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A B S T R A C T   

Human mobility, as a fundamental requirement of everyday life, has been most directly impacted during the 
COVID-19 pandemic. Existing studies have revealed its ensuing changes. However, its resilience, which is defined 
as people’s ability to resist such impact and maintain their normal mobility, still remains unclear. Such resilience 
reveals people’s response capabilities to the pandemic and quantifying it can help us better understand the 
interplay between them. Herein, we introduced an integrated framework to quantify the resilience of human 
mobility to COVID-19 based on its change process. Taking Beijing as a case study, the resilience of different 
mobility characteristics among different population groups, and under different waves of COVID-19, were 
compared. Overall, the mobility range and diversity were found to be less resilient than decisions on whether to 
move. Females consistently exhibited lower resilience than males; middle-aged people exhibited the lowest 
resilience under the first wave of COVID-19 while older adult’s resilience became the lowest during the COVID- 
19 rebound. With the refinement of pandemic-control measures, human mobility resilience was enhanced. These 
findings reveal heterogeneities and variations in people’s response capabilities to the pandemic, which can help 
formulate targeted and flexible policies, and thereby promote sustainable and resilient urban management.   

1. Introduction 

Mobility, a basic form of human behavior associated with working, 
shopping, education, traveling, and other social and economic activities 
in everyday life, has been most directly impacted during the COVID-19 
pandemic. Based on various mobility tracing data, previous studies have 
revealed the ensuing changes in human mobility across multiple regions 
(Lee et al., 2020; Pan et al., 2020; Tan et al., 2021; Beria & Lunkar, 
2021). However, the ability of people to resist such impact and maintain 
their normal mobility, which we define as human mobility resilience 
(Wang & Taylor, 2014, 2016; Roy et al., 2019), remains unclear. 
Different from mobility changes, such resilience reveals the impact of 
COVID-19 from the perspective of people’s responses. Quantifying it can 
help us better understand the interplay between human mobility and the 
pandemic, so as to support sustainable and resilient urban management 
in areas such as resource allocation (Zhou et al., 2021), policy making 

(Rao et al., 2021) and urban planning (Sharifi & Khavarian-Garmsir, 
2020). For example, different people may present different response 
capabilities to the pandemic (Weill et al., 2020; Zhang et al., 2021; Flor 
et al., 2022), therefore, quantifying mobility resilience of different 
population and revealing its group heterogeneities can help city man
agers quickly identify people who are more vulnerable to the pandemic 
and thereby conduct targeted resource allocations to avoid the problem 
of social inequality (Van Dorn et al., 2020; Blundell et al., 2020; Flor 
et al., 2022); different pandemic control measures may bring different 
degrees of impact on human mobility (Wang et al., 2020; Czech et al., 
2021; Huang et al., 2022), therefore, quantifying human mobility 
resilience under different pandemic control measures and detecting its 
variations can help policy makers formulate more reasonable measures 
to enhance human mobility resilience and thereby minimize the nega
tive impact of the pandemic (Bonaccorsi et al., 2020; Škare et al., 2021; 
Mueller et al., 2021). Moreover, as COVID-19 continues and people 
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begin to realize that they might have to live with it (Batty, 2022), how to 
coordinate pandemic prevention and control with normal social and 
economic development is becoming a matter of concern (Iftekhar et al., 
2021; Eyawo et al., 2021; Coccia, 2022). Therefore, it is becoming 
increasingly necessary to study human mobility resilience. 

The COVID-19 pandemic has boosted unprecedented research to 
understand the interplay between human mobility and pandemics 
(Benita, 2021; Alessandretti, 2022; Zhang et al., 2022), while most of 
them only focused on the changes in human mobility during the initial 
stage of COVID-19. The results generally demonstrate that the 
non-pharmacological intervention measures during this stage reduced 
intensity of human mobility (Lee et al., 2020; Yabe et al., 2020; Pan 
et al., 2020; Gibbs et al., 2020; Benita 2021). Although a few studies 
have revealed that this reduction varies across different regions 
(Bonaccorsi et al., 2020; Carella et al., 2022; Lee et al., 2020; Galeazzi 
et al., 2021) and among different population groups (Pullano et al., 
2020; Zhang et al., 2021; Weill et al., 2020; Jay et al., 2020), which 
actually implies different resilience capabilities in response to 
COVID-19, a quantitative assessment of such resilience is still absent. 

Recently, Lu et al. (2022) proposed the concept of regional mobility 
resilience and quantified it by comparing the number of passenger ar
rivals at each city with that in the preceding year and explored its 
relationship with regional culture. They found that regional mobility 
resilience exhibits spatial autocorrelation and heterogeneity; the 
mobility in areas with high levels of cultural tightness is less affected by 
COVID-19. Mu et al. (2022) measured the resilience of inter-city 
mobility through the network analysis perspective. By analyzing 
mobility networks in the Beijing–Tianjin–Hebei urban agglomeration, 
they found that core cities with high development levels are more 
vulnerable to COVID-19 than marginal cities. While these studies 
exploratively introduced the resilience perspective into human mobility 
analysis in the context of COVID-19, certain problems still exist. First, 
they only focused on the resilience of inter-city mobility and its regional 
differences, however, the resilience of detailed intra-city mobility and its 
disparities among different population groups were not revealed. Sec
ond, the resilience assessment was based on a direct comparison of 
mobility indicators before and during COVID-19, however, the change 
process of human mobility over different stages of COVID-19 was not 
considered. 

To overcome the above problems, Wang et al. (2022) defined travel 
behavior resilience to investigate how intra-city public transport use 
varied and recovered during COVID-19 and compared it among different 
population groups. Taking Kunming, China as a case study, they found 
that intra-city public transport use recovered slowly after being affected 
by the pandemic and the travel behavior resilience differs by groups. 
Commuters present greater resilience, while the elderly show lesser 
resilience. However, there are still some limitations of this study. First, 
they only focused on the subway mobility of frequent travelers, which 
accounts for a small proportion of mobility in a city. The mobility of 
infrequent travelers and those who commute using other types of 
transportation modes were not included. Second, only the first wave of 
COVID-19 was considered. The resilience of human mobility during 
subsequent waves of COVID-19, which most cities have experienced, 
remains unknown. 

Through this study, which was inspired by the resilience assessment 
in the context of natural disasters (for a review, see the “Related works” 
section), we attempted to comprehensively quantify the resilience of 
human intra-city mobility to COVID-19 based on its change process. To 
achieve this, three contributions have been made. First, the fine-grained 
and long-term mobile phone signaling data, which cover people trav
eling by different modes of transportation, were used to track the 
complete change process of human mobility over different COVID-19 
phases. Second, an integrated resilience assessment framework, which 
combines the evaluation of resilience capabilities during different 
pandemic phases, was proposed to quantify human mobility resilience 
more accurately. Third, based on the quantification of human mobility 

resilience, a comparison from three dimensions was conducted to: (1) 
better understand the impact of COVID-19 on different aspects of human 
mobility by comparing the resilience of different mobility characteris
tics; (2) reveal group heterogeneities in people’s response capabilities to 
the pandemic by comparing the mobility resilience of people with 
different gender and age attributes; (3) track the variations in people’s 
response capabilities to the pandemic over different phases by 
comparing human mobility resilience in face of different waves of 
COVID-19 outbreaks. 

