
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Technological Forecasting & Social Change 187 (2023) 122188

Available online 21 November 2022
0040-1625/© 2022 Published by Elsevier Inc.

How can infectious medical waste be forecasted and transported during the 
COVID-19 pandemic? A hybrid two-stage method 

Li Xin a, Chen Xi a,*, Mujgan Sagir b, Zhang Wenbo a 

a School of Economics & Management, Xidian University, Xi’an 710071, China 
b Industrial Engineering Department, Eskisehir Osmangazi University, Eskisehir 26480, Turkey   

A R T I C L E  I N F O   

Keywords: 
Multi-objective model 
Multi-criteria decision making 
Medical waste prediction 
Transportation route optimization 

A B S T R A C T   

The COVID-19 pandemic has caused an unforeseen collapse of infectious medical waste (IMW) and an abrupt 
smite of the conveying chain. Hospitals and related treatment centers face great challenges during the pandemic 
because mismanagement may lead to more severe life threats and enlarge environmental pollution. Opportune 
forecasting and transportation route optimization, therefore, are crucial to coping with social stress meritori
ously. All related hospitals and medical waste treatment centers (MWTCs) should make decisions in perspective 
to reduce the economic pressure and infection risk immensely. This study proposes a hybrid dynamic method, as 
follows: first to forecast confirmed cases via infectious disease modeling and analyze the association between 
IMW outflows and cases; next to construct a model through time-varying factors and the lagging factor to predict 
the waste quantity; and then to optimize the transportation network route from hospitals to MWTCs. For 
demonstration intentions, the established methodology is employed to an illustrative example. Based on the 
obtained results, in finding the process of decision making, cost becomes the common concern of decision- 
makers. Actually, the infection risk among publics has to be considered simultaneously. Therefore, realizing 
early warning and safe waste management has an immensely positive effect on epidemic stabilization and 
lifetime health.   

1. Introduction 

Due to the infectious characteristic of the COVID-19 pandemic, social 
deaths from the virus have been higher than in past years (Jacobson and 
Jokela, 2021). In addition to the high death toll, the ongoing COVID-19 
pandemic has, since its global concern in late 2019, led to social disor
ders, changes in lifestyle habits and environmental pollution (Wenham 
et al., 2021). A high-risk infectious rate, a large number of patients and 
large-scale spread paths have always been typical features of COVID-19. 
The coronavirus propagates easily via respiratory droplets, close contact 
and aerosols. Meanwhile, the explosive demand for medical materials 
and related services has caused a massive rise in the waste generation 
rate (Kargar et al., 2020). Virus-contaminated infectious medical waste 
(IMW), such as masks, protective clothing, pharmaceutical packaging 
and domestic waste, is generated in the process of prevention, control, 
treatment and recovery, with various potential risks to humans (Han
toko et al., 2021). The peak daily IMW produced in Wuhan City, the 
epicenter of China, reached 247 tons by 1 March 2020, which is a 5- to 6- 
fold increase from between 40 and 50 tons (You et al., 2020). Accurate 

forecasting and reasonable waste transportation will help reduce in
fectious risk and build an environmental-friendly atmosphere. 

All of these special considerations, sudden breakouts, rare occur
rences and global scopes, place limitations on the practicality of fore
casting waste quantity during the COVID-19 outbreak as urgent social 
issues. Many previous papers in the waste forecasting field have focused 
on other types of waste, such as household waste, electronic waste, 
construction and demolition waste (Song et al., 2017; Althaf et al., 2019; 
Sunayana et al., 2021; Wang et al., 2021; Johnson et al., 2017). The 
methods involved in these studies may be listed into several categories: 
grey model (GM), support vector regression (SVR), logistics forecasting 
models, nonlinear autoregressive (NAR) models, variational mode 
decomposition (VMD), exponential smoothing model (ESM) and 
gradient boosting models. There was one respect, however, in which 
these modeling methodologies rely on sufficient existing data and have 
their own disadvantages. 

Due to the particularity of infectious medical waste during the 
epidemic, which is different from general waste, the main difficulty of 
the existing method is that it cannot be proven correct for its application 
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in the epidemic. Some researchers proposed that the quantity of 
healthcare hazards is proportional to the confirmed cases, and further, 
there is informative information about the association between IMW 
outflows and diagnosed cases as well as a special lagged relationship 
(Richter et al., 2021). Some authors offered constructive insights to 
predict COVID-19 trends and patients, which may support more direc
tional and targeted approaches to be provided, so as to forecast the 
number of IMW in other perspectives. A multi-logistic model method 
(Devezas and Miranda, 2021) is applied to predict the trend of the 
COVID-19 pandemic. Furthermore, infectious disease models are used 
extensively for real-time epidemic forecasting, particularly in the case of 
COVID-19. Rezapour et al. (Rezapour et al., 2020) modified the sus
ceptible–exposed-infected–recovered (SEIR) model for the transmission 
of COVID-19 by the Caputo fractional derivative. Pokharel et al. 
(Pokharel et al., 2021) provided a novel agent based simulation (ABS) 
model using the SEIR framework to evaluate the effectiveness of manual 
contact tracing compared to bulletin board contact tracing under 
COVID-19. Shou et al. (Shou et al., 2021) combined a SEIR epidemic 
model with non-pharmaceutical interventions to analyze the number of 
infected patients under different conditions. Annas et al. (Annas et al., 
2020) considered isolation and vaccination factors and obtained the 
basic reproduction numbers of the SEIR model via the generation matrix 
method. Considering the abundant literature on the SEIR model and the 
correlation between IMW outflows and diagnosed cases for some time 
yet, the contributions of the proposed prediction method may be 
extremely meaningful for the medical and cleaning industry. 

