LSTM is relatively more complex than MLPs 
which is flexible and numerous layers can be added. But both can be 
implemented as a fully connected network with multiple layers. As a 
result, increasing depth avoids overfitting in models since the network’s 
inputs must pass through multiple nonlinear functions. While the 
memory feature of LSTM supports handling the same number of inputs, 
outputs, and hidden nodes, MLP utilizes a supervised learning technique 

called backpropagation for training. Hence, AD-CovNet can be applied to 
complex non-linear problems and works well with extensive input data. 
Fig. 5 shows an outline of the proposed neural network model; a pipeline 
of the input data preparation process, including preprocessing. 

The first stage was the amplification of the dataset using SMOTE- 
ENN software, then divided into training (80%) and testing (20%). We 
have defined and adjusted the model parameter values. The second stage 
was the pre-training phase in which the input layer receives the feature 
sets, which are used to train LSTM for reaching the optimal local pa-
rameters. The first layer is the LSTM layer which uses 256 length vectors 
to represent each data. The next layer is the LSTM layer with dropout. 
Finally, we used an output layer of Dense neurons with 65 neurons and a 
ReLU activation function (Eq. (6)) to make 0 or 1 predictions for the two 
classes; Mortality and No Mortality in the study. LSTM standardizes the 
ReLU activation function and rectifies the values of the inputs less than 
zero to zero to eliminate the observable vanishing gradient problem Eq. 
(6)). Then this output is taken as the input layer of Batch normalization 
for MLP (Eq. (7)) We have implemented four MLP layers taking a batch 
of training data and performing forward propagation to compute the 
loss. Then the model back propagates (Eq. (8)) the loss to get the 
gradient of the loss to each weight. Adding Batch Normalization (BN) 
layers leads to faster and better convergence (higher accuracy). Finally, 

Fig. 5. The operational outline of the proposed AD-CovNet model.  
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the gradients were used to update the weights of the network. 
The ReLU function is described below: 

f (x)=max(0, x) =
{

xi, if xi ≥ 0
0, if xi < 0 (6)  

where xi is an input to a neuron. 

xi ← γ
xi − μB̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
B + ε

√ + β (7) 

γ-hyperparameter, β that normalizes the batch {xi}, μB, σ2
B the mean 

and variance 

wnew ← wold − α δL(z, y)
δw

(8)  

here, L is the loss for output y and target value z, and z is the target 
output for a training sample. 

y is the actual output of the output neuron, w is weight, α learning 
rate, and δL

δw derivative of error in terms of weight. 
The second stage is the fine-tuning the Back Propagation algorithm 

which was used to fine-tune the whole network parameters to reach the 
global optimal parameters using kernel initializer to initialize the 
weights to train the MLP with labeled data. In the learning process of 
recognizing weights, a collection of labels is applied to the hidden layers 
to determine the network’s category boundaries. The third stage was the 
classification (test) where the trained model with optimal weights with 
biases was obtained, so data could be classified into the proper class. 
Alternately, various dropout has been applied to the input and recurrent 
connections of the memory units with the LSTM and MLP precisely. 

Enhanced overall computation speed is the main advantage of using 
the ReLU which allows faster computation since it does not compute 
exponentials and divisions [34]. The whole process is called 
hyper-parameter tune which was done explicitly to analyze such a big 

dataset with the proposed hybrid model. For all models, the number of 
epochs is 200, and the learning rate is 0.001. We have estimated Ac-
curacy, Recall, F1-score, Precision, validation loss for test data, the loss 
for train data, and plotted AUC-ROC curve of three models that includes 
one hybrid model. We applied python programming to perform all 

computation, visualization, and processing. All analyses were executed 
on Google Collaboration. This hybrid model extracts the essence of bi-
nary code data, reduces the complexity of the model, and improves 
classification accuracy. Table 5 depicts all the hyperparameters used to 
execute the hybrid and other models in this study. 

