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Abstract

Alcohols and carboxylic acids are among the most commercially abundant, synthetically 

versatile, and operationally convenient functional groups in organic chemistry. Under visible 

light photoredox catalysis, these native synthetic handles readily undergo radical activation, 

and the resulting open-shell intermediates can subsequently participate in transition metal 

catalysis. In this report, we describe the C(sp3)–C(sp3) cross-coupling of alcohols and carboxylic 

acids through the dual combination of N-heterocyclic carbene (NHC)-mediated deoxygenation 

and hypervalent iodine-mediated decarboxylation. This mild and practical Nicatalyzed radical-

coupling protocol was employed to prepare a wide array of alkyl–alkyl cross-coupled products, 

including highly congested quaternary carbon centers from the corresponding tertiary alcohols or 

tertiary carboxylic acids. We demonstrate the synthetic applications of this methodology to alcohol 

C1-alkylation and formal homologation, as well as to the late-stage functionalization of drugs, 

natural products, and biomolecules.

Alcohols and carboxylic acids are ubiquitous, native functional groups with unparalleled 

structural diversity, wide-ranging synthetic applicability, and broad representation among 

both natural and commercial sources.1,2 These two structural motifs are most commonly 

coupled via the venerable esterification reaction, reported in its first iteration by Fischer and 

Speier over 125 years ago.3 The widespread adoption of this disconnection can be attributed 

at least in part to the desirability of alcohols and carboxylic acids as highly abundant organic 

fragments. By contrast, the direct coupling of alcohols and carboxylic acids to forge new 

C(sp3)–C(sp3) bonds has remained an appealing yet elusive goal.4 Recently, our group has 

harnessed both carboxylic acids and alcohols as alkylating agents in visible-light-driven 

processes.5 We questioned whether these activation modes could be combined in a unified 

metallaphotoredox strategy that could achieve the longstanding goal of alcohol–carboxylic 
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acid C(sp3)–C(sp3) cross-coupling.6 This technology would leverage the versatility, stability, 

and convenience of alcohols and carboxylic acids, thus offering a modern, orthogonal 

approach to well-known esterification protocols.

In recent years, metallaphotoredox catalysis has transformed organic synthesis by enabling 

the activation and subsequent cross-coupling of previously inert alkyl fragments, such 

as alcohols, carboxylic acids, and C(sp3)–H bonds.7 In particular, alkyl carboxylic acids 

are highly amenable to light-induced redox activation, participating in a diverse array 

of transformations, including arylation, alkylation, and amination, among others.5a,8 In a 

similar fashion, the radical deoxygenative functionalization of alcohols has been achieved 

through a variety of mechanisms.9–13 These approaches often entail preactivation of the 

alcohol substrate, requiring additional chemical steps and purifications.14,15 Moreover, the 

homolytic cleavage event can liberate byproducts that are incompatible with transition 

metal catalysis.16 To overcome these challenges, our group recently disclosed an alternative 

technology that leverages an N-heterocyclic carbene (NHC)-based reagent to achieve the 

deoxyarylation of an extensive array of complex, structurally distinct alcohols.5b The NHC 

reagent reacts with the alcohol substrate to generate an electron-rich intermediate that is 

poised to undergo in situ oxidative fragmentation, ejecting an alkyl radical that can be 

subsequently captured by a metal catalyst.5b

While reports of decarboxylation and deoxygenation have been described in separate 

contexts, the main challenge for a nontraditional C(sp3)–C(sp3) fragment coupling is 

ensuring the cross-compatibility of activation modes in combination with a suitable 

transition metal catalyst. We sought to merge NHC-promoted oxidative radical formation 

with a reductive strategy for decarboxylation8d to enable a redox-neutral coupling protocol. 