Aside from this, appropriate waste management is also crucial to 
health and safety at all times, let along during the COVID-19 pandemic 
(Richter et al., 2021). Multi-criteria decision making (MCDM) methods 
are broadly applied to the process of medical waste management, 
especially in seeking results regarding management techniques, disposal 
methods and processing sites aspects (Xiao, 2018; Aung et al., 2019; 
Dursun et al., 2011; Liu et al., 2013; Narayanamoorthy et al., 2020; 
Manupati et al., 2021). Although Analytic Hierarchy Process (AHP), 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), 
VIKOR, fuzzy set theory, grey theory and other decision-making 
methods are involved in the above researches, the decision-makers are 
generally considered to be absolutely rational when facing risk. This 
study singles out the details, which have been neglected in existing 
relevant studies, and enriches the theories and methods by exploring the 
bounded rationality from IMW management during COVID-19. 

Along with the works listed above, optimization has been actively 
employed for medical waste collection (Vu et al., 2019; Mantzaras and 
Voudrias, 2017) and treatment to lessen environmental influences and 
socioeconomic pressure. Yao et al. (Yao et al., 2019) provided a soft-path 
solution to meet the medical waste disposal demand in optimal medical 
waste disposal center sites. And Taslimi et al. (Taslimi et al., 2020) 
presented a Periodic Load-dependent Capacitated Vehicle Routing 
Problem (PLCVRP) for the plan of a weekly inventory routing arrange
ment to carry medical waste to treatment locations. All of the above 
considered social cost and management risk in the route optimization, 
which allow us to solve IMW transportation challenges and select 
medical waste treatment centers (MWTCs) better during COVID-19. 

There are growing policy recommendations to cope with severe 
stress that have arisen with the epidemiological trend. Large quantities 
of IMW require desperate forecasting and transportation, and both are 
important to environmental safety and socioeconomics, which are useful 
to reduce the pressure on hospitals and MWTCs. In response to the 
ongoing COVID-19 crisis, the United Nations Industrial Development 
Organization supports medical waste management efforts around the 
world. 

This paper proposes a hybrid two-stage method to achieve accurate 
prediction and transportation route optimization based on the contri
butions and deficiencies of existing articles. The remainder of the paper 
is structured as follows: Section 2 presents a brief introduction to pre
liminaries. Section 3 proposes the hybrid two-stage method. Section 4 

gives a case study to demonstrate the practicability of the presented 
methodology. Finally, the conclusions are made in Section 5. 

2. Preliminaries 

This section briefly introduces some basic concepts regarding trian
gular fuzzy numbers (TFNs), linguistic term sets, and cumulative pros
pect theory (CPT), which provides a basis for this article. 

2.1. Triangular fuzzy numbers and linguistic term sets 

TFNs are proposed to solve the problem in an uncertain environment 
and have an excellent ability to guarantee the completeness of decision 
information. In this section, we introduce TFNs to describe the language 
information of experts. 

Definition 1. The fuzzy number ũ is a TFN, and its membership 
function is expressed as follows by the mathematical method: 

Uu∼(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x < u(
x − u

)/(
u − u

)
if u ≤ x ≤ u

(u − x)
/
(u − u) if u ≤ x ≤ u

0 if x ≥ u

(1)  

where u and u are the lower and upper limits of the fuzzy number, and u 
is the most likely value, then the TFN is expressed as ũ =

(
u , u, u

)
. 

Definition 2. Let ũ =
(
u , u, u

)
be a TFN, and the defuzzification 

value is as follows (Chang, 1996): 

D(ũ) =
(
u + 4u+ u

)/
6 (2) 

Definition 3. The Euclidean distance can be used to describe the 

difference value between ũ1 =

(

u 1, u1, u1

)

and ũ2 =

(

u 2, u2, u2

)

: 

d(ũ1, ũ2) =

[(

(u 1 − u 2)
2
+ (u1 − u2)

2
+

(

u1 − u2

)2
)/

3

]1/2

(3) 

To realize the transformation between linguistic terms and TFNs, it is 
necessary to determine the relationship mapping. Let S = {S0,S1,⋯,ST} 
be a fully ordered linguistic item set with an odd number of bases, where 
St is the t+1th language term and T+1 is the base of S. It proposed a 
method to represent the multi-granularity linguistic information by 
fuzzy numbers (Jiang et al., 2008). 

ũ =
(
u , u, u

)
=
(

max((t − 1)/T , 0) ,
t
T
, min((t+ 1)/T , 1)

)
, t = 0, 1,⋯,T

(4)  

2.2. Cumulative prospect theory 

Tversky and Kahneman (Tversky and Kahneman, 1992) proposed 
CPT, which was developed by prospect theory and expected utility 
theory. It includes q experts {E1,E2,⋯,Ek,⋯,Eq} and n alternatives {A1, 
A2,…,Ai,…,An} as well as m criteria {C1,C2,…,Cj,…,Cm}. As one of the 
influential behavior decision theories, CPT considers both the psychol
ogy and the behavior of decision-makers under risk. It has been 
increasingly used in abundant and extensive decision-making fields. 

It proposed a value function to represent the risk preference, which is 
described by Eq. (5). 
⎧
⎨

⎩

v+ij = (x)α if x ≥ 0

v−ij = − λ( − x)β if x < 0
(5)  

where λ is the coefficient of risk aversion, which indicates that decision- 
makers are more sensitive to losses than to gains, λ > 1; and x < 0 rep
resents the losses, x ≥ 0 represents the gains; α and β are two index 
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parameters that are relevant to gains and losses, respectively, 0 ≤ α ≤ β 
≤ 1. According to the previous experiments (Tversky and Kahneman, 
1992), we suppose the values of these parameters are α = β = 0.88 and λ 
= 2.25. 

As shown in Eq. (6), the weight function was described. The value 
function shows that decision-makers are inclined to overrate small 
probability events while underestimating high and medium possibility 
events. 
⎧
⎪⎨

⎪⎩

π+
(
ωj
)
=
(
ωj
)χ
/(( (

ωj
)χ

+
(
1 − ωj

)χ )1/χ
)

π−
(
ωj
)
=
(
ωj
)δ
/(( (

ωj
)δ

+
(
1 − ωj

)δ )1/δ
) (6)  

where χ and δ indicate the attitude of decision-makers toward gains and 
losses, respectively, χ = 0.61, δ = 0.69; π+(ωj) and π− (ωj) are the weight 
functions. 