7. Result and analysis 

7.1. Model performance 

The study has evaluated the performance of implemented DL models 
by calculating Accuracy, Recall, F1-score, Precision, validation loss for 
test data, and the loss for train data. We have also plotted the AUC-ROC 
curve for each model. Typically, a confusion matrix is made up of 2 × 2 
matrices with four attributes. These are 1) predicted COVID-19 fatality 
(TP), predicted no fatality of COVID-19 (TN), Wrongly detected COVID- 
19 fatality (FP) and wrongly predicted no fatality of COVID-19 (FN) 
(Table 6). 

The most utilized forecast performance parameter is accuracy. It is 
expressed as a percentage and represents the worth of categorized in-
stances events (percent). The higher the accuracy, the better the clas-
sification results (close to 100% is considered very good results), as 
defined in Eq. (9).   

Precision evaluates and determines positive classes representing TP 
(fatality), as defined in Eq. (10).  

Table 5 
Model hyperparameters.  

Models Activation function Optimizer/Tuning Loss calculation Learning rate Batch size Dropout 

ANN ReLU Adam Mean Squared Error 0.01 175 0.5 
LSTM ReLU Adam Mean Squared Error 0.001 256 0.1 
MLP ReLU Adam Mean Squared Error 0.01 256 0.5 
AD-CovNet ReLU Adam Mean Squared Error 0.001 256 0.7  

Accuracy=
predicted COVID − 19(TP) + predicted no fatality of COVID − 19(FP)

Total samples
(9)   

Precision=
predicted COVID − 19 fatality(TP)

predicted COVID − 19 fatality(TP) + wrongly predicted COVID − 19 fatality (FP)
(10)   

Table 6 
Confusion matrix.   

Predicted: 0 (No mortality) Predicted: 1 (Mortality) 

Actual: 0 (No 
mortality) 

No fatality of COVID-19 (TN) Wrongly predicted COVID- 
19 fatality (FP) 

Actual: 1 
(Mortality) 

wrongly predicted no COVID- 
19 fatality (FN) 

COVID-19 fatality (TP)  
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Recall computes predicted positive classes in the total positive oc-
currences in the dataset, as defined in Eq. (11). 

Recall=
predicted COVID − 19 fatality (TP)
Total mortality instances (TP + FN)

(11) 

The F1-score calculates the accuracy of the testing process. The 
average is calculated using precisions and Recall sets Eq. (12). The 
formula is as follows: 

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(12) 

FPR denotes negative occurrences categorized as positive Eq. (13).   

True Positive Rate (TPR) is the ratio that describes the positive 
classes accurately identified as positive to the combined positive in-
stances (actual). It is represented in Eq. (14).   

FNR entails the miss classified rate of a model calculating positive 
classes categorized as negative. 

It is calculated from the equation below:   

And it is expected to be as close to zero. 
The best performance is evaluated by a minimal value of FNR and 

FPR (close to zero). Figs. 6–8 showed the confusion matrix of Dataset I, 
II, and III respectively, considering all the attributes with respect to four 
DL algorithms. This matrix shows TP, TN, FP, and FN together with FNR 
and FPR of models for three datasets. The hybrid model: AD-CovNet 
generated the lowest FNR and FPR for Dataset I, II, and III (FPR; 0.029, 
0.036, 0.023, and FNR; 0.025, 0.033, 0.254). LSTM provided the low 
FNR (0.025 and 0.256) for Dataset I and III compared to other models. 
MLP showed the highest FNR; 0.089 and 0.287 respectively for Dataset 
II and III, but the lowest FPR (0.016) in detecting the Fatality of COVID- 

19 patients having AD (Dataset III). In addition, ANN showed low FPR 
values for Dataset III. The hybrid model performed best in terms of FNR 
and FPR. 