2. Related works 

The term resilience is first introduced by Holling (1973) in ecology to 
measure the capability of ecosystems to absorb change and disturbance 
and still maintain their initial states. Since then, this notion has been 
extensively used in multiple disciplines ranging from environmental 
research to urban science, engineering, psychology, sociology, and 
economics (Bruneau et al., 2003; Bhamra et al., 2011; Meerow et al., 
2016; Schwarz, 2018). Its general definition can be described as the 
ability of a system to resist the effects of a disruptive shock and to return 
to its initial states (Nan & Sansavini, 2017; da Mata Martins et al., 2019). 
Following this general definition, the human mobility resilience can be 
defined as the ability of people to resist the impacts caused by a public 
crisis and to maintain their normal mobility behavior (Wang & Taylor, 
2014, 2015, 2016; Roy et al., 2019; Zhang et al., 2019). Here the public 
crises include natural disasters such as hurricanes or earthquakes, dis
ease outbreaks such as the COVID-19 pandemic, and other events that 
may disrupt human mobility. Among them, the human mobility resil
ience to natural disasters has been extensively studied. The assessment 
of human mobility resilience generally consists of two parts: measure
ment of human mobility and frameworks for resilience assessment. In 
the following, we will review the related works from these two aspects 
respectively. 

2.1. Measurement of human mobility 

Measuring human mobility, namely quantifying the characteristics 
of people’s movement behavior based on their trajectories, is the pre
requisite of assessing human mobility resilience (Zhang et al., 2019). As 
a foundational work, this issue has been extensively studied in multiple 
disciplines and several metrics have been proposed to measure human 
mobility from different perspectives (Gonzalez et al., 2008; Song et al., 
2010; Xia et al., 2018; Kishore et al., 2020; Xu et al., 2021). These 
metrics can be broadly divided into three categories. The first category 
measures the intensity of mobility, which includes the ratio of moved 
people measuring the overall mobility intensity of a region and the 
number of visited places or the movement frequency measuring the 
individual mobility intensity of a person (Xu et al., 2016; Xu et al., 2018; 
Xi et al., 2020). The second category measures the spatial patterns of 
mobility, which includes the movement displacement measuring the 
distance between two consecutive visited locations, the radius of gyra
tion measuring the spatial extent of a person’s movement, and the total 
movement distance measuring the overall travel distance of a person 
(Gonzalez et al., 2008; Song et al., 2010; Xu et al., 2016). The third 
category measures the diversity of mobility, which includes the mobility 
entropy measuring the diversity of movement directions and activity 
entropy measuring the diversity of visited places (Pappalardo et al., 
2016; Xu et al., 2018, 2021). 

Despite the above abundant measurements of human mobility, the 
mobility characteristics considered in assessing human mobility resil
ience were still limited. The most widely used metrics in existing studies 
to assess human mobility resilience is the movement displacement 
(Wang & Taylor, 2014, 2015, 2016; Roy et al., 2019; Zhang et al., 2019), 
followed by the radius of gyration (Wang & Taylor, 2014, 2015, 2016). 
These two metrics can only unilaterally indicate the spatial pattern of 
human mobility, while the resilience of other aspects of human mobility 
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still remains unknown. 

2.2. Frameworks for resilience assessment 

According to the frameworks used for assessing resilience, the 
related works can be divided into two categories. The first category 
estimate human mobility resilience by directly comparing the perturbed 
mobility pattern during a disaster to their normal patterns. For example, 
based on geo-tagged Twitter data, Wang and Taylor (2014, 2015, 2016) 
analyzed human mobility perturbations under multiple types of natural 
disasters (e.g., hurricane, earthquake, winter storm, etc.) and made a 
comparison with their normal patterns. The results demonstrate that 
even though human mobility experienced significant perturbations 
during these disasters, it exhibited high resilience: the movement 
displacement still followed a power-law distribution as normal; the 
center of movements and radius of gyration were correlated to their 
values in the normal state. However, such assessment of human mobility 
resilience is qualitative and not necessarily accurate, because the human 
mobility perturbation is usually highly dynamic and changing over the 
development of the disaster. 

To overcome this problem, the second category estimate human 
mobility resilience based on the concept of the resilience triangle 
(Bruneau et al., 2003; Hosseini et al., 2016), which refers to the com
plete change process of human mobility during a disaster. For example, 
Zhang et al. (2019) proposed a metric to measure the accumulated 
perturbation (AP) of human mobility over the entire timespan of an 
extreme weather event. The value of AP is determined not only by the 
magnitude of mobility perturbation, but also by the duration of impacts 
caused by the event. Similarly, Roy et al. (2019) proposed a method to 
estimate human mobility resilience by constructing the change curve of 
human mobility over time. The area under this curve from being dis
rupted to recovering is calculated to measure the resilience of human 
mobility in response to an extreme event. Such assessment of resilience 
considered the temporal characteristics of human mobility perturbation. 
However, the metrics used can only reflect the overall resilience capa
bility, the resilience capability during different phases such as absorp
tive capability to reduce the negative impacts, adaptive capability to 
adapt to the event and restorative capability to recover to the normal, 
can not be reflected (Nan & Sansavini, 2017). 

2.3. Gaps in assessing human mobility resilience 

In summary, although existing studies about human mobility resil
ience have made substantial progress, some problems still exist. First, 
most of them focused on the human mobility resilience to natural 

disasters, while that to disease outbreaks such as the COVID-19 
pandemic has received little attention. Second, the metrics used to 
measure human mobility characteristics were not comprehensive 
enough. Third, the frameworks used for assessing resilience fail to 
integrate the resilience capabilities over different phases. 

To fill up these gaps, our study attempted to investigate human 
mobility resilience to the COVID-19 pandemic. As compared to the 
existing studies, we stand to contribute to the related works in two ways. 
First, unlike previous research that only used the movement displace
ment or the radius of gyration as measurements of human mobility, we 
considered the potential impact of COVID-19 on different aspects of 
human mobility and introduced five indicators to measure it from a 
multi-dimensional viewpoint. Second, in contrast with previous studies 
that only considered the instantaneous or overall human mobility 
perturbation when assessing resilience, we proposed an integrated 
assessment framework to assess the resilience of human mobility by 
comprehensively considering its change process from disruption to re
covery, and finally reaching a new steady state. 

