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Abstract

Influenza viruses exhibit considerable diversity between hosts. Additionally, different quasispecies can be found within the 
same host. High-throughput sequencing technologies can be used to sequence a patient-derived virus population at sufficient 
depths to identify low-frequency variants (LFV) present in a quasispecies, but many challenges remain for reliable LFV detec-
tion because of experimental errors introduced during sample preparation and sequencing. High genomic copy numbers and 
extensive sequencing depths are required to differentiate false positive from real LFV, especially at low allelic frequencies 
(AFs). This study proposes a general approach for identifying LFV in patient-derived samples obtained during routine surveil-
lance. Firstly, validated thresholds were determined for LFV detection, whilst balancing both the cost and feasibility of reliable 
LFV detection in clinical samples. Using a genetically well-defined population of influenza A viruses, thresholds of at least 
104 genomes per microlitre and AF of ≥5 % were established as detection limits. Secondly, a subset of 59 retained influenza A 
(H3N2) samples from the 2016–2017 Belgian influenza season was composed. Thirdly, as a proof of concept for the added value 
of LFV for routine influenza monitoring, potential associations between patient data and whole genome sequencing data were 
investigated. A significant association was found between a high prevalence of LFV and disease severity. This study provides a 
general methodology for influenza LFV detection, which can also be adopted by other national influenza reference centres and 
for other viruses such as SARS-CoV-2. Additionally, this study suggests that the current relevance of LFV for routine influenza 
surveillance programmes might be undervalued.
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DATA SUMMARY
All supporting protocols, code and data have been provided within the article, in the supplementary data or in FigShare: https://​
doi.org/10.6084/m9.figshare.21214256.v1 [1]. All sequencing reads have been deposited in the NCBI Sequence Read Archive 
(SRA). All generated consensus genome sequences have been deposited in GISAID.

INTRODUCTION
Influenza is a very contagious respiratory tract infection in humans, mainly caused by the Influenza A and B viruses. Both the 
Influenza A and B genomes consist of eight segments, including the hemagglutinin (HA) and neuraminidase (NA) segments. Due 
to their location on the viral envelope, the proteins encoded by the HA and NA segments represent key viral antigens and are the 
principal targets of the humoral immune response of the host [2–4]. A(H1N1) and A(H3N2) are the two principal Influenza A 
subtypes that circulate in humans [5].

Influenza viruses have a low-fidelity RNA polymerase that lacks proof-reading functionality. This results in a relatively high 
mutation rate during viral replication [6]. Replicating influenza within a host does therefore not give rise to genetically identical 
progeny viruses but rather to ‘quasispecies’, i.e. closely-related viruses that differ by at least one nucleotide from each other. Viral 
quasispecies are defined as a population of closely-related, non-identical viral genomes in a dynamic host environment that is 
continuously subjected to competition and selection [7–9]. Although considerable risk exists for producing defective progeny 
viruses due to the low-fidelity RNA polymerase, this also provides a major opportunity for the virus to rapidly evolve and escape 
from neutralizing antibodies [10], antiviral drugs [11] and cytotoxic T-cells [12].

The availability and cost-effectiveness of high-throughput sequencing (HTS) technologies have led to their increased use in routine 
influenza surveillance [13]. HTS allows to determine the sequences of all eight influenza virus segments simultaneously, which 
offers the opportunity to better understand between- and within-host genetic diversity [14]. Genetic surveillance of influenza virus 
in biological samples is currently focused on monitoring mutations that are linked to antiviral resistance [15, 16], and antigenic 
mutations that are relevant for selecting vaccine strains [17]. Studies examining influenza pathogenesis should consequently 
consider virological and immunological parameters associated to severity as a whole [18]. When investigating viral evolution, 
transmission, drug and vaccine resistant strains, and pathogenicity, it may not always be sufficient to only examine the consensus 
genome sequence. Therefore, the current focus is shifting to also include quasispecies while studying genetic diversity [19, 20]. 
During infection, a particular variant within a quasispecies can by chance obtain a competitive advantage over other variants 
[21]. This can result in positive selection, and thus an increased frequency of such a variant over time within the patient [22]. 
However, the spread to other hosts is limited to a small fraction of the quasispecies population and even fewer become fixed in 
the global viral population [9, 23]. Positive selection of specific quasispecies in hosts has thus far only been observed during long-
term infection of immunocompromised patients [24] and in extreme cases of drug resistance [25–27] for the HA and NA genes.

Several recent studies have successfully identified genetic variation in viral quasispecies during clinical influenza infections 
using deep sequencing with HTS [24, 28–31]. Deep sequencing allows higher genome coverages, and consequently more reliable 
estimation of the diversity within the quasispecies population present at very low abundances [32]. Apart from the increased 
experimental costs associated with the use of HTS, many challenges remain to detect low-frequency variants (LFV, i.e. defined as 
nucleotides differing from the consensus sequence at low allelic frequency at a specific genomic position), including high-quality 
sequencing reads to ensure that insertions and deletions (indels), and single nucleotide variants (SNVs), can be called confidently. 
Current variant-calling algorithms for identifying LFV are based on read quality, mapping quality, strand bias, base quality and 
sequence context [28]. Variants are typically accepted only when their allelic frequency (AF) exceeds the expected sequencing error 
rate. Several variant-calling methods have been used in multiple HTS-based studies of viral diversity [18, 25, 33]. However, these 
methods have not always been benchmarked against predefined viral populations, rendering their accuracy for detecting LFV 
largely unknown. Moreover, not only the bioinformatics approach but also the laboratory process can influence LFV detection. 
Experimental errors can be introduced during sample preparation, including reverse transcription and PCR amplification, and 
during sequencing itself [34]. The genome copy number and viral load of samples in particular affect the specificity and sensitivity 
of variant detection substantially, resulting in more false positive (FP) variant detections for samples with a low concentration 
due to propagating PCR-amplification errors [28].