7.2. Accuracy, recall, F1-Score, precision 

From the prediction analysis with DL hybrid and generic models, it 
has been found that the AD-CovNet model performed superior with higher 
Accuracy, Precision, Recall, and F1-score compared to the other three 
models. Tables 7–9 and Figs. 9–11 present the accuracy, precision, recall, 
and F1-score for the proposed hybrid model along with generic models 
considering Dataset I, II, and III, respectively. AD-CovNet delivered the 
maximum performance regarding all performance measurements. The 

values are the same for Dataset I. For Dataset II, these measures are as 
follows; Accuracy 97%, Precision 97%, Recall 96%, and F1-score 96%. 
We evaluated Dataset III with implemented DL algorithms and found that 
the performance measurements were than Dataset I and II. For example, 
with Dataset III, LSTM-MLP predicted the fatality of all AD-COVID-19 
patients with the highest accuracy together with other performance 

measurements. This hybrid model showed 86% accuracy,86% recall 
score, 88%precision, and 85% F1 score. In the case of other generic 
models: MLP provided low performance compared to the hybrid model in 
terms of all measurements. (Description for Dataset III must be included). 

7.3. Loss and validation loss 

We calculated loss (error for training data) and validation loss (error 
for testing data) in each epoch. Figs. 12–14 represent the loss and vali-
dation loss of the proposed DL models presenting Dataset I, II, and III, 
respectively. For all the models, a similar pattern was observed in both 
loss and validation loss during the analysis using all algorithms. The 
pattern and very minute difference in loss and validation loss indicate 
the perfect fitting of the model. For example, AD-CovNet, showed the 
lowest loss (0.029, 0.032, and 0.108) and validation loss, (0.022, 0.027, 
and 0.1107)for Dataset I, II, and Dataset III respectively. MLP provided 
higher loss (0.059, 0.144, and 0.l20) and validation loss (0.061, 0.079, 
and 0.119) while analyzing three datasets. However, LSTM showed high 

TPR=
predicted COVID − 19 fatality (TP)

wrongly predicted no COVID − 19 fatality (FN) + predicted COVID − 19 fatality(TP)
(14)   

FNR =
wrongly predicted no COVID − 19 fatality (FN)

predicted COVID − 19 fatality (TP) + wrongly predicted no COVID − 19 fatality(FN)
(15)   

FPR=
wrongly predicted no COVID − 19 fatality (FP)

wrongly predicted no COVID − 19 fatality (FP) + predicted no COVID − 19 fatality(TN)
(13)   

S. Akter et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 146 (2022) 105657

11

Fig. 7. Confusion matrix of four DL models (Dataset II).  

Fig. 8. Confusion matrix of four DL models (Dataset III).  

Fig. 6. Confusion matrix of four DL models (Dataset I).  
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loss and validation loss (0.134 and 0.136) and ANN provided the largest 
validation loss (0.848) while predicting fatality in Dataset III. These 
findings are presented in Tables 7–9. Therefore, the hybrid model pro-
vided the lowest error in all data categories compared to other models. 

7.4. AUC-ROC: Area Under Curve (AUC) and Receiver Operating 
Characteristic (ROC) 

AUC-ROC curve is another essential criterion to assess the perfor-
mance of the models. While ROC defines the probability curve (correctly 
classified over wrongly classified) of performance, AUC measures the 
capacity of a model to differentiate among classes. The higher ROC and 
AUC, the higher the performance meaning that the better the model is at 
separating patients with the disease and no disease. In this study, we 
have plotted AUC-ROC curve for three datasets (Fig. 15). It depicts the 
AUC curve, with the x and y axes representing the FPR and TPR, 
respectively. Higher AUC (near to 1) indicates better performance in 
determining whether the patient has a disease or not. Here, AD-CovNet 
demonstrated the highest AUC (0.973, 0.97, and 0.857) for detecting 
AD-COVID-19 mortality with Dataset I, II, and III, respectively. MLP 
showed relatively low AUC scores (0.93 and 0.91) compared to other 
models while analyzing Dataset I and II. In addition, LSTM provided the 
lowest AUC score (0.808) in Dataset III. 