The cumulative prospect value Vi can be obtained as follows: 

Vi =
∑m

j=1
v+ij π+

(
ωj
)
+
∑m

j=1
v−ij π−

(
ωj
)

(7)  

3. Problem description 

This section gives a detailed description of the proposed hybrid two- 
stage model and a resolution framework. Moreover, the notations are 
defined to describe the variables and sets. 

3.1. Problem description and resolution framework 

During the epidemic outbreak, there was a surplus of infectious 
medical waste, which may have resulted in a higher virus risk of indi
vidual exposure. Therefore, hospitals first have to collect and transport 
medical waste to MWTCs. Additionally, MWTCs are supposed to dispose 
of medical waste quickly. If we can develop a new approach to better 
predict the amount of medical waste, hospitals and MWTCs may better 
handle the epidemic. First, the two-stage method proposes a time evo
lution prediction model to predict the daily waste quantity. Second, with 
the goal of reducing the total social cost and the infection risk, this paper 
builds the multi-objective model to realize the optimization of trans
portation routes and select the appropriate MWTCs for hospitals. Put 

together, the resolution framework is drawn in Fig. 1. 

3.2. Notations 

The mathematical symbols used in the model are explained as 
follows: 

h is the subscript of the point of hospitals, h = 1, 2, ⋯, H; 
t is the subscript of the point of MWTCs, t = 1, 2, …, T; 
Wh is the amount of waste generated by the hospital h that is 

equivalent to the volume initially disinfection by the hospital h; 
Fh is the fixed cost of disinfection in the hospital h; 
Mh is the unit disinfection cost in the hospital h; 
Eht is the fixed cost of transporting IMW from the hospital h to the 

treatment center t; 
Mht is the unit cost of transporting IMW from the hospital h to the 

treatment center t; 
Lht is the distance from the hospital h to the treatment center t; 
Ft

’ is the fixed disposal cost of IMW in the waste treatment center t; 
Mt

’ is the unit disposal cost of IMW in the treatment center t. 

4. The hybrid two-stage method 

4.1. Stage 1: predicting the quantity of infectious medical waste 

Predicting the waste quantity involves two major steps: (1) In 
addition to considering quarantine measures and asymptomatic infected 
individuals, this paper introduces the effect of exposed individuals on 
susceptible people and thus establishes an improved SEIR model. This 
includes selecting an appropriate infectious disease model and then 
improving it according to the actual situation; (2) Establishing a time 
evolution prediction model. This step proposes a new function to predict 
the daily waste quantity accurately based on the confirmed cases and the 
lagged relationship. 

4.1.1. Determining the modified SEIR model 
This paper revises the existing dynamic models of epidemic trans

mission (Tang et al., 2020). Because exposed individuals can transmit 
risk and asymptomatic infected individuals are infectious but not easily 
identifiable, we describe the compartments and redefine the interaction 

Fig. 1. Resolution framework.  
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relationship between different populations. It covers susceptible(S), 
exposed(E), infectious(I)and recovered(R)populations in the classic SEIR 
model. Considering the actual scenario of COVID-19, infectious people 
fall into two categories: symptomatic(Is)and asymptomatic(Ia)infected 
individuals. Considering quarantine measures against infectious dis
eases, the compartments are further refined as isolated susceptible(Si), 
isolated exposed(Ei)and isolated infectious(Ii). Given the circumstances, 
Ii will be immediately sent to designated hospitals for isolation and 
treatment, so they are all transformed into hospitalized patients(H). 
Therefore, S, E, Is and Ia refer to susceptible, exposed, symptomatic and 
asymptomatic persons missed in isolation, respectively. The trans
formation relationship is shown in Fig. 2. The model assumes that all 
people can be infected. Quarantined susceptible individuals are trans
ferred back to susceptible people after being released from quarantine. 
Both infectious and exposed populations have different degrees of 
ability to infect susceptible people and then turn them into exposed 
individuals. 

The differential equations in Eq. (8) can describe the modified SEIR 
model. 

dS/dt = − [ρci(1 − β’) + ρciβ’ + ρc(1 − i)β’ ]S(Is + τ1E + τ2Ia) + rSi
dE/dt = [ρc(1 − i)β’ ]S(Is + τ1E + τ2Ia) − α’E
dIs/dt = α’bE − (μI + d + ωs)Is
dIa/dt = α’(1 − b)E − ωaIa
dSi/dt = [ρc(1 − β’)i ]S(Is + τ1E + τ2Ia) − rSi
dEi/dt = ρciβ’S(Is + τ1E + τ2Ia) − μiEi
dH/dt = μIIs + μiEi − (d + ωh)H
dR/dt = Iaωa + Isωs + Hωh

(8) 

where i is the isolation ratio; β’ is the transmission probability; c is 
the contact rate; ρ is the effective contact coefficient; α’ is the conversion 
ratio of exposed people to infectious people. Because the average latency 
period of the early hypothesis is seven days, the value of α’ is 1/7; r is the 
rate of isolation release. So r is equal to 1/14, considering that the 
average isolation period is 14 days; b is the proportion of individuals 
with symptoms; μI is the rate at which infectious people with symptoms 
turn into isolated infectious people; μi is the rate at which isolated 
exposed people turn into isolated infectious people; ωa is the rate at 
which asymptomatic infected people convert to recovered people; ωh is 
the rate at which inpatients convert to recovered people; d is the death 
rate; τ1 is the infection intensity in the exposed people compared to 
symptomatic infected people; τ2 is the infection intensity in the 
asymptomatic infected people compared to symptomatic infected peo
ple. Consider i, β, c, b, μI, μi, ωa, ωh, d > 0, and τ1 = τ2 = 1. 

4.1.2. Establishing the time evolution prediction model 
The next step is to establish the prediction function of IMW quantity 

based on the SEIR model. Predicting waste quantity has been studied in 
various methods, such as machine learning, neural networks, support 

vector machines, etc., but all of these need to be built on massive his
torical data. Although some researchers advised predicting IMW quan
tity based on the SEIR model, but it did not give a specific modeling 
method. 