3. Study area and data 

3.1. Study area 

Beijing, the capital city of China, with a total population of over 21 
million people, was selected in this research to conduct a case study due 
to two reasons. First, it is a typical large city in which the rapid spread of 
COVID-19 occurred and the daily life of citizens was greatly affected. 
Second, as the absolute political center of China, Beijing implemented 
the most rapid, precise and strict pandemic prevention and control 
measures, which have always been an example for other cities to follow. 
Therefore, quantifying its citizens’ mobility change and resilience under 
COVID-19 can also serve as a useful reference to other cities. 

Since the first case of COVID-19 was reported on January 19, 2020 in 
Beijing, a total of 2958 cases, including 2100 local cases and 858 cases 
imported from overseas, have been confirmed as of August, 2022 (Bei
jing Municipal Health Commission, 2022). During this period, Beijing 
repeatedly experienced several waves of COVID-19 outbreaks. Here we 
chose the first wave of outbreak at the beginning of 2020 and the second 
wave of outbreak in mid-2020 to conduct our research, because the 
former can reflect the situation of the first shock of pandemic while the 
latter can be regarded as a typical representative of subsequent 
pandemic rebound. Meanwhile, to track the complete change process of 
human mobility before, during and after each outbreak, we finally 
selected 10 months (from December 2019 to September 2020) as our 
study period. Fig. 1 shows the daily number of new cases and the 

Fig. 1. The daily number of new cases and timeline of city responses over the first two waves of COVID-19 outbreaks in Beijing.  
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timeline of city responses over this period. The first wave of outbreak 
lasted 48 days (from January 19 to March 6) and a total of 420 
confirmed cases were reported; the second wave of outbreak lasted 26 
days (from June 11 to July 6) and a total of 335 confirmed cases were 
reported. The change of Public Health Emergency Response (PHER) 
from the first to the third level indicates the relaxation of pandemic 
prevention and control measures implemented by the government. 

3.2. Data 

The data we used in this research were anonymized mobile phone 
signaling data collected from one of the three communication operators 
in China, which continuously collect the location information of mobile 
phone users by recording the signal connection relationship between 
mobile phones and phone towers. Table 1 shows the detailed description 
of the dataset. Note that the user ID has been fully encrypted to protect 
personal privacy so that no individual person can be identified or 
associated with any external information. Based on this dataset, the 
mobility behavior of each mobile phone user can be extracted (Gonzalez 
et al., 2008; Hoteit et al., 2014; Li et al., 2019; Kishore et al., 2020; Song 
et al., 2020). 

In addition to user location information, the gender and age attri
butes of each user were also collected. According to the gender attribute, 
we divided users into two groups: males and females. According to the 
age attribute, we divided users into four groups by considering their 
social status (Wang et al., 2019): group 1 (age ≤ 24 years), group 2 (25 
years ≤ age ≤ 39 years), group 3 (40 years ≤ age ≤ 59 years), and group 
4 (60 years ≤ age). Among them, users aged under 24 years mainly 

Table 1 
Description of the original mobile phone signaling data.  

Fields Description Example 

User ID Encrypted identifier for each user 07d471***95bf92 
Tower ID The mobile phone tower that a user was 

located 
14,756 

Lon Longitude of the mobile phone tower 116.5***2 
Lat Latitude of the mobile phone tower 39.7***3 
T The time stamp when a location was recorded 2020-03-02 00:00:24  

Fig. 2. Changes in the number of mobile phone users with different attributes over our study period.  

Fig. 3. The flowchart of the analytical framework.  
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represent the early adulthood people who are still in school; users aged 
25 to 39 years mainly represent young adults who have just started 
working and may not yet have a family; users aged 40 to 59 years mainly 
represent middle-aged adults who have been working for a long time 
and have had a family; users aged over 60 years mainly represent older 
adults who have retired from work. 

The changes in the number of users with different attributes over our 
study period are shown in Fig. 2, from which we can see that the number 
of each group of users decreased after the outbreak of COVID-19 and 
then gradually increased. On average, there were over 12 million users 
on each day, accounting for more than 60% of the population in the city. 
The decrease in the number of users is mainly caused by the departure of 
some people who returned back to their hometown cities when the 
Chinese Spring Festival came. In this study, we mainly focused on the 
intra-city mobility of people who stayed in Beijing. Considering that the 
intra-city mobility characteristics of these reduced users before leaving 
Beijing are not significantly different from that of other users, this part of 
the reduced users does not affect our final analysis results significantly. 

4. Methodology 

The methodological framework can be roughly divided into three 
parts (Fig. 3). First, the data preprocessing was conducted to remove 
noise recordings and further extract meaningful mobility trajectory of 
each user. Subsequently, based on the extracted trajectory, five mobility 
indicators were introduced to comprehensively measure different as
pects of human mobility. Finally, an integrated resilience assessment 
framework was applied to quantify the resilience of different mobility 
characteristics by analyzing the change process of different mobility 
indicators. 

4.1. Data preprocessing 

Based on mobile phone signaling data, the original movement tra
jectory of a user can be extracted by ordering the location recordings by 
time stamp, which can be expressed as follows: 

Trj = {(x1, y1, t1), (x2, y2, t2),⋯, (xi, yi, ti),⋯, (xn, yn, tn)} (1)  

where xi and yi are projected coordinates of the i-th location of a user 
recorded at time ti; n is the total number of location recordings of a user. 
However, one issue worth noting is that there might be some noise in the 
original trajectories. Specifically, the location recordings are dependent 
on the phone towers that the mobile phones were connected to, which 
might oscillate back and forth between nearby towers due to workload 
balancing, or suddenly drift to distant towers in a short time period due 
to signal drifts (Csáji et al., 2013; Zhao et al., 2018; Yang et al., 2019b). 
To address this issue, we proposed a rule-based approach (see Table 2 for 
details) to delete drift and oscillation recordings and further extract 
meaningful stay points that each user actually visited, referring to 
existing studies (Tu et al., 2017; Yang et al., 2019b; Yin et al., 2021; Xu 
et al., 2021). 

In doing so, the original movement trajectory of each user was 
transformed into a sequence of meaningful stay points as follows: 

Trj = s1→s2→s3→…→si→…→sn (2)  

si = (cxi, cyi, duri) (i= 1, 2,…, n) (3)  

where si is the i-th stay point of a user; n is the total number of stay 
points; cxi and cyi are the centroid coordinates of the i-th stay point; duri 
is the duration time at the i-th stay point. 

4.2. Measurement of human mobility 

Based on the users’ extracted stay sequences, as set out in Section 
4.1, several indicators were introduced in this section to measure human 
mobility. Generally, the impact of a pandemic on human mobility is 
manifested in two aspects: on the one hand, the pandemic prevention 
and control measures might restrict people’s movement (Peak et al., 
2018; Tian et al., 2020a; Zhou et al., 2020), and on the other hand, 
people’s willingness to travel might be reduced due to fear of the 
pandemic (Chen et al., 2020; Mu et al., 2021; Wang et al., 2022). 
Therefore, we characterized human mobility patterns around two issues:  

(1) Did people move?  
(2) If they moved, what were their mobility characteristics? 