7.5. Statistical significance test 

To compare the performance among the DL models in terms of ac-
curacy, we have executed one nonparametric test named Friedman test 
[33] and Quade test [34]. Later on, we performed Nemenyi post hoc test 
to compare the pairwise differences [35]. The former two tests calculate 

Fig. 9. Graphical representation of performance metrics- Dataset I.  

Fig. 10. Graphical representation of performance metrics- Dataset II.  

Table 7 
Performance of DL models for Dataset I.  

Models Accuracy Recall F1- 
score 

Precision Loss Validation 
Loss 

ANN 96% 96% 96% 96% 0.0361 0.033 
MLP 94% 94% 94% 94% 0.059 0.061 
LSTM 96% 96% 96% 96% 0.0572 0.036 
AD- 

CovNet 
97% 97% 97% 97% 0.0292 0.022  

Table 8 
Performance of DL models for Dataset II.  

Models Accuracy Recall F1- 
score 

Precision Loss Validation 
Loss 

ANN 96% 96% 96% 96% 0.032 0.028 
MLP 92% 91% 92% 93% 0.144 0.079 
LSTM 96% 96% 96% 96% 0.031 0.027 
AD- 

CovNet 
97% 96% 96% 97% 0.032 0.027  

Table 9 
Performance of DL models for Dataset III.  

Models Accuracy Recall F1- 
score 

Precision Loss Validation 
Loss 

ANN 84% 84% 84% 88% 0.119 0.848 
MLP 85% 85% 85% 88% 0.120 0.119 
LSTM 81% 81% 81% 81% 0.134 0.136 
AD- 

CovNet 
86% 86% 85% 88% 0.108 0.110  
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Fig. 12. Loss-validation curve (Dataset I).  

Fig. 11. Graphical representation of performance metrics- Dataset III.  
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the p-value of the overall comparison that indicates whether the algo-
rithms perform differently or not. Our comparison of DL models with 
these tests provides a p-value of (0.05 and 0.1) and proves that the 
models acted differently. Then we proceed with Nemenyi post hoc test. 
The nemenyi Test functions to calculate the critical difference (CD) as 
well as all pairwise differences. It is built on the absolute difference 
between the classifiers’ average ranks. The test establishes the CD for a 
significance level (alpha); if the distinction between the average ranking 
of two models is more than CD, the null hypothesis is rejected stating 
that the algorithms perform differently. In this study, the average 
ranking of the models is follows; ANN-2.0, MLP-3.4, LSTM-2.4, and 
AD-CovNet-1.0. Thus, it is observed that AD-CovNet performed better 
than MLP and LSTM with a significance level of alpha = 0.05 and 0.1 
(the difference between Avg ranking of MLP and AD-CovNet is 2.4 which 
is higher than CD; 2.34). The significance level and the difference in avg 
rankings are represented in Fig. 16. 

8. Risk factor 

We evaluated the risk factors of COVID-19 patients’ and AD patients’ 
data by implementing Random Forest, AdaBoost, XGBoost classifier 
models. Fig. 17 presents the risk factors of COVID-19 fatality utilizing 
the DL models. After preprocessing and normalizing, models were fitted 
to the data. The relevance of each feature in predicting the class was 

assigned as a rank and defined as a risk factor. All these three models 
evaluated the risk factors considering all the features in the data set. 
XGBoost evaluated the top 10 features as follows: ‘Age’, ‘wscore_ahrq’, 
‘score’, ‘hypunc’, ‘wscore_vw’, ‘metacanc’, ‘Ethnicity’, ‘Gender’, ‘depre’, 
‘fed’. AdaBoost ranked top 10 features as follows: ‘Age’, ‘wscore_ahrq’, 
‘wscore_vw’,‘score’, ‘hypunc’,‘Ethnicity’, ‘Gender’, ‘diabunc’, ‘hypothy’, 
‘cpd’. Random Forest classifier model placed 10 important features 
which are as follows: ‘fed’, ‘wscore_ahrq’, ‘carit’, ‘ond’, ‘Age’, ‘wscor-
e_vw’, ‘hypunc’,‘diabunc’ ‘diabc’, ‘Gender’. All these features have a 
great medical significance. While assessing these ranked features for 
these models, it has been observed that 5 features; ‘Age’, ‘wscore_ahrq’, 
‘wscore_vw’,‘hypunc’, ‘Gender’ are common which are presented in 
Fig. 17D. The significance of these 5 risk factors towards the fatality of 
COVID-19 patients having neuro diseases have been validated in the 
medical science and health sectors together with ‘carit’, ‘fed’, and 
‘depre’. 