To compensate for these deficiencies, this paper proposes the 
following linear time-varying function between the waste quantity and 
the SEIR model at time t: 

Wt = πεH(t) (9)  

where Wt refers to the waste quantity at time t, and ε is the ratio coef
ficient, which corresponds to the volume of IMW per infected person per 
day; π is the waste volume correction factor and H(t) is the number of 
existing confirmed patients at time t. As much waste as there is demand. 
Liu and Xiao (Liu and Xiao, 2015) described the relationship between 
healthcare demand and the number of people infected, and we further 
transform and improve the relationship. Considering the short supply in 
the early stage of the epidemic, the waste quantity is less than the de
mand. The supply and demand are matched in the middle and late 
stages, and then the waste quantity and demand reach an equilibrium 
state, so the early stage π < 1 and the later stage π = 1. 

Nevertheless, the influence of early medical supplies on material 
demand in later stages should be considered in the linear relationship. 
For example, if the amount of medical waste at cycle t is Wt*, the number 
at cycle t+1 would have been Wt+1* according to Eq. (9). However, the 
medical materials in decision cycle t will have a positive impact on t+1, 
which will change the waste quantity of cycle t+1 to Wt+1*− x, and x is 
the lagging effect. Hence, the expected volume at cycle t+1 should be 
Wt+1 instead of Wt+1*. The lagging factor is introduced to describe the 
lagging effect: 

χt =
(
W*

t+1 − W*
t

)/
W*

t (10) 

Hereon, the lagging factor χt can be either increasing volume or 
decreasing volume and may change with medical materials at cycle t. 
For an infected person, there are only two states of transition: recovery 
or death. No matter which one they become, they no longer have the 
possibility to infect others. In other words, the virus is effectively 
blocked in this case. We denote the blocking rate as θ and the cure cycle 
as σ, which is an integer multiple of the decision-making cycle, then the 
blocking rate of each cycle can be described as θ/σ. Such a hypothesis 
would reasonable because the decision-making cycle is small enough 
(one day). Therefore, we get the recurrence Eq. (11). 

W1 = πεH(1) is the initial waste volume, and H(1) is the initial 
number of confirmed cases. Eq. (11) is the defined time evolution pre
diction model for the quantity of IMW. 

t = 1 : W1 = πεH(1)

t = 2 : W2 = (1 + χ1)

(

1 −
θ
σ

)

W1

t = 3 : W2 = (1 + χ2)

(

1 −
θ
σ

)

W2

= (1 + χ1)(1 + χ2)

(

1 −
θ
σ

)2

W1

⋯

t = n : Wn =
∏n− 1

i=1
(1 + χi)

(

1 −
θ
σ

)n− 1

W1

(11)  

4.2. Stage 2: a multi-objective optimization model for the transportation 
route of infectious medical waste 

The discharge of IMW will surge in a short period of time, and the 
limited area within hospitals cannot meet the preservation demand, so it 
needs to be transferred to MWTCs as soon as possible. It is important to 
assess the anti-risk capability of MWTCs to help hospitals choose the 
right one for waste disposal and thus reduce the infection risk. 

Fig. 2. Diagram of the modified SEIR model considering isolation.  
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Meanwhile, reducing the total cost can relieve socioeconomic stress. The 
transportation network route of IMW involves three major steps: (1) 
Adopting the CPT to assess the anti-risk capability of MWTCs. (2) 
Establishing a cost optimization function to relive socioeconomic stress. 
(3) Based on the cost function and anti-risk capability evaluation results, 
the multi-objective optimization model is established, and the appro
priate MWTC is selected to realize the optimization of the transportation 
route. 

4.2.1. Assessing the anti-risk capability of treatment centers 
Step 1 Determine the positive and negative reference points 
Choosing the right reference point is vital when we employ CPT. 

Generally speaking, reference points should be selected from some 
representative points, such as zero value, average value, peak value and 
least value. Referring to the idea of the TOPSIS method, we choose the 
positive ideal solution (PIS) and the negative ideal solution (NIS) as the 
reference points to reflect the decision maker’s risk attitude, which is 
expressed as Rg

j and Rl
j, respectively (Li et al., 2017; Li and Chen, 2018). 

If the reference point is Rg
j , decision-makers are often risk seekers 

because they face losses, otherwise, investors tend to be risk averters. 
Eq. (2) is employed to deblur TFNs in the decision matrix. Sorting the 
defuzzification values under each alternative, where the largest value is 
defined as Rg

j and the smallest value is defined as Rl
j. 

Step 2 Calculate gains and losses 
Let Gij be the gains, and Lij be the losses. The distance between each 

alternative and Rg
j /Rl

j is calculated using Eq. (3), which is the Lij/Gij. 
Step 3 Compute the positive and negative prospect value matrixes of 

gains and losses 
Computing the positive and negative prospect value matrixes Vij

+ and 
Vij
− via Eq. (5). 

Step 4 Determine the cumulative prospect weights 
Eq. (6) is used to determine the cumulative prospect weights. 
Step 5 Gain the cumulative prospect values 
Calculating the cumulative prospect value Vi for each alternative via 

Eq. (7). 

4.2.2. Establishing the cost optimization function 
Because infectious medical materials are different from the other 

types, hospitals should first perform preliminary sterilizing work to 
reduce the infection risk during the transport and disposal process. 
There are various costs involved in the whole process, such as trans
portation cost, sterilizing cost, disposal cost, etc. We have to consider 
how to optimize the waste transportation route to minimize the costs of 
the whole process. 

According to the actual situation, the following assumptions are 
made:  

(i) Hospitals have enough space to store the clinical waste generated 
each day and can establish primary sites for health-infection; 

(ii) The roads between hospitals and treatment centers are inter
connected, and the waste can be successfully transported to the 
centers; 

(iii) Each treatment center can handle all kinds of IMW, such as dis
carded protective clothing, masks, contaminated instruments, 
etc. 