In this study, we first established an approach for the quantification of low-frequency variants within influenza samples by using 
a genetically well-defined population of Influenza A viruses. Thresholds for LFV detection based on HTS with the Illumina 
technology were validated whilst ensuring that this approach remains powerful enough but also economically feasible in routine 
surveillance. Secondly, this approach was used to evaluate the prevalence of LFV of influenza A(H3N2) viruses recovered from 
the Belgian national influenza surveillance network during the 2016–2017 season, demonstrating that several LFV were identified 
in clinical samples. Finally, potential associations between within-host diversity and patient data were investigated as a proof of 
concept for the potential relevance of LFV in routine influenza monitoring.

https://doi.org/10.6084/m9.figshare.21214256.v1
https://doi.org/10.6084/m9.figshare.21214256.v1
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METHODS
Viruses and cells
A reverse genetics system of Influenza A/Bretagne/7608/2009 (A(H1N1)pdm09) and Influenza A/Centre/1003/2012 (A(H3N2)) 
in a bidirectional pRF483 plasmid were provided by Institut Pasteur Paris, France. Influenza viruses with a point mutation in the 
NA segments were obtained by reverse genetics using the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies) 
and GeneJET Plasmid Miniprep Kit (Thermo Fischer) according to the manufacturer’s instructions. For A/Bretagne/7608/2009, 
the NA-H275Y mutation (CAC → TAT) was introduced (consisting of two nucleotide mutations). For A/Centre/1003/2012, 
NA-E119V (GAA → GTA) was introduced (consisting of one nucleotide mutation). The NA plasmids were verified using Sanger 
sequencing on an Applied Biosystems Genetic Analyzer 3500 using the Big Dye Terminator Kit v3.1 following the manufacturer’s 
instructions using primers described in Table S1.

A co-culture of Madin-Darby canine kidney (MDCK) cells and 293 T cells was maintained in Dulbecco’s modified Eagle medium 
(DMEM) (Gibco) and 1 % Penicillin Streptomycin (Gibco). The cells were transfected using FuGene HD Transfection Reagent 
(Promega) and Opti-MEM (Gibco). The viruses were rescued from transfected cells using an 8-plasmid reverse genetic system 
containing each a genomic segment. Afterwards these viruses were amplified by two cell passages.

Patient samples
Patient-derived samples were collected from the two main surveillance systems in Belgium, ‘influenza-like-illness’ (ILI) and 
‘severe-acute-respiratory-infection’ (SARI). ILI cases are defined by a sudden onset of symptoms, including respiratory and 
systemic symptoms and fever. A SARI case is defined as an acute respiratory illness with onset within the last 10 days of respiratory 
symptoms, fever, and requiring hospitalization for at least 24 h. These surveillance systems are in place to follow trends of viral 
spread and changes in circulating influenza viruses. From these two surveillance systems, initially 253 samples were selected 
[35, 36]. Only samples with a genome copy number above 104 genomes per microlitre were retained for the LFV validation (see 
Results), resulting in 59 retained samples, comprising 44 samples from hospitalized SARI patients and 15 from ILI outpatients, 
spread over the influenza season (beginning, peak and end of epidemic). The genome copy number of 104 genomes per microlitre 
is based on the Cq values from the routine diagnostic surveillance with qPCR [37] and corresponds with a Cq of 19.53. The 
samples tested negative using reverse transcription polymerase chain reaction (RT-qPCR) for other respiratory viruses, including 
respiratory syncytial virus A and B, parainfluenza viruses 1, 2, 3 and 4, enterovirus D68, rhinoviruses, human metapneumoviruses, 
paraechoviruses, bocaviruses, adenovirus, coronaviruses OC43, NL63, 229 and MERS-CoV [38, 39]. Samples from ILI outpatients 
were categorized as mild cases (n=15). Samples from hospitalized SARI patients were categorized as moderate (n=34) or severe 
cases (n=10). Hospital admission (i.e. the SARI case definition) is not a disease severity indicator itself because patients could 
have been admitted to hospital care for isolation purposes or other medical conditions. A severe case was defined by the presence 
of at least one severity indicator: death, stay in an intensive care unit, need for invasive respiratory support or extracorporeal 
membrane oxygenation (ECMO), or the patient having acute respiratory distress syndrome (ARDS). Available patient data are 
listed in Table 1 with the number of patients exhibiting these characteristics.

Additionally, the median, first quartile and third quartile copy numbers of genomes per microlitre of 1273 A(H3N2) positive 
influenza samples from the influenza seasons 2015–2019 in Belgium were calculated and plotted with an in-house script (python 
3.6) and the matplotlib 3.3.4 library [40] hiding the outliers. The boxplot including the outliers is shown in Fig. S1.