However, the proposed transformation involves transient generation of two alkyl radicals 

that must be differentiated in order to achieve efficient cross-coupling.17 As a design 

principle, we recognized that the relative instability of more highly substituted metal–alkyl 

species should favor formation of the desired product via catalyst-controlled radical sorting 

mechanisms.18 Nickel,19 with its well-established ability to efficiently capture and stabilize 

alkyl radicals, was selected to mediate bond formation. We hypothesized that the nickel 

catalyst would preferentially bind and stabilize the less-substituted alkyl species in the form 

of a more persistent metal–alkyl complex,20 directing its cross-coupling with the more 

highly substituted free radical (vide infra). If successful, the ability to directly couple two 

of the most abundant and versatile alkyl sources—alcohols and carboxylic acids—would 

permit broad combinatorial access to sp3-rich products in a single-step process,21 thereby 

facilitating a practical synthesis of aliphatic motifs encompassing an expansive region of 

chemical space (Figure 1).22

We envisioned achieving dual nickel/photoredox-catalyzed cross-coupling of alcohols and 

carboxylic acids via the design plan depicted in Figure 2. First, carboxylic acid 1 is 

premixed with iodomesitylene diacetate to afford the activated iodonium dicarboxylate 2, 

which can be prepared directly on a rotary evaporator without additional purification.8d,23 

The alcohol substrate 3 condenses with benzoxazolium salt NHC-1 to form the activated 

NHC–alcohol adduct (4) under mildly basic conditions.24 Visible-light excitation of 

the photocatalyst [Ir(dF(Me)ppy)2(dtbbpy)]PF6 (5) [dF(Me)ppy = 2-(2,4-difluorophenyl)-5-
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(methyl)-pyridinyl; dtbbpy = 4,4′-bis(tert-butyl)-2,2′-bipyridine] generates a long-lived, 

oxidizing triplet excited state (6, τ = 1.2 μs, E1/2
red [*Ir(III)/Ir(II)] = +0.77 V vs saturated 

calomel electrode (SCE) in MeCN).25 The excited state complex 6 can readily undergo 

reductive quenching by 4 (in preference to oxidative quenching by 2; see Figures S8 and S15 

for emission quenching studies) via single-electron transfer (SET) to provide the reduced 

Ir(II) photocatalyst 7. Rapid deprotonation of the transient amine radical cation26 generates 

a carbon-centered radical adjacent to three heteroatoms (8). At this stage, subsequent 

β-scission27,28 (ΔG‡ < 12 kcal/mol by density functional theory; see Table S17) liberates 

an aromatized byproduct29 (9) and alkyl radical 10, which can be rapidly trapped by 

the nickel catalyst 12 to form Ni–alkyl intermediate 13. Concurrently, reduction of the 

preformed iodonium dicarboxylate (2, Epc = −1.00 V vs SCE in 1:1 DMSO/MTBE) by 

7 (E1/2
red [Ir(III)/Ir(II)] = −1.25 V vs SCE in in 1:1 DMSO/MTBE) should afford, upon 

fragmentation and CO2 extrusion, the acid-derived radical 11 along with the regenerated 

Ir(III) photocatalyst (5). Finally, nickel-catalyzed bond formation30,31 would deliver the 

desired C(sp3)–C(sp3) coupled product (14) and reconstitute the nickel catalyst 12.

Although alternative sequences of radical capture and bond formation are possible, we 

postulated that the nickel catalyst should effectively distinguish between the two radical 

species and direct their productive cross-coupling as a combined consequence of (i) the 

differing relative stabilities of alkyl radicals,17 (ii) differences in nickel–carbon bond 

strengths,20 and (iii) the reversibility of radical capture for hindered alkyl radicals.32 

Literature precedent and preliminary computational studies suggest that nickel catalyst 12 
should preferentially bind and sequester the less-substituted alkyl radical, 10 (ΔG = −12.4 

kcal/mol by DFT; Figure S23), thereby promoting the buildup of the more-substituted 

radical, 11, in solution. Under steady-state reaction conditions, we postulated that this 

“radical sorting” mechanism should favor the accumulation of species 11 and 13 (over 10 
and 15), from which bond formation would provide the desired cross-coupled product.18

We first explored this idea in the context of the model deoxymethylation shown in Table 