9. Discussion 

The COVID-19 fatality rate increases with underlying conditions 
such as heart diseases, diabetes, high blood pressure, and neurodegen-
erative diseases like AD, VD, or others. A spectrum of imbalanced data 
generated from varying clinical features and conditions of AD patients 
with COVID-19 leads to misinterpretation of the fatality rate of AD 

Fig. 13. Loss-validation curve (Dataset II).  
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patients with COVID-19. Hence, the study aims to develop a novel 
hybrid deep learning model using Multi-layer Perceptron (MLP) and 
Long Short-Term Memory (LSTM) algorithms for effective utilization of 
imbalanced data and predict the fatality rate of AD patients with COVID- 
19. Six balancing algorithms have been tested to ensure that each class 
has roughly the same number of instances by increasing the frequency of 
the minority class while decreasing the frequency of the dominant class. 
Based on R2 and RMSE values, the SMOTE-ENN hybrid algorithm was 
found to have the best performance to balance and classifying the 
imbalance dataset for preprocessing to execute the DL models. To reach 
a certain proportion against the raw dataset, SMOTE–ENN generates 
synthetic samples in the raw dataset with respect to two features, i.e., 
wscore_vw and wscore_ahrq. The synthetic samples generated by 
SMOTE–ENN constantly maintain the ratio of mortality class (without 
and with) in the raw data, which is a prerequisite for appropriate fatality 
rate prediction. The proposed LSTM-MLP (AD-CovNet) hybrid deep 
learning model utilized the datasets (I, II, and III) balanced by the 
SMOTE–ENN to predict the fatality rate. The proposed AD-CovNet 
showed the highest optimum (overall 97%) performance according to 
accuracy, precision, recall, and F1-score, and hence, was considered the 
best performing hybrid DL model with three different datasets. Besides, 
the model exhibited the lowest error in terms of loss and validation loss 
scores, suggesting the proposed model is more accurate and efficient in 
classifying COVID-19 or AD patients with COVID-19 and predicting 
mortality rate. Furthermore, age (>65), gender, cardiac arrhythmias, 
and depression were identified as prominent critical risk factors for AD 
onset and AD-COVID-19 fatality. The overall discussion and major 
contributions to the biomedical informatics field are explained through 
the three RQs: 

RQ1: In recent years, there has been growing attention to the issue of 
imbalance. Imbalanced datasets can be found in a variety of real- 
world settings. Several solutions have been demonstrated in this 
study to the class-imbalance problem. We categorically grouped the 
data and experimented with all the resampling techniques. Based on 
the assessment metrics R2 and RMSE values (Fig. 3), we chose the 
best combination. The study demonstrated all the combinations ob-
tained the best predictive metrics with different resampling tech-
niques. The dataset is quite large, and the risk of overfitting while 
utilizing resample technology is significant which might lead to 
inaccurate conclusions. Also, it is imperative to overcome this chal-
lenge for larger datasets, since the minority class plays the deter-
minant role. Here in this study, overfitting was avoided during 
optimization by adjusting the parameters used to determine the error 
between testing and training datasets. While selecting the dataset set 
(Dataset I, II, and III), the higher value of R2 (0.76) showed the 
relative measure of fit. In contrast, lower values of RMSE indicated 
the absolute measure of fit and subsequently accelerated AD-CovNet 
model performance by indicating a better fit. In this dataset, the ratio 
of the majority class to the minority class was 96:3 affected the 
classification performance catastrophically and prediction results 
could not be obtained correctly. Though DL models can handle very 
large datasets well to solve the classification problems, due to the 
huge imbalance issue, DL models performed very severely with all 
performance metrics. Thus, we attempted to balance the dataset in 
terms of class and balanced the dataset using all available resampling 
techniques (Table 3), and identified a well-performed technique 
named SMOTE-ENN, providing the best R2 and RMSE values with the 
augmented dataset while considering the selected three datasets. 
RQ2: The overall performance of AD-CovNet based on accuracy, 
precision, recall, and F1-score, AUC-ROC, loss, and validation loss 