Impact Statement

The influenza virus is prone to mutations and reassortments which leads to a considerable diversity between influenza viruses 
within different hosts as well as within a host. This results in a population of multiple non-identical viral influenza genomes, 
or quasispecies, within one patient. Quasispecies may have an impact on the patient by evolving and escaping antiviral drugs, 
neutralizing antibodies and cytotoxic T-cells. NGS provides the opportunity of not only detecting the majority variant in a sample, 
but also quasispecies at lower frequencies. This study proposes a general approach to identify low-frequency variants in patient-
derived samples obtained during routine surveillance. However, it is quite challenging to distinguish the real low-frequency 
variants from experimental errors that occur due to PCR and NGS errors. Therefore, validated thresholds were established for 
low-frequency variant detection, while considering the cost and feasibility of reliable low-frequency variant detection in clinical 
samples. As a proof of concept for the added value of low-frequency variants for routine influenza monitoring, potential associa-
tions between patient data and whole genome sequencing data were investigated.
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Creation of mixes of wild-type and mutant viruses
To assess the minimal percentage (i.e. AF) for a LFV to be considered truly present and not constitute a FP observation, mixes 
were made from the wild-type (WT) and mutant virus, created as described above, for both Influenza A/Bretagne/7608/2009 
(A(H1N1)pdm09) and Influenza A/Centre/1003/2012 (A(H3N2)) with eight ratios (0, 0.1, 0.5,1, 5, 10, 20 and 100% mutant virus) 
(Table S3). Mixes were made in triplicate based on to the plaque forming units (PFU ml−1; concentration of virus) of the infec-
tious virus of the WT and mutant. Constructed mixes were situated mainly in the 0–5 % range (Table S4), since previous studies 
[24, 28–31] have reported most FP being present in this range. RT-ddPCR was used to determine the genome copy numbers of 
the introduced mutations in the respective mixes (Supplementary Method S2 [1]).

RNA isolation and RT-qPCR
RNA of the A/Bretagne/7608/2009 (A(H1N1)pdm09) and A/Centre/1003/2012 (A(H3N2)) influenza virus mixes was extracted 
from culture supernatants using the Easy Mag platform (BioMérieux, #280130-#280134 and #280146) according to the manu-
facturer’s instructions. Extraction of nucleic acids of clinical specimens was performed using the Viral RNA/DNA isolation kit 
(Macherey Nagel, Germany, cat No: MN 740691.4). The RNA extraction was done according to manufacturer’s instructions except 
that the beads were not washed in buffer MV5 but instead left to dry for 10 minutes until the pellet did not appear shiny anymore.

Using 5 µl RNA for each sample, a RT-qPCR was performed using the SuperScriptIII Platinum One-Step Quantitative Kit (Invit-
rogen) with primers InfA_Forward, InfA_Reverse and InfA_probe. These bind to an influenza M gene section [41]. Each reaction 
contained 0.5 µl primer/probe, 1 µl SuperScript III RT/Platinum Taq mix, 5 µl nuclease-free water, 12.5 µl PCR Master Mix and 
5 µl RNA.

PCR amplification and whole genome sequencing
To amplify RNA extracts, primers designed to target the 3′ and 5′ conserved ends of all eight segment were used as described previ-
ously [35]. Concisely, RT-PCR was used to generate sequencing amplicons in a reaction volume of 50 µl. The used protocol is based 
on Van den Hoecke et al. [32] with optimized volumes and RT-PCR conditions. Primers included CommonA-Uni12G (​GCCG​
GAGC​TCTG​CAGA​TATC​AGCG​AAAGCAGG), CommonA-Uni12 (​GCCA​GAGC​TCTG​CAGA​TATC​AGCA​AAAGCAGG) and 
CommonA-Uni13G (​GCCG​GAGC​TCTG​CAGA​TATC​AGTA​GAAA​CAAGG) [32]. The reaction volumes included 25 µl RT-PCR 
buffer, 1 µl SuperScript III One-Step RT-PCR Platinum Taq HiFi DNA Polymerase (Invitrogen, USA), 17.375 µl dH2O, 0.375 µl 

Table 1. Samples stratified according to patient data

Age (years): <15 15–59 ≥60

Beginning of epidemic (<week 4) 4 2 12

Peak of epidemic (week 4–6) 2 3 20

End of epidemic (>week 6) 4 1 11

ILI 15 SARI 44

Male* 25 Female* 32

Vaccinated* 11 Not vaccinated* 26

Antibiotics administered* 23 No antibiotics administered* 29

Respiratory diseases 9 No respiratory disease 50

Cardiac disease 18 No cardiac disease 41

Obesity 6 No obesity 53

Renal insufficiency 9 No renal insufficiency 50

Diabetes 6 No Diabetes 53

Immuno-deficiency 5 No immuno-deficiency 54

Neuromuscular disease 7 No neuromuscular disease 52

Stay in ICU 5 No stay in ICU 54

Resulting in death* 7 Not resulting in death* 46

*Samples for which certain patient data were unknown, were excluded for analysing that particular characteristic.
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of each primer (20 µM), 0.5 µl RnaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen, USA) and 5 µl of RNA extract. 
An error rate (number of misincorporated nucleotides per total number of nucleotides polymerized) of lower than 1×10−3 by 
Invitrogen was estimated for the SuperScript III One-Step RT-PCR Platinum Taq HiFi DNA Polymerase [42]. The following PCR 
conditions were used: one cycle at 42 °C for 15 min, one cycle at 55 °C for 15 min, one cycle at 60 °C for 5 min, one cycle at 94 °C 
for 2 min (ramp rate: 2.5 °C s−1); five cycles at 94 °C for 30 s, 45 °C for 30 s (ramp rate: 2.5 °C s−1) and 68 °C for 5 min (ramp rate: 
0.5 °C s−1); 37 cycles at 94 °C for 30 s, 55 °C for 30 s and 68 °C for 5 min; and one cycle at 68 °C for 5 min (ramp rate: 2.5 °C s−1). 
After purifying the generated amplicons with the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Germany) according 
to the manufacturers’ instructions, the concentration of each purification product was quantified with the Qubit 4 Fluorometer 
(Invitrogen, USA) using the Qubit broad-range assay. Purified products were examined with the Agilent TapeStation (Agilent 
Technologies, USA) using the Agilent D5000 ScreenTape system.