1. Following an extensive evaluation of reaction conditions (Tables S1–S10), we ultimately 

found that the alcohol substrate underwent efficient in situ condensation with NHC-1 (1.10 

equiv) and pyridine (1.05 equiv) in MTBE (0.10 M), followed by cross-coupling with 

iodomesitylene diacetate (2.0 equiv) in the presence of photocatalyst 5 (1 mol %) and 

nickel catalyst 12 (10 mol %)30 in MTBE/DMSO (1:1, 0.02 M) to afford the desired 

product in excellent yield (Table 1, 76% yield) after 1 h of visible light irradiation (450 

nm) in an integrated photoreactor.33 This protocol permits the direct in situ activation of 

alcohol substrates, representing a highly practical and exceptionally mild procedure for 

alkyl cross-couplings. Diminished reaction performance was observed with related nickel 

salts, such as acetylacetonate- or bipyridine-ligated systems (entries 2 and 3, 73% and 24% 

yield, respectively). While the commercially available carboxylate precursor MesI(OAc)2 

remains optimal under these conditions, the related reagent, phenyliodine(III) diacetate 

(PIDA),34 can be used with minimal reduction in yield (entry 4, 71% yield). Reduced 

stoichiometric excess of the carboxylate is well-tolerated (entry 5, 67% yield) and may 

be desirable for structurally complex or high-value coupling partners. Both the NHC- 

and iodine(III)-mediated radical generation pathways are exceptionally facile, and the vast 
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majority of product formation occurs in a matter of minutes (entry 6, 67% yield). Control 

experiments indicate that iridium, light, and nickel are each essential for optimal efficiency 

of product formation (entries 7–11), although small amounts of cross-coupled product are 

formed through background radical coupling in the absence of 12 (entry 8).

With optimized conditions in hand, we set out to explore the scope of our reaction 

(Table 2). Using a β-alanine derivative (16) as the carboxylic acid coupling partner, 

primary, secondary, and tertiary alcohols could be successfully cross-coupled under 

the reaction conditions.35 Secondary aliphatic alcohols containing saturated scaffolds of 

pharmaceutical relevance were competent substrates in our protocol, affording alkylated 

products incorporating pyrrolidine (17, 51% yield), tetrahydropyran (18, 62% yield), 

piperidine (19 and 20, 62% and 63% yield, respectively), dioxane (21, 78% yield), and 

azepane (22, 68% yield) motifs.36 Rotationally unconstrained secondary acyclic substrates 

could also be successfully utilized to access the desired products in good yield (23 and 24, 

79% and 73% yield, respectively), and sterically encumbered polycyclic alcohols such as 

2-adamantanol and exo-norborneol were employed without appreciable decrease in reaction 

performance (25 and 26, 47% and 79% yield, respectively). Significant homocoupling is 

observed in the cross-coupling of two primary radicals, as the nickel catalyst is less able 

to effectively differentiate between these two active species. Nonetheless, using 2 equiv 

of the activated acid component, primary aliphatic alcohols could be employed to provide 

C(sp3)–C(sp3) coupled products in synthetically useful yields, demonstrating tolerance of 

functional groups such as primary alkyl chlorides (27, 50% yield), as well as ethers and 

protected amines (28–30, 52–75% yield). Notably, tertiary alcohols underwent successful 

deoxygenative alkylation to afford products with hindered alkyl quaternary carbon centers

—a longstanding challenge in the field of alkyl–alkyl cross-coupling.18,37,38 This protocol 

was successfully applied to both cyclic and acyclic tertiary alcohols, including tert-butanol, 

illustrating the power of this method to deliver previously elusive products from readily 

available starting materials (31–35, 57–75% yield).

With respect to the carboxylic acid coupling partner, we selected phenylalanine-derived 

alcohol substrate 36 to interrogate the performance of a range of primary, secondary, 

and tertiary alkyl acids under our reaction conditions. An array of secondary carbocyclic 

substrates performed well using this technology, affording a host of alkyl coupled products. 