Fig. 14. Loss-validation curve (Dataset III).  
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score were evaluated with three different datasets, and results were 
compared. Overall, AD-CovNet (97%), LSTM (96%), and MLP (91%– 
94%) demonstrated high accuracy in the analysis of predicting fa-
tality of COVID-19 patients with all neuro diseases (Dataset I and II). 

In addition, AD-CovNet accomplished the highest accuracy in pre-
dicting fatalities in comparison to other deep learning models while 
analyzing these three datasets (Figs. 9–11). However, for dataset III 
(4176 samples)), the models did not achieve results as good as the 
large dataset (81–85% accuracy). In both cases, AD-CovNet showed 
the best performance in analyzing and predicting the classes. 

All models provided a minimal error of roughly 0.1–0.15 for both the 
training and testing data (loss and validation loss). Both types of errors 
were reduced with higher time and epochs. The results show that the 
data was correctly fitted to the implemented DL generic and hybrid 
models. When compared with other models, AD-CovNet provided the 
error as loss (0.0292 and 0.0271) and validation loss (0.0326, 0.0227), 
which was considered the lowest for this study and Dataset I, and II, 
respectively. For Dataset III, AD-CovNet also provided the lowest loss 
and validation loss values compared to other models, while ANN pro-
vided a maximum error of 0.8488. As a result, AD-CovNet is the best fit 
for three types of data. Furthermore, AD-CovNet is more accurate and 
efficient than the other three models in classifying COVID-19 or AD 
patients with COVID-19 illnesses. Moreover, when considering the four 
DL models, the variation between loss and validation loss was extremely 
tiny, implying that the data was perfectly fitted to all algorithms and 
models. Therefore, it can be concluded that the models did not overfit 
the training data. 

Due to the availability of diverse neural network topologies in recent 
eras, selecting the appropriate blend of hyperparameters that decreases 
or raises the fitness function is one of the most challenging components 
of any deep learning project. Given a large number of benchmarks, 
building a constant search process may be problematic. Therefore, the 
objective of this study was to create a fitness function and a search 
method including the tuning of hyperparameters as an optimizer, acti-
vation function, network layer depth, learning rate, and batch size. As a 
result, we were able to determine the best hyperparameter design for 
rapid, efficient, urgent, and adaptive deep learning analysis. 

RQ3: Further, the study detected the risk factors of COVID-19 and 
AD fatality. AdaBoost, Random Forest, and XGBoost classifier models 
were used. Age is a very critical factor in AD which was described in 
annual reports of the Alzheimer’s association in 2021; aged 65 and 
older, 6.2 million Americans had AD, and the number is expected to 
rise from 6.2 million to 13.8 million by the end of 2060 [36] in the 
USA. Age is also a prominent critical factor in COVID-19 fatality that 
has shown for the last two years in the whole world. Gender is 
another factor in AD and described in the previous reports as 2/3 of 
American women suffer from AD. wscore_ahrq’, ‘wscore_vw’ are two 
comorbidities’ scores. The weighted Elixhauser score known as the 
comorbidity score (wscore_ahrq and wscore_vw) is calculated using 
both the AHRQ and the van Walraven algorithms. This score in-
dicates the possible fatality of critically ill patients. The higher the 
score, the higher the probability of a patient’s fatality. Carit is 
another risk that was identified by the models in this study. ‘carit’ 
(Cardiac arrhythmias) can be justified by different medical diagnosis 
reports. If the heart is not functioning properly, any individual is at 
risk of becoming seriously ill if infected with any pathogenic agent. 
Thus, the mortality incidence is higher in the AD-COVID-19 patients 
with heart problems. Depression (depre) is a critical factor for AD 
onset. Depression creates pressure on brain memory cells and com-
bined with AD makes the condition worse. 

