Ginkgo biloba
|
Ginkgoaceae |
Leaves |
Quercetin, kaempferol, and isorhamnetin |
Boosts circulation to the brain |
Mashayekh et al. (2021)
|
Panax ginseng C.A. Meyer |
Araliaceae |
Root and aerial parts |
Aglycones, protopanaxadiol, and protopanaxatriol |
Neurons survive longer by increasing their supply of survival compounds known as neurotrophic factors |
Miranda et al. (2019)
|
Scutellaria baicalensis Georgi |
Lamiaceae |
Root and aerial parts |
Baicalein, baicalin, and wogonin |
Protect neurons from oxidative damage |
Yoon et al. (2017)
|
Curcuma longa
|
Zingiberaceae |
Rhizome |
Curcumin |
Inhibition of cytokine production and microglia activation |
Yu et al. (2018)
|
Vitis vinifera
|
Vitaceae |
Fruits and seeds |
Resveratrol, quercetin, and catechin |
Neuroprotective effects |
Tabeshpour et al. (2018)
|
Salvia officinalis L. |
Lamiaceae |
Leaves and flowers |
1,8-Cineole, camphor, borneol, caryophyllene, and linalool |
Anticholinesterase activity |
Kennedy et al. (2006)
|
Coffea
|
Rubiaceae |
Seeds |
Caffeine |
Acts on adenosine receptors |
López-Cruz et al. (2018)
|
Camellia sinensis Kuntze |
Theaceae |
Leaves |
Epigallocatechin, epigallocatechin-3-gallate, myricetin, quercetin, kaempferol, and epicatechin |
Antioxidants, protects from oxidative stress, reduces amyloid proteins |
Bazyar et al. (2021)
|
Bacopa monniera
|
Plantaginaceae |
Whole plant |
Herpestine, d-mannitol, hersaponin, and monnierin |
Enhancing neuronal synthesis, kinase activity, restoring synaptic activity, and nerve impulse transmission |
Mathur et al. (2016)
|
Centella asiatica
|
Apiaceae |
Leaves |
Asiaticoside, brahmoside, brahminoside, asiatic acid, madecassic acid, brahmic acid, isobrahmic acid, and betulic acid |
Antioxidant action, acetylcholine esterase inhibitor activity |
Hafiz et al. (2020)
|
Picrorhiza scrophulariiflora
|
Plantaginaceae |
Roots |
Glycosides, terpenoids, phenylethanoids, glycosides, and phenolic glycosides |
Neuritogenic activity |
Kumar et al. (2015)
|