Regarding the first issue, we introduced an indicator named the ratio 
of moved people (R) as a measurement. This indicator is the relative 
ratio between the number of moved people and total number of people 
investigated. The formula can be expressed as follows: 

R =
Pmoved

P
(4)  

where Pmoved is the number of people moved; P is the total number of 
people investigated. This indicator reflects the willingness of people to 
engage in movement (Xi et al., 2020; Liu et al., 2021a). A larger value of 
R indicates that more people decided to move. 

Regarding the second issue, we focused on moved people and further 
introduced four indicators to quantify their mobility characteristics. The 
first indicator was the number of visited places (N), which is the number 
of unique stay points that a moved person visited (Xu et al., 2016, 2018, 
2021). Given a person’s stay sequence as formula (2), this indicator can 
be calculated as follows: 

N = |set(s1, s2, s3,⋯, sn)| (5)  

where set(.) is a function to remove the duplicated elements in a 
sequence. A large value of N indicates that the person not only engages 
in a movement, but also visits more places. 

The second indicator was the radius of gyration (Rog), which has 
been widely used in existing research to quantify the spatial range of a 

Table 2 
Rule-based approach for noise recordings cleaning and meaningful stay points 
extraction.  

Recording 
types 

Data characteristics Detecting index Detecting rules 

Drift 
recordings 

Jumping from one 
tower to another at a 
very high speed 

The speed of two 
consecutive 
location 
recordings (S0) 

If S0 > 120 km/h, we 
determined that a 
signal drift had 
occurred, and the 
recordings was 
deleted 

Oscillation 
recordings 

Exhibiting a 
clustering pattern 
among several 
adjacent phone 
towers 

The distance of 
two consecutive 
location 
recordings (D0) 

If D0 < 500 m, we 
determined that a 
signal oscillation had 
occurred, and the 
recordings were 
merged into a cluster 
as candidate stay 
points 

Meaningful 
stay points 

The duration time is 
enough to carry out 
common human 
activities 

The duration of a 
cluster of 
candidate stay 
points (T0) 

If T0 > 30 min, we 
assumed that it was a 
meaningful stay and 
the centroid of the 
cluster was 
calculated to 
represent the final 
stay point 

Note: 120 km/h is the maximum speed limit allowed on the roads in Beijing; 500 
m is the average distance between two adjacent phone towers in our dataset; 30 
min is usually the shortest duration of a common human activity (e.g., in-home, 
working, schooling, etc.). 
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person’s movement (Gonzalez et al., 2008; Song et al., 2010; Xu et al., 
2016, 2018, 2021). It is the root mean squared distance between stay 
points and their center of mass and can be calculated as follows: 

Rog =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
(cxi − x)2

+ (cyi − y)2)
√

(6)  

(x, y) =

(
1
n

∑n

i=1
cxi,

1
n

∑n

i=1
cyi

)

(7)  

where (x, y) is the center of mass of a person’s stay points. A large value 
of Rog suggests a large movement range of the person. 

The third indicator was daily movement distance (D), which is the 
sum of the Euclidean distance between each pair of consecutive stay 
points and can be calculated as follows (Calabrese et al., 2013; Kishore 
et al., 2020): 

D =
∑n− 1

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(cxi − cxi+1)
2
+ (cyi − cyi+1)

2
√

(8) 

This indicator measures the overall travel distance of a person and 
can be regarded as a complement to Rog. A large value of D indicates a 
long movement distance of the person. The units of indicators Rog and D 
were all converted to kilometers. 

The fourth indicator was activity entropy (AE), which has been 
widely used in research to quantify the diversity of a person’s mobility 
(Pappalardo et al., 2016; Xu et al., 2018, 2021). Inspired by the diversity 
evaluation of biotopes in landscape ecology (Gobattoni et al., 2011; 
Turner & Gardner, 2015; Assumma et al., 2021), this indicator is defined 
as the Shannon entropy of a person’s stay points and can be calculated as 
follows: 

AE = −
∑n

i=1
p
(
sj
)
log
(
p
(
sj
))

(9)  

p
(
sj
)
=

durj
∑N

j=1durj
(10)  

where sj is the j-th unique stay points of a person; durj is the stay duration 
at point sj; p(sj) denotes the proportion of duration at the unique stay 
point sj. In contrast with the number of visited places, AE considers the 
duration of stay in each place and can reflect the person’s preferences to 
different places. A large value of AE indicates that the diversity of a 
person’s mobility is high. For example, a person visits three places 
(residential place, work place, and shopping mall) a day before a 
pandemic and the duration time for each visit is 11 hours, 9 hours, and 4 
hours, respectively. During the pandemic, this person’s visited places are 
not changed but the duration time for each visit changes to 19 hours, 4 
hours, and 1 hours, respectively. Therefore, the activity entropy of this 
person before the pandemic (AE = − 11

24× log
( 11

24
)
− 9

24 × log
( 9

24
)
− 4

24 ×

log
( 4

24
)
= 1.024) is larger than that during the pandemic (AE = − 19

24 ×

log
( 19

24
)
− 4

24× log
( 4

24
)
− 1

24× log
( 1

24
)
= 0.616), indicating the mobility 

before the pandemic is more diverse. 
All these mobility indicators were calculated on a daily scale and for 

each indicator, the average value for the entire city and different pop
ulation groups were calculated. Then, we ordered the daily average 
value of mobility indicators by date to form several time series, which 
indicated the change process of human mobility over different stages of 
the pandemic. By analyzing such time series, the resilience of human 
mobility to the pandemic could be assessed from two perspectives: at the 
city level and of different population groups. 

4.3. Framework for resilience assessment 

In this study, we employed an integrated framework originally 

developed by Nan and Sansavini (2017) to quantify human mobility 
resilience. Fig. 4 provides a conceptual depiction of this framework to 
quantify the resilience of a system, where the y-axis represents the 
measurement of system performance (P) and the red curve (known as 
the resilience curve) represents the change of system performance in 
face of a disruptive shock. According to the change patterns of system 
performance, the x-axis (Time) can be divided into four phases, and six 
detailed metrics were introduced to quantify the system’s resilience 
capability during different phases. Note that the x-axis (Time) here can 
be on any scale and in our study, the resilience curve was conducted on a 
daily scale. 

The first phase is the original phase before the shock (Time < t0), in 
which the system performance is at a normal level. The average value of 
system performance during this phase was calculated as a baseline to 
represent the pre-shock state of the system. 

The second phase is the disruptive phase (t0 ≤ Time ≤ t1), in which 
the system performance starts to drop due to the disruption of shock and 
finally reaches the lowest level. During this phase, the speed of disrup
tion (SD), which is defined as the average slope of the system perfor
mance’s drop, was introduced to account for the ability of the system to 
absorb the impact. Meanwhile, the maximum impact (MI), which is 
defined as the difference between the baseline level and the lowest level 
that the system performance reaches, was introduced to account for the 
strength of the system to resist disruption. A low speed of disruption and 
small maximum impact indicate a high resilience of the system. 