The cost optimization model based on the transportation network of 
hospitals and MWTCs is established as follows: 

minZ1 =
∑

h∈H
(Fh+WhMh)+

∑

h∈H

∑

t∈T
(ηhtEht+ηhtLhtWhtMht)+

∑

h∈H

∑

t∈T

(
F’

t +W ’
t M

’
t

)

(12) 

Eq. (12) is the optimization model for minimizing costs, including 
the disinfection, transportation and disposal costs. Wht is the volume of 
waste transported from hospital h to treatment center t. ηht is the binary 
variable that decides if there is IMW transported from hospital h to 

treatment center t,ηht ∈ {0,1}. 
∑

h∈H
(Fh+WhMh) represents the fixed and 

unit disinfection costs in hospitals. 
∑

h∈H

∑

t∈T
(ηhtEht +ηhtLhtWhtMht) denotes 

the fixed and unit transportation costs from hospitals to MWTCs. 
∑

h∈H

∑

t∈T

(
F’

t +W’
tM’

t
)

shows the fixed and unit disposal costs. 

4.3. Building and solving the multi-objective optimization model 

It is assumed that the cumulative prospect value of treatment center t 
is U(Dt), so we can establish the multi-objective optimization model as 
follows: 

minZ1 =
∑

h∈H
(Fh+WhMh)+

∑

h∈H

∑

t∈T
(ηhtEht+ηhtLhtWhtMht)+

∑

h∈H

∑

t∈T

(
F’

t +W ’
t M

’
t

)

(13)  

maxZ2 =
∑

h∈H

∑

t∈T
U(Dt)ηht (14) 

Constraints: 
∑

h∈H
Wh =

∑

t∈T
W ’

t (15)  

Wh =
∑

t∈T
Wht, ∀h ∈ H (16)  

W ’
t =

∑

h∈H
Wht,∀t ∈ T (17)  

W ’
t ≤ CapW ’

t ,∀t ∈ T (18)  

W ’
t ≥ 0,∀t ∈ T (19)  

Wht ≥ 0, ∀h ∈ H, ∀t ∈ T (20)  

ηht ∈ {0, 1}, ∀h ∈ H,∀t ∈ T (21) 

Eq. (13) means to minimize transportation cost. Eq. (14) represents 
the maximum anti-risk capability; Eq. (15)-Eq. (17) are the flow con
servation constraints. Eq. (18) is the capacity constraint of MWTCs. Eq. 
(19) and Eq. (20) denote non-negative constraints. Eq. (21) gives the 
domain of variables. 

To transform them into a single objective optimization model, the 
multi-objective problem is resolved by the weighting method (Chen 
et al., 2008). Assuming that the maximum and minimum values of 
function Z1 are Z1

max and Z1
min, respectively, and similarly, the maximum 

and minimum values of function Z2 are Z2
max and Z2

min. Then, the mem
bership functions of Eq. (13) and Eq. (14) can be expressed as follows: 

ϕ(Z1) =
(
Zmax

1 − Z1
)/(

Zmax
1 − Zmin

1

)
(22)  

ϕ(Z2) =
(
Zmax

2 − Z2
)/(

Zmax
2 − Zmin

2

)
(23) 

Assuming that the weight coefficients of functions ϕ(Z1) and ϕ(Z2) 
are κ1 and κ2, respectively, and thus the multi-objective optimization 
model can be transformed into a single-objective model via the linear 
weighting method, which can be expressed as follows: 

maxZ3 = κ1ϕ(Z1)+ κ2ϕ(Z2) (24) 

Finally, Eq. (24) can be solved by intelligent optimization algorithms 
or optimizing software packages. 

5. Illustrative example 

5.1. Background 

COVID-19 has been rapidly spreading worldwide since December 
2019, with a massive surge of infections in a short period, followed by a 
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large amount of medical waste. The waste quantity is closely related to 
the number of confirmed cases, and the SEIR model-based methods for 
predicting epidemic diseases have been relatively mature. This paper 
assumed that COVID-19 was spreading in W city, and the infectious 
medical waste during the outbreak period was predicted and treated. 
There are not many centers dedicated to IMW, and the existing MWTCs 
are unable to meet the treatment needs. In this case, it is necessary to 
transform general waste treatment centers or to build specialized 
MWTCs in a short time. IMW is mainly disposed of by three typical 
MWTCs. Special-T Environmental Engineering Co., Ltd. is the only 
medical waste treatment company. Forced by the grim situation, with 
the Ministry of Ecology and Environment’s support, the Environmental 
Protection Bureau transformed W‘s most significant industrial waste 
treatment plant, Reconstructed-T Environmental Protection Technology 
Co., Ltd., to help dispose of some medical waste. Meanwhile, W city 
builds the NewB-T Medical Waste Disposal Center, an emergency MWTC 
with a daily capacity of 30 tons, within half a month. As many as 40 
treatment institutions are receiving COVID-19 patients, which can 
accommodate 13,605 patients. W-one Hospital, W-two Hospital and W- 
three Hospital are the most representative hospitals that can treat 1000, 
1500, 720 patients, respectively. According to the total amount of waste 
predicted, the daily waste quantity of each hospital can be calculated. 

5.2. Data generation 

Based on existing literature (Tang et al., 2020) and the empirical 
situation, the parameters’ values of the improved SEIR model are shown 
in Table 1. 

Infectious diseases require more medical resources, such as masks, 
goggles, protective suits, disinfectants, etc., than common diseases, so 
each person produces more medical waste every day. We assumed that 
each COVID-19 patient produced 4.8 kg of medical waste per day. 
Additionally, we assume that the patients’ medical needs can be met, 
namely π = 1. Because the transmission of the disease is blocked, 
whether the patient is cured or dies, the interruption rate of a single 
decision cycle is 1, θ = 1. It is assumed that patients have a mean cure 
cycle of 20, so the effective blocking rate of a single cycle is 1/20. 

According to previous studies (Zhao et al., 2016) and the actual 

situation, we determined the cost-related parameters, as shown in 
Table 2. 

5.3. Results 

Based on Eq. (8)-Eq. (11) and the obtained data, the results are 
calculated. 

Data for the criteria of five experts are gathered and concentrated by 
the weighted average operator. Then, the decision matrix 
[
uij
]

mnexpressed by TFNs can be received, as given in Table 3. 
The defuzzification values are calculated according to the decision 

Table 1 
Parameters’ values of the improved SEIR model.  