Small ring systems, such as cyclobutane (37 and 38, 57% and 52% yield, respectively), 

cyclopentane (39, 67% yield), pyrrolidine (40, 42% yield), and tetrahydrofuran (41, 50% 

yield), were found to be viable coupling partners, as were larger cyclohexane (42 and 

43, 65% and 69% yield, respectively), tetrahydrofuran (44, 66% yield), and cycloheptane 

(45, 66% yield) scaffolds. Commercially available fluoroalkyl moieties could be readily 

incorporated into these cross-coupled products (38 and 43)—an important objective in the 

synthesis of medicinal agents where the ability of fluorine to modulate physicochemical 

properties is well-recognized.39 Secondary acyclic carboxylic acids could be subjected to 

our reaction conditions, affording alkylated products in good yields (e.g., 46, 64% yield). A 

range of acetic and primary carboxylic acids underwent successful cross-coupling, including 

substrates with α-branching and electrophilic groups, such as carboxylate esters (47–50, 

47–67% yield). Of note, tertiary carboxylic acids could be effectively utilized for the 
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preparation of fully C(sp3)-substituted quaternary carbon centers, including those arising 

from monocyclic (51 and 52, 61% and 47% yield, respectively) and polycyclic (53 and 

54, 66% and 54% yield, respectively) tertiary acid substrates. The sterically hindered, 

planarized tert-butyl radical derived from pivalic acid was successfully employed to generate 

the corresponding product in good yield (55, 58% yield).

To further demonstrate the value of this method, we next sought to deploy our protocol 

in the context of deoxygenative C1-alkylation.40 Acetic acid derived C1-alkylating reagents 

bearing isotopic or heteroatom substituents were successfully employed to prepare products 

with deuteromethyl (56, 78% yield), aminomethyl (57, 52% yield), and aryloxymethyl (58, 

63% yield) functionality (Table 3). In addition, using readily available α-hydroxy acids as 

highly convenient and versatile homologation reagents,41 we accessed alcohol homologation 

products bearing benzyl (59, 70% yield), acetoxy (60, 58% yield), and p-methoxybenzyl 

(61, 59% yield) protecting groups. Finally, to illustrate the practical advantages of this 

technology in the context of late-stage functionalization of drugs and biomolecules, we 

subjected complex alcohol and acid substrates to our reaction conditions. We were excited 

to obtain synthetically useful quantities of alkyl coupled products, demonstrating the 

applicability of this synthetic technology to the late-stage derivatization of drugs, natural 

products, and biomolecules (Table 4, 62–65, 34–80% yield).

In summary, we introduce here the merger of alcohols and carboxylic acids via C(sp3)–

C(sp3) cross-coupling as an orthogonal fragment coupling to the traditional esterification 

reaction. By combining NHC-mediated deoxygenation with hypervalent iodine-mediated 

decarboxylation, we have successfully developed a dual nickel/photoredox-catalyzed 

technology applicable to a wide range of aliphatic alcohols and carboxylic acids. We 

demonstrate the utility of this methodology for quaternary carbon center synthesis, alcohol 

homologation, and late-stage derivatization. Additional studies probing the nature of the 

bond formation and its application to new synthetic contexts are underway and will be 

reported in due course.
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Figure 1. 
Cross-coupling of alcohols and carboxylic acids.
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Figure 2. 
Proposed reaction design.
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Table 1.

Control Reactions of Optimized Conditions
a

entry deviation from above yield
b

1 none 76%

2 Ni(acac)2 instead of 12 73%

3 NiCl2·dtbbpy instead of 12 24%

4 PhI(OAc)2 instead of MesI(OAc)2 71%

5 1 equiv of MesI(OAc)2 67%

6 irradiation for 5 min 67%

7 no Ir catalyst <5%

8 no Ni catalyst 12%

9 no Ir catalyst, no light 0%

10 no Ir catalyst, no Ni catalyst 0%

11 no light, 50 °C 0%

a
Performed with alcohol (0.05 mmol, 1.0 equiv), NHC precursor (1.10 equiv), pyridine (1.05 equiv), and iodomesitylene dicarboxylate (2.0 equiv).

b
Yields determined by HPLC analysis with acetanilide as internal standard. See Supporting Information for experimental details.
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Table 3.

Deoxygenative C1-Alkylation
a

a
See SI for experimental details. All yields are isolated.
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