The third phase is the recovery phase (t1 ≤ Time ≤ t2), in which the 
system performance starts to increase and finally reaches a new steady 
level. During this phase, the speed of recovery (SR), which is defined as 
the average slope of the system performance’s increase, was introduced 
to account for the ability of the system to adapt to the shock and restore 
to normal. A high speed of recovery indicates a high resilience of the 
system. 

The fourth phase is the new steady phase (Time > t2), in which the 
system performance reaches a new steady level. It must be noted that 
this new steady level may be the same as the original level, or be higher 
or lower than the original level. Therefore, the recovery degree (RD), 
which is defined as the ratio between the new steady level and original 
steady level (Baseline), was introduced to account for the final extent of 
the recovery. A high value of recovery degree indicates a high resilience 
of the system. 

In addition to the above four metrics, two metrics, which have been 
widely used in existing research to evaluate the overall impact of the 
shock (Bruneau et al., 2003; Kontokosta & Malik, 2018; Roy et al., 2019; 
Hong et al., 2021) were also included. The first was the total perfor
mance loss (TPL) of the system, which is defined as the area between the 
system performance curve and the baseline. The second was the dura
tion of impact (DI), which is defined as the sum of the duration of 

Fig. 4. Conceptual depiction of the integrated framework for assessing resil
ience of a system. 
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disruption and recovery. Based on these two metrics, a new metric 
named the time averaged performance loss (TAPL) was calculated as 
follows: 

TAPL =
TPL
DI

=

∫ t2
t0
(Baseline − P(t))dt

t2 − t0
(11)  

where t0 represents the time when the system performance starts to drop 
and t2 represents the time when the system performance reaches a new 
steady level. As stated by Nan and Sansavini (2017), this metric “pro
vides a time-independent indication of both adaptive and restorative 
capabilities as responses to the disruptive events.” The smaller value of 
TAPL, the more resilient a system. 

Finally, from an overall perspective, an integrated resilience index 
(IRI), which combines the evaluation of resilience over different phases, 
was proposed. Considering that the resilience of a system is positively 
correlated with speed of recovery and recovery degree, while negatively 
correlated with speed of disruption, maximum impact, and the time 
averaged performance loss, this integrated resilience index can be 
expressed as follows: 

IRI = (Baseline − MI) ∗
SR
SD

∗ TAPL− 1 ∗ RD (12) 

This framework comprehensively considers the complete change 
process of system performance, so that all resilience capabilities can be 
included. When applying this framework to pandemic shock, one issue 

that should be noted is that the outbreak of a pandemic usually recurs in 
waves. A system may not completely recover from the disruption of a 
previous wave of outbreak while the next wave of outbreak starts. 
Therefore, in this paper, we proposed to assess the resilience under 
different waves of a pandemic separately by decomposing the system 
performance curve. Taking two waves of a pandemic as an example, 
Fig. 5 presents different scenarios that need to be considered. In Fig. 5 
(a), the shocks of two waves of the pandemic were independent so that 
the resilience to each shock could be assessed directly. In Fig. 5(b), the 
recovery phase after the first shock was interrupted by the second shock, 
and therefore, before assessing the resilience to the first shock, the 
system performance change caused by the second shock was required to 
be decomposed out first. The resilience metrics that needed to be 
calculated for each different wave of shocks are labeled in the corre
sponding positions in Fig. 5. 

In this study, the system performance corresponded to five mobility 
indicators introduced in Section 4.2. Each indicator represents one 
aspect of human mobility characteristics and its change process forms 
one resilience curve. Based on different resilience curves, the resilience 
of different mobility characteristics can be assessed. To facilitate the 
comparison of resilience between different mobility characteristics, the 
relative value of each mobility indicator compared to its corresponding 
pre-pandemic baseline value was used to construct the resilience curve. 
Considering that the outbreak of the first wave of COVID-19 in Beijing 
(January 19, 2020) was proximate to the Chinese Spring Festival 
(January 25, 2020), we calculated the average value of mobility 

Fig. 5. Different scenarios in assessing the resilience of a system to pandemic shocks, where curves in different colors represent system performance changes caused 
by different waves of a pandemic. (a) The impact of the two waves of the pandemic are independent; (b) The impact of the two waves of the pandemic are overlaid. 

Fig. 6. Resilience curves of human mobility to COVID-19 at city level.  
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indicators during December 2019 as the baseline value to avoid the 
potential impact of the Chinese Spring Festival on human normal 
mobility. Based on the constructed resilience curves, the resilience 
assessment framework introduced above was applied. 

Table 3 
Detailed resilience metrics of human mobility to different waves of COVID-19 at city level.   

The first wave of COVID-19 The second wave of COVID-19  

R N Rog D AE R N Rog D AE 

Speed of disruption 1.47 1.06 3.09 2.75 1.27 0.55 0.48 1.92 1.10 0.60 
Maximum impact (%) 24.40 17.21 46.76 41.70 21.80 8.27 7.14 15.39 9.90 9.57 
Speed of recovery 0.19 0.14 0.58 0.53 0.17 0.12 0.06 0.45 0.23 0.10 
Recovery degree 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 
Duration of impact (d) 150 140 100 98 141 87 112 40 52 112 
Total performance loss 16.15 12.12 25.67 22.10 15.62 3.40 4.29 2.75 2.19 4.70 

Note: R, N, Rog, D, and AE denote ratio of moved people, number of visited places, radius of gyration, daily movement distance, and activity entropy. 

Fig. 7. Integrated resilience index of human mobility at city level. (a) The first wave of COVID-19; (b) The second wave of COVID-19.  

Fig. 8. Baseline values of mobility indicators for people with different genders. (a) Ratio of moved people; (b) Number of visited places; (c) Radius of gyration; (d) 
Daily movement distance; (e) Activity entropy. 
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5. Results 

5.1. Human mobility resilience at city level 

The resilience curves of human mobility to COVID-19 at the city level 
are shown in Fig. 6, where different mobility indicators are represented 
by different colors and the baseline value of each indicator is illustrated 
in the legend. Before the outbreak of COVID-19, all the indicators fluc
tuated around their baseline values and then increased gradually due to 
the approach of the Chinese Spring Festival. However, as the first wave 
of COVID-19 broke out, they decreased rapidly and reached their lowest 
level around February 9, 2020. Subsequently, as the COVID-19 gradu
ally came under control, they gradually recovered. By the time of the 
second wave of the COVID-19 outbreak, the radius of gyration, daily 
movement distance, and number of visited places had returned to their 
normal levels while the other two indicators had not. The rebound of 
COVID-19 caused a similar pattern of changes in human mobility as that 
caused by the first wave of the outbreak, but the extent and the duration 
of change were less. Comparison of different indicators shows that even 
though different mobility characteristics show similar overall change 
patterns, their resilience capabilities during different phases are 
different. 