Fig. 15. AUC curves of Dataset I, II, and III.  
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Fig. 16. Nemenyi test for pairwise comparisons. A. Nemenyi test for pairwise comparisons (alpha = 0.05 and CD = 2.34), B. Nemenyi test for pairwise comparisons 
(alpha = 0.1 and CD = 3.14). 

Fig. 17. Risk factors of AD-COVID-19 fatality.  
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9.1. Limitations in this work 

The study has flaws as well. The overall data had 43 features with 
pathologies information, very imbalanced classes (mortality vs. no 
mortality), and 400,000 samples that caused the predictive performance 
to be very challenging. We used a binary dataset for the classification, 
considering the split of raw data into different datasets. The three 
representative datasets were chosen to analyze as the analysis with DL 
models for the whole data set did not work out well in terms of 
computational efficiency and performance. The reason behind this 
problem was the huge, augmented dataset of around 1 million. How-
ever, multi-view learning algorithms [38] may be studied for an 
improved prediction results by combining heterogeneous feature sets 
consisting of multiple clinical factors such as examinations, medications, 
and lab tests of different data types (e.g., categorical and continuous). 

9.2. Future work 

Future work may be directed toward exploring analysis by incor-
porating various experimental approaches and data processing. It would 
be interesting to use the AD-CovNet technique to forecast the variation in 
time of COVID-19 fatalities in AD patients by a certain experimental 
threshold [9]. Another highly intriguing and appealing study may be 
expanding AD-CovNet to a multiclass classification of neuro disorders. 

9.3. Comparative study 

The results of the AD-CovNet model are compared with relevant 
studies and illustrated in Table 10. These findings demonstrated that the 
AD-CovNet model demonstrated competitive performance compared to 
the other models. However, we did not find any binary datasets of 
COVID-19 patients having AD with clinical information to compare. 
Hence, we showed the comparison of the model performance of AD- 
CovNet with that of the other studies using X-ray images where they used 
RNN, LSTM, and MLP. Overall, AD-CovNet showed better performance, 
with an accuracy of 97.0%. 

10. Conclusion 

We began the investigation by describing the complexities of dealing 
with a large and diverse dataset. This condition is typical of a real-world 
general practice scenario in which class samples are substantially 
imbalanced. We categorically selected the dataset for classification once 
the balanced approach was initiated. Following that, we suggested four 
DL models together with a hybrid AD-CovNet model for predicting AD- 
COVID-19 fatalities and evaluating risk factors on various characteris-
tics in an actual dataset. We demonstrated that the AD-CovNet technique 
could predict and categorize AD-COVID-19 fatalities with high accuracy 
and precision. Because of its effective but complicated architecture for 
capturing large amounts of data, the AD-CovNet model was generally 
capable of gaining relevant information. Adding statistical significance 
(Fig. 16) established the reliability of the outcome. Risk factors identi-
fied through three ML models categorized the risk factors with medical 
relevancy. The AD-CovNet model, which also has a high level of inter-
pretability (i.e., it can cope with heterogeneous data and large datasets), 
maybe the best candidate in common practice to be integrated into a 
decision support system for disease fatality screening purposes. This 
framework provides a generalizable approach for linking deep learning 
to pathophysiological processes in human disease. Based on the 
research, we believe that AD-CovNet i.e., deep learning approaches, 
could be effectively used to translate large amounts of clinical and 
biochemical data into improved human health. 
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