Sequencing libraries using the Nextera XT DNA Sample Preparation Kit (Illumina, USA) were prepared with the purified RT-PCR 
products according to the manufacturer’s instructions. All libraries were sequenced on an Illumina MiSeq (Illumina, USA) 
platform using the MiSeq V3 chemistry, as described by the manufacturer’s protocol, to produce 2×250 bp paired-end reads. 
Generated WGS data are available in the NCBI Sequence Read Archive (SRA) [43] under accession number PRJNA692424 for 
the reverse genetics samples (Table S3) and PRJNA615341 for the patient-derived samples (Table S5).

Consensus genome sequences were obtained as described previously [35]. Concisely, using Trimmomatic v0.32 [44], the raw 
(paired-end) reads were trimmed with the following settings: ‘​ILLUMINACLIP:​NexteraPE-​PE.​fa:2 : 30 : 10’, ‘LEADING:10’, 
‘TRAILING:10’, ‘SLIDINGWINDOW:4 : 20’, and ‘MINLEN:40’ retaining only paired-end reads. An appropriate reference 
genome for read mapping was selected from the NCBI viral genomes resource [45] for each sample. Following the GATK ‘best 
practices’ protocol [46] using Picard v2.8.3 (https://broadinstitute.github.io/picard/) and GATK v3.7, the consensus sequences 
for all samples were obtained. First, following best practices in the field [47–50], duplicated reads were marked with PICARD 
MarkDuplicates in order to remove reads originating from PCR duplicates of the same original DNA molecule which could 
artificially inflate AF of identified variants. This was followed by indel realignment with GATK and variant calling using 
GATK UnifiedGenotyper with the following options: ‘-ploidy 1’, ‘--stand_call_conf 30’, and ‘--genotype_likelihoods_model 
BOTH’. Subsequently, only high-quality variants with a read depth ≥200 were retained using GATK VariantFilter. Next, GATK 
FastaAlternateReferenceMaker was used to obtain the consensus sequence based on the called variants and selected reference 
sequence.

Low-frequency variant identification
Only samples with a viral load ≥104 genomes µl−1 (see above), and a genome median coverage higher than 1000× calculated as 
described previously [35], were retained. For LFV calling, the consensus genome fasta files were first indexed using Samtools 
faidx 1.3.1. Bowtie2-build 2.3.0 [51] was then used to generate indexes. Reads were aligned to the consensus sequence using 
Bowtie2 align 2.3.0 in end-to-end mode for each sample, producing SAM files that were converted into BAM with Samtools 
view 1.3.1. Reads were then sorted using Picard SortSam 2.8.3 (http://broadinstitute.github.io/picard/) with the option ‘SORT 
ORDER=coordinate’. A dictionary of the reference fasta files was created using Picard CreateSequenceDictionary 2.8.3. Reads 
originating from PCR duplicates which could bias the observed AF of LFV were removed from read alignments using Picard 
MarkDuplicates 2.8.3 with the option ‘REMOVE_DUPLICATES=true’. The ‘LB’, ‘PL’, ‘PU’ and ‘SM’ flags are required for down-
stream analysis by GATK and were set to the placeholder value ‘test’ using Picard AddOrReplaceReadGroups 2.8.3. The resulting 
BAM files were indexed by Samtools index 1.3.1 and used as input for GATK RealignerTargetCreator 3.7 [46] followed by GATK 
IndelRealigner 3.7 for indel realignment. The generated BAM files were then indexed using Samtools index 1.3.1 and LoFreq 
2.1.3.1 [52] was used to detect LFV in ‘call mode’. LoFreq separates true LFV from erroneous variant calls by using Phred-scores 
as probability error in a Poisson-binomial distribution. The consensus sequence of each sample was used as its own reference to 
call LFV, in order to avoid calling high-frequency non-reference bases due to an inadequate choice of a single reference sequence 
for all samples used by LoFreq to call variants, i.e. nucleotides at low allelic frequency differing from the consensus at a specific 
genomic position [52]. Average read position values were added to called variants using an in-house script (python 3.6) [53] 
(Supplementary Methods S2 [1]) based on the one provided by McCrone et al. [28]. Only variants with a mean reads location 
within the central 50 % positions (i.e. between bases 62 and 188) were retained for further analysis as advised by McCrone et al. 
[28]. Variants were not further filtered based on Phred-score or mapping quality as was explored in other work, because these 
metrics are already internally considered by LoFreq for variant calling [28, 52]. An archive containing the code used to call variants 
and instructions to run it is available as part of the Supplementary Methods S2 [1].

To determine an AF threshold, the workflow described above was used to call variants in the mixes of WT and mutated A(H1N1)
pdm09 and A(H3N2) strains. Receiver operating characteristic (ROC) curves for both subtypes were created using an in-house 
script (python 3.6) and the matplotlib 2.2.2 library [40]. Briefly, called variants were first sorted by decreasing observed AF and 
then numbers of true and FP variants were calculated at each called AF and plotted as a ROC curve.

