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Abstract

Deoxy-functionalization of alcohols represents a class of reactions that has had a profound impact 

on modern medicine. In particular, deoxyfluorination is commonly employed as a means to 

incorporate high-value fluorine atoms into drug-like molecules. Recently, the trifluoromethyl 

(CF3) group has garnered attention from medicinal chemists due to its ability to markedly improve 

the pharmaceutical properties of small-molecule drug candidates. To date, however, there remains 

no general means to accomplish the analogous deoxygenative trifluoromethylation of alcohols. 

We report herein a copper metallaphotoredox-mediated direct deoxytrifluoromethylation, wherein 

alcohol substrates are activated in situ by benzoxazolium salts for C(sp3)–CF3 bond formation.

The structural topology of drug candidates is inextricably linked to the state of the art 

of chemical synthesis.1–4 Consequently, novel synthetic methods that provide access to 

underexplored chemical space can enable the discovery of breakthrough therapeutics.5,6 

Nowhere is this relationship more apparent than the case of fluorine in drug discovery.

While the benefit of fluoroalkyl groups in medicinal chemistry has long been understood,7 

it was not until robust synthetic methods for the construction of C–F bonds emerged that 

these motifs were viewed as feasible synthetic targets. Indeed, a stark increase in the number 

of fluorinated FDA-approved drugs occurred in the years following the first disclosure of 

deoxyfluorination reagents such as diethylamino-sulfur trifluoride (DAST) (Figure 1a).8
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In recent years, the trifluoromethyl group has become one of the most widely utilized 

fluoroalkyl groups in drug discovery, due to its ability to increase drug potency and oral 

bioavailability while decreasing the rate of oxidative clearance.9,10 In 2020 alone, nearly 

10% of top selling small-molecule drugs contained at least one trifluoromethyl group. 

However, only 3% of these top selling drugs contain an aliphatic trifluoromethyl group 

[C(sp3)–CF3].11 This discrepancy represents an opportunity for the development of novel 

C(sp3)–CF3 bond forming reactions.

Among limited examples to date, copper has emerged as the metal of choice for catalytic 

C(sp3)–CF3 bond formation. Facile reductive elimination from formal Cu(III) centers has 

enabled significant advancements in the trifluoromethylation of aliphatic radical precursors 

such as carboxylic acids,12,13 alkyl bromides,14,15 alkyl iodides,16 xanthate esters,17,18 and 

C–H bonds.19–21 At present, however, the largest reservoir of aliphatic building blocks—the 

alcohol—remains underutilized for the construction of C(sp3)–CF3 bonds.

Alcohols are among the most abundant sources of functional C(sp3) carbon atoms 

(Figure 1b).22–25 Chemical transformations, such as deoxyfluorination, that make use of 

this feedstock material have already proven critical to the treatment of human disease 

(vida supra), making alcohols the ideal precursors for aliphatic trifluoromethyl groups. 

By analogy, we anticipate that such a deoxytrifluoromethylation reaction would enable 

unprecedented access to fluorinated organic frameworks that are of paramount importance 

to global health. To this end, two pioneering methods have been developed. However, 

both protocols require activating the alcohols as xanthate esters in a separate synthetic 

step and either employ expensive CF3 sources17 or are limited in scope.18 Consequently, 

there remains no general method for the direct conversion of native alcohols to aliphatic 

trifluoromethyl groups.26

Our group recently reported that N-heterocyclic carbene (NHC) precursors can condense 

with alcohols under mild conditions to form adducts susceptible to metallaphotoredox 

activation without any purification or workup. This discovery led to the development of 

a robust nickel-mediated deoxyarylation protocol.27 Given the diversity of alcohol chemical 

matter, and the importance of trifluoromethyl groups in medicinal chemistry, we recognized 

an opportunity to exploit this activation mode for the deoxytrifluoromethylation of alcohols 

via copper metallaphotoredox catalysis (Figure 1c).

Our mechanistic design is detailed in Figure 2. We envisioned that aliphatic alcohol 1 would 

first be activated in situ by condensation with benzoxazolium salt 2, forming NHC–alcohol 

adduct 3. Excitation of photocatalyst 4 [Ir(dF(OMe)ppy)2(5,5′(CF3)bpy)PF6] by blue light 

is known to produce a highly oxidizing excited state (5, E1/2
red[*IrIII/IrII] = +1.60 V vs SCE 

in MeCN)14 that could be quenched by 3 via single-electron transfer (SET). Subsequent 

deprotonation of the now acidified methine C–H (pKa ~10)27 would provide α-amino 

radical 7, which can undergo exothermic β-scission28 of the alcohol C–O bond to afford 

alkyl radical 9 and inert byproduct 8. Concurrently, formal reduction of electrophilic CF3 

source 10 in the presence of Cu(I) is known to give rise to Cu(II)–CF3 species19 12, capable 

of trapping the newly generated alkyl radical 9 at near diffusion controlled rates.29 Reductive 
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elimination from the resulting putative alkyl–Cu(III)–CF3 complex 13 would furnish the 