To further reveal these differences, the detailed resilience metrics 
extracted during different phases are shown in Table 3. We observed 
that irrespective of the first or the second wave of COVID-19, the radius 
of gyration and daily movement distance exhibited high speed of 
disruption and large maximum impact but high speed of recovery and 
short duration of impact. The other three indicators exhibited relatively 
low speed of disruption and small maximum impact but low speed of 
recovery and long duration of impact. 

Based on the detailed resilience metrics, the integrated resilience 
index of human mobility at the city level are shown in Fig. 7, where the 
five dimensions of the radar chart represent the value of resilience in
dexes for five mobility indicators. During the first wave of COVID-19, 
the number of visited places showed the strongest resilience, followed 
by the activity entropy and ratio of moved people. The resilience of the 

radius of gyration and daily movement distance were the lowest. During 
the second wave of COVID-19, the ratio of moved people showed the 
highest resilience, followed by the daily movement distance and activity 
entropy. The resilience of the number of visited places and radius of 
gyration were the lowest. It is worth noting that the resilience index of 
all indicators for the second wave of COVID-19 was larger than that for 
the first wave of COVID-19, indicating the enhancement of human 
mobility resilience with the development of COVID-19. 

5.2. Human mobility resilience of different population groups 

Existing studies have revealed that people with different de
mographic attributes (i.e., gender and age) usually show different 
mobility patterns (Lenormand et al., 2015; Luo et al., 2016; Yang et al., 
2019a; Gauvin et al., 2020; Olivieri & Fageda, 2021). In face of the 
pandemic outbreak, how did their mobility patterns change? Are there 
disparities in their mobility resilience to the pandemic? To answer these 
questions, we compared the mobility resilience of people with different 
genders and in different age groups in this section. 

5.2.1. People with different genders 
First, the pre-pandemic baseline values of mobility indicators for 

people with different genders are shown in Fig. 8, where the analysis of 
variance (ANOVA) was used to test the significance of their differences. 
For all indicators, the values of males are larger than that of females. 
Meanwhile, the p-vales of the ANOVA are all smaller than 0.05, indi
cating that the differences are significant. 

Compared to baseline values, the resilience curves of human 
mobility to COVID-19 for people with different genders are shown in 
Fig. 9. We observed that the extent of the impact caused by COVID-19 on 
females was larger than that on males, which indicates that the outbreak 
of the pandemic reinforced the gender differences in the mobility 
pattern. Specifically, when the first wave of COVID-19 broke out, its 
maximum impact on the ratio of moved people and the radius of gyra
tion of females (26.31% and 49.24%) was larger than that of males 
(23.33% and 46.95%). Regarding the number of visited places, daily 

Fig. 9. Resilience curves of human mobility to COVID-19 for people with different genders. (a) Ratio of moved people; (b) Number of visited places; (c) Radius of 
gyration; (d) Daily movement distance; (e) Activity entropy. 
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movement distance, and activity entropy, even though they suffered a 
similar impact for females and males, the recovery speed of females 
(0.14, 0.53, and 0.16) was relatively smaller than that of males (0.16, 
0.54, and 0.19). When the second wave of COVID-19 broke out, its 
maximum impact on all indicators for females was larger than that for 
males. The detailed comparisons can be seen in the calculation results of 
the detailed mobility resilience metrics for females and males as shown 
in Appendix Table A1. 

Based on the detailed resilience metrics, the integrated resilience 
index of human mobility for people with different genders are shown in 
Fig. 10. Irrespective of the first or the second wave of COVID-19, the 
resilience index of all mobility indicators for males was larger than that 
for females. This indicates that females are more vulnerable to the 
pandemic shock. Moreover, with the enhancement of human mobility 
resilience from the first to the second wave of COVID-19, the differences 
between males and females have also been reinforced. In face of the first 
wave of COVID-19, the average value of five mobility indicators’ 

resilience index for males was 0.84 and that for females was 0.69. In face 
of the second wave of COVID-19, the average value of five mobility 
indicators’ resilience index for males was 4.00 and that for females was 
2.73. 

5.2.2. People in different age groups 
The pre-pandemic baseline values of mobility indicators for people in 

different age groups are shown in Fig. 11(a–e). Regarding the number of 
visited places, people aged 40 to 59 years showed the highest value, 
followed by people aged 25 to 39 years and people under 24 years. 
Regarding the other four indicators, people aged 25 to 39 years showed 
the highest value, followed by people aged 40 to 59 years and people 
under 24 years. People aged over 60 years showed the lowest value for 
all indicators. Fig. 11(f) shows the significance (p-value of ANOVA test) 
of the differences between any two groups of population, where 1 rep
resents people under 24 years, 2 represents people aged 25 to 39 years, 3 
represents people aged 40 to 59 years, and 4 represents people aged over 

Fig. 10. Integrated resilience index of human mobility for people with different genders. (a) The first wave of COVID-19; (b) The second wave of COVID-19.  

Fig. 11. Baseline values of human mobility for people in different age groups and the results of significant difference test by analysis of variance. (a) Ratio of moved 
people; (b) Number of visited places; (c) Radius of gyration; (d) Daily movement distance; (e) Activity entropy; (f) Significance (p-value of ANOVA test) of differences 
between any two groups of population. 
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60 years. The differences in all indicators between any two groups of 
population are significant except the ratio of moved people between 
people under 24 years and aged 40 to 59 years, number of visited places 
between people under 24 years and over 60 years and between people 
aged 25 to 39 years and aged 40 to 59 years, and activity entropy be
tween people under 24 years and aged 40 to 59 years. 

Compared to the baseline values, the resilience curves of human 
mobility to COVID-19 for people in different age groups are shown in 
Fig. 12. The change patterns of human mobility show significant dif
ferences among people in different age groups, indicating a high age 
heterogeneity in mobility resilience. Meanwhile, this heterogeneity ex
hibits different patterns among different mobility characteristics and in 
face of different waves of COVID-19 outbreaks. For example, regarding 
the ratio of moved people, people under 24 years show relatively high 
speed of disruption, large value of maximum impact, and small speed of 
recovery, whereas regarding the radius of gyration and daily movement 

distance, people under 24 years show relatively small speed of disrup
tion, small value of maximum impact, and high speed of recovery. 
Additionally, compared with the first wave of COVID-19, the degree of 
this heterogeneity is reinforced when facing the second wave of COVID- 
19. The detailed comparisons can be seen in the calculation results of the 
detailed mobility resilience metrics for people in different age groups as 
shown in Appendix Table A2. 

Based on the detailed resilience metrics, the integrated resilience 
index of human mobility for people in different age groups are shown in 
Fig. 13. In face of the first wave of COVID-19, the age differences in 
mobility resilience are mainly reflected in the number of visited places 
and the ratio of moved people. Regarding the former, people aged over 
60 years showed the highest resilience, followed by people under 24 
years. The resilience of people aged 25 to 59 years was the lowest. 
Regarding the latter, people aged over 40 years showed the highest 
resilience, followed by people aged 25 to 39 years. The resilience of 

Fig. 12. Resilience curves of human mobility to COVID-19 for people in different age groups. (a) Ratio of moved people; (b) Number of visited places; (c) Radius of 
gyration; (d) Daily movement distance; (e) Activity entropy. 