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA692424
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA615341
https://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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Statistical analysis
All statistical analyses were performed using R-software (RStudio 1.0.153; R3.6.1). Sequencing depth and viral concentration were 
not introduced as covariates, because we assume that the number of amplification and sequencing errors will be limited due to 
the validated thresholds set up beforehand (viral concentration=104 copies µl−1; allelic frequency=5 % see Results). Furthermore, 
any remaining amplification and sequencing errors are expected to be distributed randomly over the genome, and these should 
consequently not have an influence on the statistical analysis. A glm (link function=quasipoisson) was used to assess the associa-
tion between number of detected LFV and individual patient data parameters, which included disease severity (classified into mild, 
moderate and severe), patient age, sampling date, sex, vaccination status, presence of comorbidities and disease severity indicators. 
Patient data were only evaluated if at least 5 % of the retained patient samples met the condition. For example, asthma was not 
retained because only two out of 59 patients suffered from this condition (3.4 %), whereas vaccination status was retained since 11 
out of 59 patients were vaccinated (18.6 %). Afterwards, all identified significant associations (P <0.05) were fitted simultaneously 
in a glm with the same link function and only significant associations were retained. In addition to the median, the interquartile 
range (IQR) and the effect size were calculated.

RESULTS
Validating an AF threshold for LFV calling using an experimental quasispecies population
Sequencing errors affect the frequencies at which variants can reliably be called. At decreasing frequencies, even for high-coverage 
datasets, the amount of reads containing a certain variant becomes too limited to discriminate real LFV from sequencing errors. 
Decreasing AF thresholds for accepting LFV will consequently increase sensitivity by identifying more true positive (TP) variants, 
but also decrease specificity by incorporating more FP variants. It is therefore necessary to establish a validated threshold for 
the observed AF for accepting LFV. A mutated version of Influenza A/Centre/1003/2012 (A(H3N2)) with high genomic copy 
number (WT=98 475 genomes µl−1; MUT=312 625 genomes µl−1) was used to create a validation dataset in triplicate, for which the 
ground truth was known, to determine an AF threshold for accepting called LFV. The mutant included a specific mutation in the 
NA segment present at 100 %, i.e. the well-known A(H3N2) oseltamivir resistance mutation NA-E119V [15], which served as a 
marker when mixing the WT and mutant virus in different ratios (Table S4). The resulting mixes of the eight ratios (theoretically: 
0, 0.1, 0.5,1, 5, 10, 20 and 100% mutant virus), and their triplicates, were then subjected to WGS. High sequencing coverages were 
obtained for all samples and segments (Fig S2), after which LFV were called with LoFreq. Consequently, 18 TP were expected (i.e. 
one mutation times six ratios (0.1 %, 0.5 %,1 %, 5 %, 10 %, 20 %) times three replicates). Levels of read deduplication were relatively 
limited (min=21 %, max=61 %, average=36 %; Table S6), and an additional investigation of variants called with and without read 
deduplication confirmed that read deduplication did not cause any major bias in the numbers of called variants (Supplementary 
Information S1). Noteworthy, seven additional variants were detected where the mean of the called frequencies over the triplicates 
corresponded to expected frequencies based on the TP dilution values, as observed at least in one dilution mix with an AF >5 % 
(Supplementary Information S2). This indicates that during the propagation in cells of both the WT and mutant, other variants 
emerged even in the absence of external selection pressure. These seven variants were therefore removed from the variant sets used 
for AF threshold determination as these unexpected variants were not part of the ‘ground truth’, but showed sufficient evidence 
for being true variants instead of FP (Supplementary Figure S3). Afterwards, TP variants (i.e. the introduced NA mutation in the 
different mixes) and FP variants (i.e. any variant called in the different mixes that did not correspond with the WT, excluding the 
seven aforementioned variants) observed at varying observed AFs were expressed in a ROC curve (Fig. 1), considering triplicate 
values as independent values. The AFs used in the ROC curve are the observed percentages of the NA mutation as determined 
with Lofreq. A ROC curve expresses the relationship between sensitivity and specificity for a benchmarked experiment where the 
ground truth is known by varying a discrimination threshold (here the AF) and plotting the false positive rate (i.e. 1-specificity) 
and sensitivity on the x- and y-axis, respectively. A perfect assay where all FP are separated from TP is characterized by a ROC 
curve with a right angle that follows the upper left boundary of the plot (Fig. 1).

For A(H3N2), no FP and 50.00 % of TP (n=9/18) were called at an observed AF of 4.82 % or higher. This seemingly low sensitivity 
is explained by the construction of the dataset which aimed at providing a high resolution at low AF to determine the limit 
of detection and therefore contained half of the variants at an AF lower than 5 %. Decreasing the AF threshold increased the 
sensitivity but impaired a high cost in specificity (Table 2). At an observed AF of 1%, 83.33 % of TP (n=15/18) were recovered 
at a cost of 289 FP. The highest sensitivity was obtained at an observed AF of 0.37 %, where 88.89 % (n=16/18) of variants were 
called at a cost of 847 FP. An AF cut-off of 5 % was therefore selected as a conservative AF threshold to explicitly minimize the 
amount of called FP variants to be used for exploring potential associations with host characteristics (see below). Evaluation of 
the benchmark dataset created for A(H1N1)pdm09 exhibited the same trends, and confirmed 5 % to be an adequate threshold 
to avoid the inclusion of FP observations (Supplementary Information S3).



7

Van Poelvoorde et al., Microbial Genomics 2022;8:000867

Selection of patient-derived samples based on their genome copy number
For the described validation of an AF threshold of 5 % based on the experimentally constructed benchmark dataset, all mixes 
always contained very high genome copy numbers (≥105 genomes µl−1, see above). It has been previously established that the 
genome copy number and titre of samples can also impact LFV calling. Prior research by McCrone et al. indicated that samples 
with a copy number of ≥105 genomes µl−1 are acceptable, while samples with a copy number ranging between 103–105 genomes 
µl−1 should be sequenced in duplicate to reduce FP [28]. In routine surveillance, only a limited number of samples however have 
a copy number of ≥105 genomes µl−1. Only 12 out of 253 sequenced samples of the Belgian influenza season 2016–2017 had a 
genomic copy number ≥105 genomes µl−1 (Table S5). This was not due to sample selection bias, since the median of 1273 A(H3N2) 
positive influenza samples from the influenza seasons 2015–2019 in Belgium was 1168.85 genomes µl−1 (IQR: 88.70–8907.89 
genomes µl−1) (Fig. 1), with a median associated Cq value of 22.52 (IQR: 19.48–26.68), which corresponds to other observations 
from the literature [54–56].