desired aliphatic trifluoromethylated product 14.30

Following an extensive optimization campaign, we identified the conditions outlined 

in Table 1 as optimal. Alcohol 15 was condensed with NHC salt 2 under mildly 

basic conditions, then subjected to irradiation with blue light, along with 1 mol % 

photocatalyst 4, 5 mol % Cu(terpy)Cl2 (17), 1.5 equiv of dMesSCF3 (10), 1.6 equiv of 

quinuclidine, and 2 equiv of tetrabutylammonium chloride (TBACl) in DMSO. After 8 h, 

the trifluoromethylated product 16 was obtained in 84% yield. The presence of exogenous 

chloride anion (Cl−) proved critical to the overall success of this transformation. Control 

experiments revealed that this effect is unique to soluble chloride sources and not general 

for other X-type ligands (see the SI for details). Prior work from our lab has shown that 

chloride anions can modulate the coordination sphere of copper complexes, resulting in a 

proposed shift in redox properties and reactivity.19 While the exact role of Cl− in the present 

transformation remains under investigation, preliminary data suggest this X-type ligand is 

suppressing off-cycle reduction of dMesSCF3 (10) to fluoroform (CHF3) by low-valent 

copper. This proposal is supported by four key observations: (1) in the absence of chloride 

anion, consumption of dMesSCF3 is rapid and causes the reaction to stall; (2) unproductive 

consumption of dMesSCF3 is mediated by both copper and light; (3) Cl− modulates the 

ligand sphere of CuI(terpy)Cl as measured by UV–vis spectroscopy; (4) Cl− suppresses 

reduction of dMesSCF3 by CuI(terpy)Cl. For a more detailed discussion, see Supporting 

Information Section 5.

Curiously, control experiments revealed that a modest yield of 27% was obtained in the 

absence of a photocatalyst but in the presence of 450 nm light (entry 5). This result suggests 

a minor background reaction possibly mediated by a photoactive copper species.31

With optimized conditions in hand, we sought to evaluate the scope of the present 

transformation. We were pleased to find that a variety of structurally diverse primary 

alcohols readily underwent deoxytrifluoromethylation in good to excellent yields (Table 

2). Unactivated primary alcohols were trifluoromethylated to afford 18, 19, and 20 in 80%, 

85%, and 66% yield, respectively. Alcohols proximal to cyclic (21, 77% yield) and acyclic 

(22 and 23) amines also underwent efficient bond formation (72–77% yield). Notably, a 

primary alcohol containing a coordinating pyrazole moiety was trifluoromethylated to afford 

24 in 68% yield.

In addition, activated, benzylic alcohols were trifluoromethylated in good to high yields (25, 

82% yield) including those bearing a pyridinyl nitrogen in the 2- (26, 63% yield), 3- (27, 

75% yield), and 4- (28, 49% yield) position. Gratifyingly, a hindered neopentyl alcohol was 

trifluoromethylated to deliver 29 in a synthetically useful 44% yield.

We next turned our attention to secondary alcohols. A variety of cyclic substrates of 

different ring sizes were well tolerated in this transformation, allowing construction of 

the desired C(sp3)–CF3 bond in good to excellent yields (14, 16, 30–35, 52–86% yield). 

Bicyclic and spirocyclic ring systems, often used as bioisosteres for saturated heterocycles,32 

were trifluoromethylated in 56–72% yield (36 and 37) and 54–70% yield (38–40). Acyclic 
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secondary phenyl butanol underwent deoxytrifluoromethylation to give 41 in 74% yield. 

Notably, alcohols bearing reactive functional groups, such as alkyl bromides, were amenable 

to trifluoromethylation, delivering product 42 (79% yield), which is poised for orthogonal 

functionalization. Lastly, it is important to note that the carboxylic acids and alkyl bromides 

corresponding to Cbz-prolinol (21), bicyclic lactone (37), and [3.3]spirocycle (38) either are 

not commercially available or are prohibitively expensive, highlighting the practical utility 

of this new alcohol-based cross-coupling protocol.33

Quaternary trifluoromethylaryl cyclopropanes are of particular interest to medicinal 

chemists for their ability to function as bioisosteres for aryl tert-butyl groups.34,35 

Traditionally, these motifs are prepared through a multistep synthetic sequence requiring 

the use of hazardous reagents and forcing temperatures.36 Although significant progress 

has been made in the last 5 years,37 the synthesis of these fluoroalkyl groups remains a 

significant challenge. To this end, we subjected a series of arylcyclopropanols to a modified 

set of reaction conditions (see Supporting Information Section 7) and were delighted to 

observe that the desired trifluoromethylated quaternary center was formed in good to high 

yields (43–45, 54–74% yield). For additional examples and limitations see the Supporting 

Information, Table S9.