Fig. 13. Integrated resilience index of human mobility for people in different age groups. (a) The first wave of COVID-19; (b) The second wave of COVID-19.  
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people under 24 years was the lowest. Comparing the average resilience 
index of five indicators, people aged over 60 years showed the highest 
value (0.95), followed by people under 24 years (0.80) and people aged 
40 to 59 years (0.78). The value of people aged 25 to 39 years (0.74) was 
the lowest. 

In face of the second wave of COVID-19, the mobility resilience of 
people in all age groups increased, while their order of strength 
exhibited a completely different pattern. Regarding the ratio of moved 
people, people aged 25 to 39 years showed the highest resilience, fol
lowed by people aged 40 to 59 years and people under 24 years. 
Regarding the other four indicators, people under 24 years showed the 
highest resilience, followed by people aged 25 to 39 years and people 
aged 40 to 59 years. The resilience of people aged over 60 years was the 
lowest for all indicators. Comparing the average resilience index of five 
indicators, people aged under 24 years showed the highest value (5.28), 
followed by people aged 25 to 39 years (3.97) and people aged 40 to 59 
years (3.13). The value of people aged over 60 years (1.76) was the 
lowest. 

6. Discussion 

In the above section, we observed that human mobility resilience to 
the COVID-19 pandemic exhibits significant heterogeneities and varia
tions in different mobility characteristics, among people with different 
demographic attributes, and under different waves of outbreaks. In this 
section, we will further reveal the mechanism behind these heteroge
neities and variations by discussing the potential influencing factors that 
may affect human mobility resilience and provide some implications for 
future sustainable and resilient urban management. 

6.1. Potential influencing factors of human mobility resilience 

In general, the potential influencing factors that may affect human 
mobility resilience to the pandemic can be divided into four aspects: 
pandemic spread characteristics, pandemic prevention measures, peo
ple’s willingness to travel, and people’s travel demand. In the following, 
we will discuss them by comparing the situations under two waves of 
COVID-19 outbreaks in Beijing and among people with different de
mographic attributes. 

During the first wave of COVID-19 outbreak, the spread of disease 
was driven by the overlap of imported cases from other cities and the 
local infections. Therefore, the spatial range of the spread was relatively 
wide: the confirmed cases occurred in 15 districts and scattered 
throughout the main urban area (Guo et al., 2022). To prevent and 
control the spread, city-wide lockdown measures such as stopping of 
public transportation, closure of schools and businesses, ban on public 
gatherings, and promotion of remote working, were implemented 
(Beijing Municipal Health Commission, 2020). Such measures made the 
whole city enter a “closed-off” state and mobility of each person was 
greatly restricted. Meanwhile, because there were many unknowns and 
uncertainties about the pandemic during this stage, people’s willingness 
to travel decreased to a minimum due to the psychological fear of the 
pandemic. Under the combined influence of the above factors, human 
mobility resilience exhibited low values in terms of all aspects of 
mobility characteristics, including mobility intensity, mobility range, 
and mobility diversity. 

During the second wave of COVID-19 outbreak, the spread of disease 
was mainly caused by a clustering transmission in a wholesale market, 
Xinfadi market. Therefore, the spatial range of the spread was locally 
clustering: the confirmed cases occurred only in 11 districts and mainly 
distributed around the source of the outbreak (Guo et al., 2022). 
Meanwhile, as the transmission mechanism of the pandemic became 
clearer during this stage, more precise and differentiated pandemic 
prevention measures such as close contact tracing based on big data, 
rapid nucleic acid testing, and targeted closed-off management, were 
implemented (Tian et al., 2020b; Agbehadji et al., 2020; Huang et al., 

2022). Different from the city-wide lockdown measures during the first 
wave of outbreak, such improved measures only restricted mobility of 
people in infected communities, while people in other regions could 
move normally. In addition, people’s willingness to travel increased due 
to their adaption to the pandemic and people’s travel demands also 
increased due to the gradual resumption of work. As a result, human 
mobility resilience was significantly enhanced and especially, the 
resilience of the ratio of moved people became the highest. 

Regarding people with different genders, the heterogeneities in their 
mobility resilience were mainly caused by the differences in their travel 
willingness and travel demands. Specifically, the mobility resilience of 
males was always higher than that of females. There are mainly two 
possible reasons for this. First, the decrease in the work-related travel 
demands during the pandemic was stronger for females than that for 
males because females were more likely to work in sectors harder-hit by 
the pandemic, such as services, retail, tourism, and hospitality (Flor 
et al., 2022). Second, the travel willingness of females was lower than 
that of males during the pandemic because females were more likely 
than males to stay at home and take responsibilities of household and 
childcare (Flor et al., 2022). Meanwhile, these gaps were exacerbated 
from the first to the second wave of outbreaks, because the work-related 
movement of males gradually recovered to the normal with the 
resumption of work, while that of females did not due to their higher 
unemployment rate. 

Regarding people in different age groups, their mobility resilience 
showed different heterogeneity patterns during two waves of COVID-19 
due to different influencing factors. During the first wave of COVID-19, 
their mobility resilience was mainly influenced by the city-wide lock
down measures. Such measures restricted the mobility of all citizens to 
an almost equal level. Therefore, older people who exhibited lower 
mobility indicator values before the pandemic contrarily showed rela
tively stronger resilience. During the second wave of COVID-19, the city- 
wide lockdown measures were lifted and people’s mobility resilience 
was mainly influenced by their travel willingness and travel demands. 
Therefore, younger adults showed relatively higher resilience because 
they had to move normally to maintain their daily work and study, while 
older adults showed relatively lower resilience because their willingness 
to travel was still low due to the higher risk of infection or developing 
severe forms if infected (Applegate & Ouslander, 2020). 

6.2. Implications for sustainable and resilient urban management 

Different from existing studies that have only focused on the changes 
in human mobility during initial stage of COVID-19, our study presents 
the complete change process of human mobility over different stages of 
COVID-19 towards a multi-dimensional perspective. More importantly, 
the resilience of human mobility to COVID-19 is quantified and its 
heterogeneities and variations are revealed. These findings may provide 
valuable implications for sustainable and resilient urban management in 
response to later waves of COVID-19 or similar crises in the future. 

First, some implications can be derived for the further refinement of 
pandemic-control measures. As the OCIVD-19 pandemic has continued 
for a long time, one essential issue needs to be focused on is how to 
balance pandemic prevention and control with normal social and eco
nomic development. The improvement of human mobility resilience 
from the first to the second wave of COVID-19 in our case study provides 
confidence and referential experience for this. Specifically, precise and 
differentiated pandemic prevention measures are suggested, while large 
scale and high intensity lockdown measures should be avoided. To 
achieve this, two aspects of works need to be strengthened. First, the 
source of outbreak should be quickly identified and completely locked 
down to minimize the spatial range of the spread as much as possible; 
Second, people with high risk of infection should be quickly identified 
and timely quarantined by applying digital tracing and rapid nucleic 
acid testing. 