Fig. 1. ROC curve for validating an AF threshold using an A(H3N2) benchmark dataset. The green line represents a theoretical scenario where a perfect 
variant caller identifies all 18 TP before any FP are called (i.e. perfect sensitivity and specificity). The blue line represents the numbers of observed TP 
and FP in the benchmark dataset for A(H3N2) at decreasing thresholds for the observed AF of called variants. Observed AF of TP are indicated on the 
graph. AF thresholds used to create the ROC curve are the numbers plotted in the figure (as percentages). The numbers of FP and TP at the threshold 
of 5 % AF employed for the analysis of patient-derived datasets is depicted by a red dot (no additional TP or FP were observed between 5 and 10.76 %). 
More detailed values are available in Table 2. AF=Allelic Frequency; ROC=Receiver operating characteristic; FP=False Positive; TP=True Positive.

Table 2. Number of TP, FP, sensitivity, and specificity at different AF thresholds for the A(H3N2) benchmark dataset. Although the specificity remains 
high due to the size of the negative class (all positions in the genome that are not positives), the number of FP increases dramatically at lower AF, 
rapidly exceeding more than ten-fold the number of TP. AF=Allelic Frequency; FP=False Positive; TP=True Positive. *: Sensitivity is considered over the 
full dataset, and not only variants expected at specific AF; see results for further details

Observed AF (%) no. of TP no. of FP Sensitivity (%)* Specificity (%)

10.0 8 0 44.44 100.00

5.0 9 0 50.00 100.00

2.0 12 86 66.67 99.97

1.0 15 289 83.33 99.90

0.5 15 678 83.33 99.75
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To evaluate the impact of adopting a more relaxed genome copy number threshold, we investigated the sensitivity and specificity of 
the LFV calling workflow on a benchmark dataset containing lower genome copy numbers, for which reference samples of mixes 
of specific variants at varying targeted AFs and varying initial genomics copy numbers produced and sequenced by McCrone et 
al. [28] were analysed with the same method as described previously. Samples used for this analysis were produced by McCrone 
et al. as an experimental within-host population by inserting 20 mutations in a WSN33 virus genetic background and then diluted 
to generate five targeted allelic frequencies (5, 2, 1, 0.5 and 0.2 %) and three genomic litres (103, 104 and 105 genomes µl−1) [28]. 
Titres, targeted allelic frequencies and SRA accession numbers of the samples used can be found in Table S2. For samples with 
103 genomes µl−1, no FP and 2 % of TP (n=2/100) were called at an observed AF of ≥16.64 %. These particularly low sensitivities 
are again the result of the dataset encompassing a majority of low allelic frequency variants. The highest sensitivities, 23, 26 and 
16 % for genomic litres of respectively 105, 104 and 103, were obtained at an observed AF of 0.40, 0.21 and 0.28 % at a cost of 1, 
201 and 224 called FP, respectively (Fig. 2, Table 3).

Comparison of results for a viral load of ≥105 genomes µl−1 of Table 2 and Table 3, indicates similar trends with increasing AF 
increasing specificity whilst penalizing sensitivity. The sensitivities of the two benchmark datasets in Table 2 and Table 3 are 
however not directly comparable because the truth set of mutations is present at different AF, resulting in lower sensitivity values 
for the McCrone dataset because more real variants were present in the observed AF range of 1–5 %. The previously selected AF 
threshold of 5 % was therefore shown to be a conservative value for filtering out FP variants in datasets obtained from samples 
with low initial genomic copy numbers because despite removing many TP variants, it also effectively safeguards against including 

Fig. 2. ROC curves to validate an AF threshold using an A(H3N2) benchmark dataset at different genome copy numbers. Observed TP (out of the 
100 expected) and FP counts in the benchmark datasets provided by McCrone et al. [28] at variable genome copy numbers. The blue line represents 
observed TP and FP counts in the benchmark dataset for A(H3N2) at variable thresholds for the AF. Observed AF of called TP are plotted in the figure 
as percentages. The numbers of observed FP and TP at the threshold of 5 % AF employed for the analysis of patient-derived datasets is depicted by a 
red dot. More detailed values are available in Table 3. Abbreviations: AF=Allelic Frequency; FP=False Positive; TP=True Positive.
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FPs for genome copy numbers at 104–105, but not at 103 genomes µl−1. A minimal genome copy number of 104 genomes µl−1 was 
therefore enforced for the clinical dataset.

Prevalence of LFV in clinical samples
LFV calling was performed on the 59 retained samples with a genome copy number of ≥104 genomes µl−1 from the Belgian 
influenza 2016–2017 A(H3N2) season. When the selected threshold of 5 % AF was used, at least 20 LFV were detected in seven 
samples, while for 30 samples between 0 and 20 LFV were detected. Finally, 22 samples did not reveal any LFV (Supplementary 
Method S2 [1]). Across all samples, LFV at 56 genomic positions were detected in two or more patients, including eight located 
in PB2, six in PB1, 14 in PA, 12 in HA, six in NP, three in NA, one in MP and six in NS. The majority of these variants were 
detected at a low observed AF of 5–20 %.