Parameter Definitions Value 

i Isolation ratio 1.8887 × 10− 7 

β’ Transmission probability 2.1011 × 10− 8 

c Contact rate 2 
ρ Effective contact coefficient 0.8 
α’ The proportion conversion ratio of exposed people to infectious people 1/7 
r The rate of isolation release 1/14 
b The proportion of people with symptoms 0.86834 
μI The rate at which infectious people with symptoms turn into isolated infectious people 0.13266 
μi The rate at which isolated exposed people turn into isolated infectious people 0.1259 
ωa The rate at which asymptomatic infected people convert to recovered people 0.13978 
ωs The rate at which symptomatic infected people convert to recovered people 0.33029 
ωh The rate at which inpatients convert to recovered people 0.46634 
d Death rate 1.7826 × 10− 5 

τ1 The infection intensity in the exposed people compared to symptomatic infected people 1 
τ2 The infection intensity in the asymptomatic infected people compared to symptomatic infected people 1   

Initial values Definitions Value 

S(0) Initially unisolated susceptible individuals 11,081,000 
E(0) Initially unisolated exposed individuals 105.1 
Ia(0) Initially asymptomatic infected individuals 53.839 
Is(0) Initially symptomatic infected individuals 27.679 
R(0) Initially recovered individuals 2 
Si(0) Initially isolated susceptible individuals 739 
Ei(0) Initially isolated exposed individuals 1.1642 
H(0) Initially hospitalized patients 1  

Table 2 
Cost-related parameters.  

Treatment centers Fixed operating cost (￥) Unit treatment cost (￥/kg) 

Special-T  390,000  0.900 
Reconstructed-T  380,000  1.000 
NewB-T  400,000  0.800   

Treatment 
centers 

Fixed transport 
cost (￥) 

Unit transport cost 
(￥/kg/km) 

Capacity (kg/ 
day) 

Special-T  1500  0.035  20,000 
Reconstructed-T  2000  0.040  30,000 
NewB-T  1750  0.050  50,000   

Hospitals Fixed cost (￥) Unit “health infected” cost (￥/kg) 

W-one  3000  0.065 
W-two  2000  0.060 
W-three  2000  0.060   

Distance W-one W-two W-three 

Special-T 7.7 km 40 km 50 km 
Reconstructed-T 28 km 84 km 19 km 
NewB-T 31 km 41 km 41 km  
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matrix 
[
uij
]

mnand Eq. (2). After that, the reference points of every MWTC 
under each criterion are described as follows: 

Rj
g =
{

R1
g,R

2
g,⋯,Rm

g

}

=

{

max
1≤i≤n

(ũi1) ,max
1≤i≤n

(ũi1) ,⋯,max
1≤i≤n

(ũim)

}

={(0.65,0.90,1.00),(0.75,1.00,1.00),(0.10,0.35,0.60),(0.50,0.75,0.90),
(0.15,0.40,0.65) ,(0.55,0.80,0.95),(0.20,0.45,0.70)}

Rj
L =
{

R1
L,R

2
L,⋯,Rm

L

}

=

{

min
1≤i≤n

(ũi1) , min
1≤i≤n

(ũi1) ,⋯, min
1≤i≤n

(ũim)

}

={(0.50,0.75,0.95),(0.40,0.65,0.90),(0.00,0.00,0.25),(0.15,0.40,0.60),
(0.00,0.10,0.35),(0.10,0.30,0.55),(0.00,0.15,0.40)}

The gains or losses values can be obtained by Eq. (3). The calculation 
results are as follows: 

Gij =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d
(

A1,Rj
g

)

d
(

A2,Rj
g

)

d
(

A3,Rj
g

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

0.0000 0.1225 0.1732 0.2217 0.0866 0.4518 0.0500
0.1258 0.2915 0.2915 0.3342 0.2598 0.2217 0.2708
0.1258 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⎤

⎥
⎦

Lij = −

⎡

⎢
⎢
⎢
⎣

d
(
A1,Rj

L
)

d
(
A2,Rj

L
)

d
(
A3,Rj

L
)

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎣

0.1258 0.1732 0.1225 0.1190 0.1732 0.0000 0.2217
0.0000 0.0000 0.0000 0.0000 0.0000 0.2345 0.0000
0.0000 0.2915 0.2915 0.3342 0.2598 0.4518 0.2708

⎤

⎥
⎦

After obtaining the gain and loss values, we can determine the 
prospect values Vij

+ and Vij
− by Eq. (5). 

Table 3 
The decision matrix represented by TFNs.  

Experts Criteria Treatment centers Expert Treatment centers 

Special-T Reconstructed- 
T 

NewB-T Special-T Reconstructed-T NewB-T 

Expert 
1 

Experience and 
qualification(C1) 

(0.75,1,1) (0.5,0.75,1) (0.25,0.5,0.75) Expert 4 (0.5,0.75,1) (0.5,0.75,1) (0.75,1,1) 

Equipment and technology 
(C2) 

(0.5,0.75,1) (0.25,0.5,0.75) (0.75,1,1) (0.5,0.75,1) (0.25,0.5,0.75) (0.75,1,1) 

Waste disposal site 
exposure to public(C3) 

(0,0.25,0.5) (0,0,0.25) (0.25,0.5,0.75) (0,0,0.25) (0,0,0.25) (0,0.25,0.5) 

Area covered by HCW 
disposed(C4) 

(0.25,0.5,0.75) (0,0.25,0.5) (0.75,1,1) (0.25,0.5,0.75) (0,0.25,0.5) (0.75,1,1) 

Release with health effects 
(C5) 

(0,0.25,0.5) (0,0,0.25) (0.25,0.5,0.75) (0,0,0.25) (0,0,0.25) (0,0.25,0.5) 

Instance from urban area 
(C6) 

(0.25,0.5,0.75) (0.5,0.75,1) (0.75,1,1) (0,0,0.25) (0,0.25,0.5) (0.25,0.5,0.75) 

Probability of infection 
(C7) 