Second, some implications can be derived for the tackling of 
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intensified social inequality problem during the pandemic. The social 
inequality, a common problem existed in many cities, is exacerbated 
during COVID-19 owing to the disproportionate impact of the pandemic 
on vulnerable individuals (Van Dorn et al., 2020; Blundell et al., 2020; 
Feng et al., 2022). Actually, the reasons behind such disproportionate 
impact are differences in people’s response capabilities to the pandemic, 
which we measured as mobility resilience. Therefore, based on the 
resilience disparities detected in our case study, some targeted support 
policies are suggested. Specifically, females usually experience higher 
rates of unemployment during pandemics, therefore, more job oppor
tunities should be provided for them. For example, some new forms of 
employment can be supported such as e-commerce, online education, 
and online entertainment. Additionally, older adults usually exhibit 
lower resilience than other groups, therefore, targeted social assistance 
such as home medical service, procurement and delivery service should 
be provided for them to meet their basic needs. 

Third, some implications can be derived for the promotion of sus
tainable city recovery during the post-pandemic era. The intensity of 
human mobility has been widely used in existing studies as a measure
ment to evaluate the city recovery after a disaster (Podesta et al., 2021; 
Hong et al., 2021; Liu et al., 2021b). However, the heterogeneity in 
change patterns and resilience capabilities of different mobility char
acteristics in our findings suggests that in addition to focusing on 
mobility intensity, the mobility range and diversity should also be 
considered. Specifically, city recovery is a multi-dimensional process, 
therefore, in addition to ensuring people’s compulsory mobility such as 
commuting, appropriate stimulus policy should be implemented to 
stimulate people’s mobility related to shopping, traveling and other 
types of social and economic activities, which better reflect the vitality 
of a city. 

7. Conclusions and future work 

Based on the change process of human mobility over different stages 
of COVID-19 extracted from longitudinal mobile phone signaling data, 
we introduced an integrated framework to quantify human mobility 
resilience. Taking Beijing as a case study, we compared the resilience of 
different mobility characteristics among people with different attri
butes, and in face of different waves of COVID-19 outbreaks. The main 
conclusions are summarized as follows:  

(1) Different mobility characteristics exhibited different resilience to 
COVID-19. The mobility range and diversity were less resilient 
than people’s willingness to engage in a movement. Compared to 
the ratio of moved people, which denotes the willingness to 
move, the radius of gyration and daily movement distance of 
moved people was most affected by COVID-19 even though it 
exhibited a high speed of recovery; the activity entropy of moved 

people was less affected by COVID-19 but exhibited a slow speed 
of recovery.  

(2) The mobility resilience of people with different attributes showed 
significant disparities. Females consistently showed lower resil
ience than males, which exacerbated the existing mobility gaps 
between them. Middle-aged and young people showed lower 
resilience under the first wave of COVID-19 due to the large scale 
and high intensity mobility restrictions. As such measures were 
lifted, the resilience of older adult became the lowest because 
they were more likely to reduce mobility given the higher risk of 
infection.  

(3) With the refinement of pandemic-control measures over time, 
human mobility resilience has been enhanced. During the first 
wave of COVID-19, city-wide lockdown measures were imple
mented to mitigate the spread of the pandemic, which restricted 
mobility of all citizens and weakened their resilience. Whereas, 
during the second wave of COVID-19, such measures became 
precise and locally targeted, which ensured the normal mobility 
of citizens as much as possible while effectively preventing and 
controlling the pandemic. 

The main significance of this study lies in two aspects. Academically, 
an integrated human mobility resilience assessment framework in the 
context of pandemic outbreaks has been introduced. This framework can 
be applied not only in Beijing but also in other cities to estimate the 
resilience of human mobility to COVID-19 or other types of pandemics. 
Moreover, this integrated framework can also be replicated for investi
gating human mobility resilience to other type of exceptional or extreme 
events (e.g. natural disasters and man-made risks) more accurately and 
comprehensively. In practice, the findings provide valuable references 
for the coordination of pandemic prevention and control with normal 
social and economic development. Precise and differentiated mobility 
restriction measures are recommended to effectively control the spread 
of the pandemic while ensuring the normal mobility of citizens as much 
as possible; targeted support policies are suggested to support more 
reasonable resource allocations and minimize resilience heterogeneity 
among different population groups, which can help avoid problems of 
social inequity. 

This study also has several limitations. First, due to the limitation of 
data acquisition, data for only one month before the COVID-19 was used 
to calculate the baseline value of human mobility, which might not be 
very accurate. In the future, longer-term data should be collected to 
measure the normal trends of human mobility more accurately. Second, 
only changes in human mobility over the first two waves of COVID-19 
outbreak in 2020 were analyzed and the data was not timely updated. 
However, since the COVID-19 has lasted for over two years, many things 
as well as human mobility behavior in response to COVID-19 may 
change. In the future, the recent data should be collected and analyzed 

Table A1 
Detailed resilience metrics of human mobility to COVID-19 for people with different genders.    

The first wave of COVID-19 The second wave of COVID-19   

R N Rog D AE R N Rog D AE 

Speed of disruption Male 1.35 1.10 2.93 2.71 1.29 0.49 0.53 1.85 1.15 0.66 
Female 1.51 1.07 3.24 2.83 1.27 0.63 0.62 2.00 1.82 0.67 

Maximum impact (%) Male 23.33 18.25 46.95 43.17 22.50 7.83 7.45 14.78 10.36 9.91 
Female 26.31 17.59 49.24 43.08 22.36 9.46 7.51 17.98 14.55 10.07 

Speed of recovery Male 0.18 0.16 0.57 0.54 0.19 0.11 0.07 0.44 0.23 0.10 
Female 0.19 0.14 0.60 0.53 0.16 0.15 0.07 0.57 0.29 0.12 

Recovery degree Male 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 
Female 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 

Duration of impact (d) Male 147 136 101 98 140 89 111 41 53 111 
Female 157 136 100 100 155 81 112 42 56 99 

Total performance loss Male 14.78 12.67 25.67 23.10 15.54 3.03 4.15 2.77 2.44 4.27 
Female 18.18 13.55 28.12 24.24 18.10 4.38 5.34 3.95 3.58 6.09 

Note: R, N, Rog, D, and AE denote ratio of moved people, number of visited places, radius of gyration, daily movement distance, and activity entropy. 
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so as to make a comparison with the results obtained from this study. 
Third, the potential influencing factors that may affect human mobility 
resilience to the pandemic were only qualitatively discussed in the dis
cussion section, which is insufficient. In the future, a quantitative rela
tionship model between them should be constructed to better reveal the 
mechanism behind the heterogeneities and variations of human mobility 
resilience. 
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