Patient data associated with prevalence of LFV
To investigate the potential relevance of LFV for routine influenza monitoring, a proof of concept investigation based on associa-
tions of LFV with patient data was performed. The association of patient data with the number of detected LFV was investigated. 
After an initial glm analysis where all patient data were evaluated individually, disease severity, antibiotics use and age resulted 
in a significant association. In a second step, a glm was fitted including the three significant patient data simultaneously, which 
only resulted into a significant result for disease severity. The number of detected LFV was observed to be significantly higher 
in ILI cases (i.e. mild cases) compared to SARI cases (i.e. moderate and severe cases) (Table 4; Supplementary Method S2 [1]).

Table 3. Number of TP, FP, sensitivity, and specificity at different AF thresholds using a A(H3N2) benchmark dataset at different genome copy numbers. 
Although the specificity remains high due to the size of the negative class (all positions in the genome that are not positives), the number of FP 
increases dramatically at lower observed AF, an effect which is more pronounced at lower genome copy numbers. *: Sensitivity is considered over the 
full dataset, and not only variants expected at specific AF; see results for further details

Viral load (genomes µl−1) Observed AF (%) no. of TP no. of FP Sensitivity (%)* Specificity (%)

105 10.0 0 0 0.00 100.00

5.0 5 0 5.00 100.00

2.0 10 0 10.00 100.00

1.0 15 0 15.00 100.00

0.5 22 1 22.00 99.99

104 10.0 2 0 2.00 100.00

5.0 6 0 6.00 100.00

2.0 12 0 12.00 100.00

1.0 18 17 18.00 99.97

0.5 24 67 24.00 99.90

103 10.0 2 1 2.00 99.99

5.0 4 14 4.00 99.98

2.0 9 41 9.00 99.87

1.0 13 83 13.00 99.36

0.5 14 154 14.00 99.76

Table 4. Statistically significant associations between number of LFV in clinical samples and patient data. Results include the median, first quartile 
and third quartile of the number of detected LFV across the 59 retained samples, and also P-value and effect size. The interpretation of the odds ratio 
values commonly published in the literature are: <1.68 (small effect), 1.68–3.47 (moderate effect) and >=6.71 (large effect) [70]. ILI cases comprise the 
mild cases, while the SARI cases include moderate and severe cases. CI=Confidence interval

Patient data Median P-value Effect size [CI]

Disease Severity Mild: 19 [3.5–60]
Moderate/Severe: 1 [0–3]

2.67E-08 26.40 [10.89–83.88]
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Additionally, associations between patient data and the proportion of nucleotides at their specific genomic positions, including 
both LFV and high-frequency variants, were evaluated. Although several associations were identified, these were all below accept-
able statistical thresholds. These results are therefore provided in the Supplementary Information S4 for informative purposes 
only and not further considered below.

DISCUSSION
Since the dynamics of quasispecies can afford influenza a considerable advantage on genetic fitness during within-host evolution, 
quasispecies information might be relevant for future clinical interventions and epidemiological investigation. HTS renders it 
nowadays feasible to explore viral quasispecies in patient-derived samples by detecting LFV. However, many challenges remain 
to obtain reliable results in order to introduce LFV in routine surveillance, in which sampling and funding are often limited. 
Although HTS enables deep sequencing, it becomes difficult to distinguish sequencing errors from real LFV at low AF. The first 
goal of this study was to establish an AF threshold for retaining LFV using mixes of a WT and NA-E119V-mutant influenza 
A(H3N2) virus with different proportions to create a benchmark population that was sequenced followed by LFV calling with 
LoFreq. While multiple other low-frequency variant callers exist [57–61], LoFreq has been shown to perform particularly well on 
short read sequencing of virus samples, especially when considering specificity [62, 63]. Other variant callers could alternatively 
be used as part of the validation approach presented in the current study by other scientists using other software packages. An AF 
cut-off of 5 % was selected as the minimal AF at which no FP variants were called in the experimentally constructed benchmark 
A(H3N2) population. An additional exploratory analysis with mixes from the A(H1N1) subtype, which included two nucleotide 
mutations resulting in the NA-H275Y amino acid mutation, confirmed this as being a robust threshold also applicable to other 
subtypes (Supplementary Information S3). Since the A(H3N2) and A(H1N1) benchmark populations only contained a single 
and two nucleotide mutations, respectively, publically available data containing more mutations were also considered. The 
dataset from McCrone et al. includes 20 point mutations and also an extra data point at a theoretical AF of 2%, in contrast to our 
sequenced A(H3N2) population containing a theoretical AF gap between 1 and 5 %. Analysis of this dataset with our workflow 
similarly confirmed 5 % to be a robust AF threshold (Fig. 2). This threshold prioritizes specificity over sensitivity, but is context-
dependent for three reasons. Firstly, although the established sensitivity of 50 % at 5 % observed AF (Table 2) may appear low, the 
benchmark dataset was purposefully constructed to assess the limit of detection of our workflow, and therefore contained half of 
the inserted variants at frequencies lower than 5 %. Conversely, as a result of the choice of thresholds, all variants present at ≥5 % 
in the benchmark dataset were correctly called. Secondly, since our aim was to evaluate associations of LFV with patient data as 
a proof of concept, we prioritized specificity to minimize potential FP LFV included within the statistical analysis. Depending 
on the application scope, this AF threshold can be decreased to increase sensitivity if the cost in specificity is deemed acceptable 
(e.g. approaches that prioritize finding as many LFV as possible). Thirdly, AF thresholds are coverage-dependent once coverage 
drops below a certain turnkey point [64], with decreasing coverages typically requiring increased AF thresholds. As both the 
validation dataset and clinical samples consisted of high-coverage data, our established value of 5 % should only be applied to 
high-coverage influenza datasets. Through our emphasis on specificity, the selected AF threshold of 5 % is high compared to other 
AF thresholds reported in other studies in the literature. Gelbart et al. [65] investigated the genetic diversity of different viruses, 
and used a minimum AF threshold of 1 % for highly concentrated samples including human immunodeficiency virus, respiratory 
syncytial virus, and cytomegalovirus. Orton et al. [66] focussed on modelling sequencing errors and distinguishing them from 
real viral variants using foot-and-mouth disease virus as case study. They established a minimum AF threshold of 0.5%, although 
this was only tested on control samples that were very highly concentrated (106 plasmid μl−1). King et al. [67] evaluated laboratory 
and bioinformatic pipelines to accurately identify LFV in viral populations using foot-and-mouth disease as a case study, using 
an AF threshold of 0.2 % for highly concentrated samples (107 copies), but observed more errors when a reduced RNA input (105 
copies) was used and even found consensus-level errors at (very) low RNA inputs (103 copies).