(0,0.25,0.5) (0,0,0.25) (0.25,0.5,0.75) (0.25,0.5,0.75) (0,0.25,0.5) (0.25,0.5,0.75) 

Expert 
2 

Experience and 
qualification(C1) 

(0.75,1,1) (0.5,0.75,1) (0.5,0.75,1) Expert 5 (0.5,0.75,1) (0.25,0.5,0.75) (0.5,0.75,1) 

Equipment and technology 
(C2) 

(0.75,1,1) (0.5,0.75,1) (0.75,1,1) (0.75,1,1) (0.5,0.75,1) (0.75,1,1) 

Waste disposal site 
exposure to public(C3) 

(0,0.25,0.5) (0,0,0.25) (0.25,0.5,0.75) (0,0,0.25) (0,0,0.25) (0,0.25,0.5) 

Area covered by HCW 
disposed(C4) 

(0.25,0.5,0.75) (0,0.25,0.5) (0.5,0.75,1) (0.25,0.5,0.75) (0,0.25,0.5) (0.75,1,1) 

Release with health effects 
(C5) 

(0.25,0.5,0.75) (0,0.25,0.5) (0.25,0.5,0.75) (0.25,0.5,0.75) (0,0.25,0.5) (0.25,0.5,0.75) 

Instance from urban area 
(C6) 

(0.25,0.5,0.75) (0.5,0.75,1) (0.75,1,1) (0,0.25,0.5) (0.25,0.5,0.75) (0.5,0.75,1) 

Probability of infection 
(C7) 

(0.25,0.5,0.75) (0,0.25,0.5) (0.25,0.5,0.75) (0,0.25,0.5) (0,0,0.25) (0,0.25,0.5) 

Expert 
3 

Experience and 
qualification(C1) 

(0.75,1,1) (0.75,1,1) (0.5,0.75,1) Aggregation 
information 

(0.65,0.90,1.00) (0.50,0.75,0.95) (0.50,0.75,0.95) 

Equipment and technology 
(C2) 

(0.5,0.75,1) (0.5,0.75,1) (0.75,1,1) (0.60,0.85,1.00) (0.40,0.65,0.90) (0.75,1.00,1.00) 

Waste disposal site 
exposure to public(C3) 

(0,0.25,0.5) (0,0,0.25) (0,0.25,0.5) (0.00,0.15,0.40) (0.00,0.00,0.25) (0.10,0.35,0.60) 

Area covered by HCW 
disposed(C4) 

(0.25,0.5,0.75) (0,0.25,0.5) (0.5,0.75,1) (0.25,0.50,0.75) (0.15,0.40,0.60) (0.50,0.75,0.90) 

Release with health effects 
(C5) 

(0,0.25,0.5) (0,0,0.25) (0,0.25,0.5) (0.10,0.30,0.55) (0.00,0.10,0.35) (0.15,0.40,0.65) 

Instance from urban area 
(C6) 

(0,0.25,0.5) (0.25,0.5,0.75) (0.5,0.75,1) (0.10,0.30,0.55) (0.30,0.55,0.80) (0.55,0.80,0.95) 

Probability of infection 
(C7) 

(0.25,0.5,0.75) (0,0.25,0.5) (0.25,0.5,0.75) (0.15,0.40,0.65) (0.00,0.15,0.40) (0.20,0.45,0.70)  
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V+
ij =

⎡

⎢
⎣

0.1682 0.2214 0.1643 0.1603 0.2214 0.0000 0.2738
0.0000 0.0000 0.0000 0.0000 0.0000 0.2873 0.0000
0.0000 0.3465 0.3465 0.3896 0.3138 0.5050 0.3251

⎤

⎥
⎦

V −
ij = −

⎡

⎢
⎣

0.0000 0.3730 0.5026 0.6215 0.2769 1.1464 0.1726
0.3818 0.7865 0.7865 0.8844 0.7122 0.6215 0.7381
0.3818 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⎤

⎥
⎦

Based on judgments about expert consensus, the weights of criteria 
are obtained,ωj = {0.1,0.1,0.15,0.05,0.25,0.05,0.3}. The cumulative 
prospect weights can be determined by Eq. (6) and expressed as follows: 

π+
(
ωj
)
= [0.1863 0.1863 0.2269 0.1316 0.2907 0.1316 0.3184]

π−
(
ωj
)
= [0.1701 0.1701 0.2167 0.1114 0.2935 0.1114 0.3276]

Finally, Eq. (7) is used to obtain the comprehensive prospect value of 
each MWTC. 

V1 = − 0.2127, V2 = − 0.9166, V3 = 0.3831 

MWTCs sorted in descending order at infectious risk is represented as 
follows: A3 > A1 > A2. This means that NewB-T is the optimal MWTC, 
followed by Special-T and Reconstructed-T. For decision-makers, NewB- 
T is the best solution if only the minimum risk is considered. However, 
both risk and cost are critical factors in practice, and decision-makers 
should consider all aspects and then make the final decision. 

Eq. (24) is solved using the software package Lingo 18.0, and the 

multi-objective transportation route optimization result is obtained. The 
optimal transport route of IMW between three designated hospitals and 
three MWTCs, when cost and risk are targeted, is obtained. The results 
indicate that W-one and W-two should transport IMW to Reconstructed- 
T and W-three should select Special-T. 

5.4. Discussion 

To reflect the effects of α,β and λ on the anti-risk capability of MWTCs 
in CPT, Table 4 presents the corresponding results based on different α,β 
and λ values. From Table 4, we know that parameter values have no 
influence on the sorting results and have a slight effect on the cumula
tive prospect values. Therefore, we determine the values of these pa
rameters as α = β = 0.88, λ = 2.25, which is feasible both in theory and 
in practice. 

Prevention and control measures during an epidemic can affect the 
transmission probability β, and the development of new drugs and 
treatments can increase the cure rate ωh. To reflect the effects of β and ωh 
on waste quantity and confirmed patients, Table 5 presents the corre
sponding results based on different β and ωh values. 