From the outset, we sought to develop a deoxytrifluoromethylation protocol that would be 

compatible with the structural idiosyncrasies of drug discovery campaigns.6 Accordingly, 

we subjected a series of “drug-like” alcohols to this deoxytrifluoromethylation protocol 

(Table 3). We were pleased to find pyrazole and isoxazole sulfonamides delivered the 

desired products (46 and 47) in 86% and 72% yield, respectively. The successful synthesis 

of isoxazole 47 is of particular significance, given the propensity for the N–O bond to 

be cleaved via oxidative addition by low-valent metals.38 Additionally, aryltriazole 48 and 

triazolopyrazine 49 were obtained from the corresponding alcohols in modest to good yields 

(44% and 54% yield, respectively).

Initial attempts to synthesize aminopyrimidine 50 under the standard protocol were beset 

by poor yields and observation of side products by UPLC/MS resulting from oxidation 

of the piperidine nitrogen.39 By simply changing to a less oxidizing photocatalyst 

([Ir(F(Me)ppy)2(dtbbpy)PF6], E1/2
red[*IrIII/IrII] = +0.77 V vs saturated calomel electrode 

(SCE) in MeCN)40 we were able to suppress the formation of these oxidative byproducts 

and forge the desired C(sp3)–CF3 bond in 62% yield. Using these same modified conditions, 

chloropyridazine 51 was also obtained in 50% yield.

Installation of small trifluoromethylated alkyl groups on complex heteroarenes is often 

accomplished through Negishi coupling.41 Although highly effective, this protocol requires 

that the corresponding organometallic reagent must first be made from an alkyl halide. 

An orthogonal strategy that harnesses widely available alcohols as coupling partners would 

greatly expand synthetic accessibility to this chemical space. Accordingly, we investigated 

the use of small diols as precursors to esoteric trifluoromethylated alkyl groups. We 

adopted an iterative functionalization strategy to synthesize complex pyrazolopyridine 54 
in two steps from commercially available materials. Initial arylation of diol 52 under 

conditions previously reported by our group27 delivered the monoarylated intermediate 53 
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in 47% yield while leaving the second alcohol untouched. Exposure of this alcohol to 

deoxytrifluoromethylation delivered 54 in 68% yield.

Monosaccharides serve as building blocks for biologically important macromolecules, and 

fluorination of their highly oxygenated skeletons has the potential to greatly alter their 

physical properties.42,43 As shown in Table 4, protected glucose 55 and furanose 56 were 

obtained via deoxytrifluoromethylation in 65% and 79% yield, respectively. Additionally, 

deoxyribose 57 was obtained in a synthetically useful 32% yield. Although modest in yield, 

we anticipate this building block can serve as a precursor to a library of synthetically 

challenging trifluoromethylated nucleoside analogues (vide infra).

At this stage we turned our attention to the long-standing challenge of synthesizing 

trifluoromethylated nucleoside derivatives. There are few published examples of nucleoside 

analogues with trifluoromethyl groups at the 3′ position of deoxyribose. Traditionally, these 

molecules require up to 11 synthetic steps to access.44–49 Recently, Cook et al. reported a 

two-step approach to a 3′-(CF3)-thymidine derivative, a major advancement in this field.17 

We were interested in further accelerating the synthesis of these targets by employing our 

one-step deoxytrifluoromethylation protocol. Pleasingly, direct trifluoromethylation of the 

3′ hydroxyl group in dimethoxytrityl (DMT)-protected thymidine could be achieved in 38% 

yield (58). Two additional nucleosides, DMT-adenosine and DMT-5-methylcytidine, were 

also trifluoromethylated in 31% (59 and 60) yield. Although these products are formed in 

modest yield, the protocol described herein dramatically reduces the amount of time, effort, 

and resources required to access these elusive structures. Finally, we demonstrated the utility 

of our deoxytrifluoromethylation protocol in the context of late-stage functionalization of 

pharmaceutical agents. To our delight, a derivative of the cardiovascular drug Ticagrelor (61) 

was trifluoromethylated to deliver 62 in 63% yield.

In summary, we describe herein an efficient protocol for the direct 

deoxytrifluoromethylation of alcohols. A wide range of substrates are amenable to this 

transformation, including primary, secondary, and tertiary alcohols, monosaccharides, 

nucleosides, and complex drug-like molecules. We anticipate that this reaction will be of 

value to the medicinal chemistry community and will serve to accelerate the discovery of 

novel trifluoromethyl-containing therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Deoxytrifluoromethylation of alcohols.
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Figure 2. 
Plausible mechanism for deoxytrifluoromethylation.
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Table 1.

Control Reactions of Optimized Conditions
a

entry deviation yield
b

1 none 84%

2 NaCl instead of TBACl 74%

3 CuCl2 instead of Cu(terpy)Cl2 80%

4 no TBACl 41%

5 no photocatalyst 27%

6 no copper catalyst 0%

7 no photocatalyst, no TBACl 12%

8 no light 0%

a
Reactions performed with alcohol (1.0 equiv), Cu(terpy)Cl2 (5 mol %), dMesSCF3 (1.5 equiv), TBACl (2 equiv), quinuclidine (1.6 equiv), DMSO 

(0.025M), integrated photoreactor (450 nm, 100% light intensity).

b
Yields determined by 19F NMR analysis using 1,4-difluorobenzene as internal standard. See the SI for experimental details.
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