Previous research has indicated that besides correcting for sequencing errors, the viral load and genome copy number of samples 
also affect LFV calling, independently of sequencing considerations. In this study, the SuperScript III One-Step RT-PCR Platinum 
Taq HiFi DNA Polymerase with an estimated error rate of less than 1×10−3 misincorporated nucleotides per total number of 
nucleotides polymerized was used to amplify the virus. This error rate will have a larger impact on samples with low viral loads, 
because they are more likely to propagate PCR-amplification errors that can result in increased FP variant detections [28]. A 
genome copy number of 105 genomes µl−1 was recommended by McCrone et al. and a copy number of 103–105 genomes µl−1 was 
considered acceptable if sequenced in duplicate. However, the application of these recommendations to routine surveillance 
may prove too restrictive as 105 genomes µl−1 is an extremely high copy number for samples encountered in routine influenza 
surveillance (Fig. S1), where it is already a considerable challenge to acquire the necessary funds to simply switch from Sanger 
sequencing the HA and NA segments to WGS. As the genome copy number of our experimental dataset was very high (>105 
genomes µl−1), we employed the experimental within-host population produced by McCrone et al. [28] at a genomic input of 
103, 104 and 105 genomes µl−1 with our workflow to evaluate FP counts at lower genome copy numbers when enforcing the same 
5 % AF threshold. We found that also at 104 genomes µl−1, no FP were detected, but FP were found at 103 genomes µl−1 (Table 3). 
Similar to our experimentally constructed A(H3N2) benchmark dataset, sensitivities were (very) low because the large majority 
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of LFV were present at AF below 5 %. Notwithstanding, a direct comparison of our results with those reported by McCrone et 
al. is not possible for several reasons. Firstly, McCrone et al. used P-values as a threshold with either deepSNV or LoFreq to 
determine effects on sensitivity and specificity in samples of varying targeted AF, whereas we used the observed AF as a threshold 
with LoFreq with default settings (i.e. P-value dynamically adapted as part of a Bonferroni multiple test correction) to determine 
an AF threshold favouring optimal specificity. Secondly, high specificity at low AF could be obtained by McCrone et al. by 
using deepSNV on both mutated samples and control samples containing the same genetic background. This was initially done 
with LoFreq on our benchmark datasets using the WT samples as controls and resulted in overall higher specificity and lower 
sensitivity at very low AF (unpublished results), but does not reflect routine influenza monitoring where no control samples are 
available for clinical samples to begin with. Thirdly, the samples used by McCrone et al. were biassed toward very low AF for the 
TP, which had a large effect on the sensitivity.

The second goal of this study was to evaluate the prevalence of LFV in actual clinical samples collected during routine influenza 
monitoring, using 59 influenza A(H3N2) samples from the 2016–2017 Belgian Influenza season with a genome copy number ≥104 
genomes µl−1 and retaining only LFV detected at ≥5 % AF. It was observed that seven of the 59 samples had at least more than 20 
LFV, 30 of the 59 samples had between 0 and 20 LFV, and 22 of the 59 samples did not contain any LFV.

The third goal of this study was to explore potential associations between patient data and the presence and frequency of LFV as 
a proof of concept for the relevance of LFV analysis in routine influenza surveillance. Statistically significant associations were 
found between high numbers of LFV and mild cases. It has been suggested in the literature for other viruses that within-host 
diversity can be driven by host selection pressure [68, 69]. In contrast to our results where more LFV were observed in mild 
cases, Simon et al. observed higher diversity within the PA, HA and NA segments in severe cases compared to mild cases [18]. 
Additionally, we evaluated potential associations between patient data and the proportion of nucleotides at specific genomic posi-
tions. Several associations were found, however, these were below acceptable statistical thresholds (Supplementary Information 
S4). We are aware, however, of the low statistical power of the association study due to the small sample size of 59 patients and 
unequal representation of LFV among the patient data groups. More reliable associations will therefore require larger sample 
sizes in future studies. However, these results show the potential added value to understand viral evolution in relation to the 
host, but more research is needed.

In conclusion, HTS of clinical influenza samples allows to examine LFV during human infections. Our work provides a general 
approach for LFV detection by delineating thresholds that balance the number of FP against the feasibility of quasispecies 
investigation in actual samples collected in the context of routine surveillance programmes. As a proof of concept, several relevant 
associations with patient data were found while considering LFV, which suggests that the relevance of LFV for influenza moni-
toring is currently under-valued and could contribute to a better understanding of disease. Although additional validation will be 
necessary, it could be of great benefit to apply the proposed approach on samples collected during routine influenza monitoring.
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