When β = 2.1011− 8, ωh = 0.46634, we can obtain the predicted 
results as shown by the bolded data in Table 5 and the dynamic evolu
tion curve of diagnosed patients. As shown in Fig. 3, the solid line is the 
trajectory of predictive values, and the dashed line is the real values of 
Wuhan city, Hubei Province, China during the epidemic. The two curves 
basically fit in quantity and trend, which can prove the rationality of 
selected parameters. If the epidemic changes dynamically, we can adjust 
the parameters to achieve the purpose of prediction. 

Table 4 
Anti-risk capability based on different parameter values.  

α β λ Vi Sorting results  

0.88  0.88  2.25 V1 = − 0.2127, V2 = −

0.9166, V3 = 0.3831 
NewB-T≻Special- 
T≻Reconstructed-T  

0.86  0.86  2.26 V1 = − 0.2225, V2 = −

0.9457, V3 = 0.3910 
NewB-T≻Special- 
T≻Reconstructed-T  

0.84  0.84  2.27 V1 = − 0.2328, V2 = −

0.9757, V3 = 0.3989 
NewB-T≻Special- 
T≻Reconstructed-T  

0.82  0.82  2.28 V1 = − 0.2328, V2 = −

1.0066, V3 = 0.4070 
NewB-T≻Special- 
T≻Reconstructed-T  

0.80  0.80  2.29 V1 = − 0.2551, V2 = −

1.0386, V3 = 0.4153 
NewB-T≻Special- 
T≻Reconstructed-T  

0.78  0.78  2.30 V1 = − 0.2671, V2 = −

1.0715, V3 = 0.4236 
NewB-T≻Special- 
T≻Reconstructed-T  

0.76  0.76  2.31 V1 = − 0.2799, V2 = −

1.1055, V3 = 0.4321 
NewB-T≻Special- 
T≻Reconstructed-T  

0.74  0.74  2.32 V1 = − 0.2933, V2 = −

1.1406, V3 = 0.4408 
NewB-T≻Special- 
T≻Reconstructed-T  

0.72  0.72  2.33 V1 = − 0.3074, V2 = −

1.1767, V3 = 0.4495 
NewB-T≻Special- 
T≻Reconstructed-T  

0.70  0.70  2.34 V1 = − 0.3224, V2 = −

1.2141, V3 = 0.4584 
NewB-T≻Special- 
T≻Reconstructed-T  

0.68  0.68  2.35 V1 = − 0.3382, V2 = −

1.2526, V3 = 0.4674 
NewB-T≻Special- 
T≻Reconstructed-T  

Table 5 
Waste quantity and confirmed patients based on different parameter values.  

β ωh Maximum waste volume MaximumH β ωh Maximum waste volume MaximumH  

2.1111− 8  0.45634  60,540 kg  38,220  2.1011¡8  0.46634  58,680 kg  37,180  
2.1211− 8  0.44634  62,460 kg  39,300  2.0911− 8  0.47634  56,880 kg  36,180  
2.1311− 8  0.43634  64,450 kg  40,410  2.0811− 8  0.48634  55,140 kg  35,210  
2.1411− 8  0.42634  66,510 kg  41,580  2.0711− 8  0.49634  53,450 kg  34,280  
2.1511− 8  0.41634  68,680 kg  42,820  2.0611− 8  0.50634  51,800 kg  33,380  
2.1611− 8  0.40634  71,000 kg  44,120  2.0511− 8  0.51634  50,320 kg  32,530  
2.1711− 8  0.39634  73,390 kg  45,470  2.0411− 8  0.52634  48,850 kg  31,710  
2.1811− 8  0.38634  75,890 kg  46,880  2.0311− 8  0.53634  47,420 kg  30,920  
2.1911− 8  0.37634  78,490 kg  48,360  2.0211− 8  0.54634  46,020 kg  30,140  
2.2011− 8  0.36634  81,200 kg  49,900  2.0111− 8  0.55634  44,660 kg  29,390  
2.2111− 8  0.35634  84,020 kg  51,520  2.0011− 8  0.56634  43,330 kg  28,660  

Fig. 3. Curve comparison of predicted values and actual values in Wuhan.  
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6. Conclusions 

Due to the specificity, recurrence and universality of COVID-19, this 
paper correlates waste quantity closely with confirmed cases. Then, 
based on the relationship, this paper proposes a hybrid two-stage 
method, which includes a time evolution model for IMW prediction 
and a multi-objective route optimization model considering risk and cost 
factors. Several main conclusions are drawn. 

First, infectious disease models can be applied to solve many prob
lems, but the model details are heterogeneous by different scenarios and 
influencing factors. The modified SEIR model considers the isolation 
measure and asymptomatic infected individuals to modify original ap
proaches, which can further seek the quantitative relationship between 
waste and confirmed cases to establish the novel forecasting method. 

Second, choosing suitable MWTCs and transportation routes may 
make waste management effectiveness more prominent. The waste route 
optimization model that takes into consideration infection risk and so
cioeconomic stress is provided. The model is built and solved based on 
the predicted values from the previous stage to achieve a dynamic 
linkage between the two stages. 

Third, an illustrative example is given to show the effectiveness of 
the hybrid two-stage method. Sensitivity analysis is then performed on 
some of the important parameters, and the predicted values are fitted to 
the actual values for comparison. 

This research has presented evidence that shows that massive in
fections triggered by the COVID-19 pandemic led to an increase in IMW 
quantity and to transportation pressures. These problems have been 
reflected in this paper. The results indicate that infectious medical waste 
disposal during the pandemic may have been influenced by contagious 
characteristics, and may cause momentous impacts on transportation 
routes. Detailed knowledge of waste forecasting and management dur
ing emergency events may drastically help to improve management 
effectiveness. The prediction and management of infectious medical 
waste widely exist in pandemic challenges around the world. Therefore, 
there are still many fields for future researches. For example, monetizing 
the infection risk during the COVID-19 pandemic is an important 
reference for quantitatively measuring the level of waste risk manage
ment. Of course, based on different types of patients with mild, common 
and severe disease, researchers can also refine the prediction model 
more precisely. 

Data availability 

Data will be made available on request. 
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