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Abstract
Purpose  To explore a multidomain fusion model of radiomics and deep learning features based on 18F-fluorodeoxyglucose 
positron emission tomography/computed tomography (18F-FDG PET/CT) images to distinguish pancreatic ductal adeno-
carcinoma (PDAC) and autoimmune pancreatitis (AIP), which could effectively improve the accuracy of diseases diagnosis.
Materials and methods  This retrospective study included 48 patients with AIP (mean age, 65 ± 12.0 years; range, 37–90 years) 
and 64 patients with PDAC patients (mean age, 66 ± 11.3 years; range, 32–88 years). Three different methods were discussed 
to identify PDAC and AIP based on 18F-FDG PET/CT images, including the radiomics model (RAD_model), the deep learn-
ing model (DL_model), and the multidomain fusion model (MF_model). We also compared the classification results of PET/
CT, PET, and CT images in these three models. In addition, we explored the attributes of deep learning abstract features by 
analyzing the correlation between radiomics and deep learning features. Five-fold cross-validation was used to calculate 
receiver operating characteristic (ROC), area under the roc curve (AUC), accuracy (Acc), sensitivity (Sen), and specificity 
(Spe) to quantitatively evaluate the performance of different classification models.
Results  The experimental results showed that the multidomain fusion model had the best comprehensive performance 
compared with radiomics and deep learning models, and the AUC, accuracy, sensitivity, specificity were 96.4% (95% CI 
95.4–97.3%), 90.1% (95% CI 88.7–91.5%), 87.5% (95% CI 84.3–90.6%), and 93.0% (95% CI 90.3–95.6%), respectively. And 
our study proved that the multimodal features of PET/CT were superior to using either PET or CT features alone. First-order 
features of radiomics provided valuable complementary information for the deep learning model.
Conclusion  The preliminary results of this paper demonstrated that our proposed multidomain fusion model fully exploits 
the value of radiomics and deep learning features based on 18F-FDG PET/CT images, which provided competitive accuracy 
for the discrimination of PDAC and AIP.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a common 
digestive system malignancy, accounting for about 90% 
of pancreatic cancers [1], and the five-year relative sur-
vival rate of PDAC is only 10.8% [2]. The statistical data 
in 2021 [3] showed that pancreatic cancer ranked fourth 
in the mortality rate of malignant tumors; the research 
[4] estimated that pancreatic cancer may become the sec-
ond leading cause of death among malignant tumors in 
2030. Autoimmune pancreatitis (AIP) is a unique form of 
chronic pancreatitis, and the typical characteristics include 
sausage-like swelling of the focal and irregular stenosis of 
the main pancreatic duct [5, 6]. PDAC is cured by invasive 
surgical resection [7], and patients with AIP are treated 
with corticosteroids or rituximab [8]. However, the clini-
cal symptoms and imaging manifestations of PDAC and 
AIP are very similar [9]. A systematic review showed that 
nearly one third (29.7%, 95% CI 18.1%–42.8%) of AIP 
patients undergo unnecessary pancreatectomy due to sus-
pected malignancy in China [10]. PDAC patients will also 
be misdiagnosed as AIP which delays the best opportu-
nity for surgical treatment. Therefore, the crucial issue 
is how to avoid the error diagnosis of these two diseases 
as much as possible and distinguish them accurately and 
noninvasively.

The clinic's common PDAC and AIP diagnostic meth-
ods are divided into three categories: serum examination, 
imaging examination, and histopathological examination. 
The detection and analysis method of serum markers [11, 
12] have not yet formed standard laboratory parameters 
for distinguishing these two types of diseases, and the cor-
relation between markers and diseases is still controversial 
[13, 14]. For invasive histological examination [15], this 
diagnostic method of pancreatic lesions has limitations 
[16, 17] when insufficient histological samples are avail-
able. In imaging examination, the studies of computer 
tomography (CT), magnetic resonance imaging (MRI), 
and contrast-enhanced ultrasound (CEUS) provided 
valuable distinction information for the identification of 
PDAC and AIP [18–21]. Compared to traditional imag-
ing methods, 18F-fluorodeoxyglucose positron emission 
tomography/computer tomography (18F-FDG PET/CT) 
imaging can not only display anatomical information such 
as morphology and density of lesions but also provides 
functional information like metabolism and blood flow of 
lesions. We expected that multimodal features based on 
PET/CT images combining the advantages of PET and CT 
images could further improve the accuracy of PDAC and 
AIP classification.

Radiomics can obtain statistical features from clini-
cal medical images through high-throughput computing 

and convert medical digital images into quantitative high 
dimension data that can be mined, thereby revealing sub-
tle traces of the disease. Driven by precision medicine in 
recent years, many analysis methods based on radiomics 
have been applied to some clinical decision-making tasks, 
including diagnosing coronavirus, lung cancer, and breast 
cancer [22–24]. Radiomics is the most commonly used 
modeling method in PDAC and AIP identification [25–27]. 
However, the radiomics method relies on the accurate 
description of the lesion area. The different details of the 
edge will affect the prediction results, so we attempted to 
introduce the deep learning method to make up for this 
limitation. Deep Convolutional Neural Networks (CNN) 
is a method of learning deep nonlinear mapping of data 
through layer-by-layer training, and it can obtain digi-
tal features from images to reveal the complex abstract 
information contained in massive data. Deep learning 
algorithms are widely used in image segmentation, clas-
sification, and recognition, and have made outstanding 
achievements in various fields of medicine [28–31], and 
have become an indispensable tool for developing clini-
cal medical research. Previous studies based on medical 
imaging have shown that deep learning could provide new 
research ideas and breakthrough diagnostic information for 
identifying PDAC and AIP [32–34].

In recent years, combining radiomics and deep learning 
methods has become a research hotspot in clinical medi-
cine. This hybrid approach has been used to classify gas-
trointestinal stromal tumors or cervical lymph nodes [35, 
36], and to predict IDH status in gliomas [37], but most of 
the previous papers discussed feature fusion based on the 
single-modality features of CT or MRI. Therefore, we intend 
to propose a multidomain fusion model based on PET/CT 
images, which draws on the complementary advantages 
of multidomain information formed by deep learning and 
radiomics, and the model can effectively improve the diag-
nosis accuracy of DPAC and AIP diseases. This method is 
expected to reduce the misjudgment of the disease, strive 
for the treatment opportunity for PDAC patients, and reduce 
unnecessary invasive surgical operations for AIP patients.

Materials and methods

Dataset

The initial database search identified 159 patients, and those 
with absence of PET or CT, incomplete clinical informa-
tion records, or the history of surgery were excluded. The 
remaining 112 patients were included in this retrospective 
experiment, and the screening process is shown in Fig. 1. 
64 patients with PDAC and 48 patients with AIP under-
went 18F-FDG PET/CT examinations at the hospital from 
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February 2011 to June 2019. All AIP patients were diag-
nosed according to the established criteria of the 14th Inter-
national Pancreatology Conference: 25 cases were confirmed 
by histological or cytological examination, and 23 were con-
firmed by noninvasive means such as medical imaging, sero-
logical indicators, and medical history. All PDAC patients 
were diagnosed by histology or cytology. Detailed clinical 
statistics of 112 patients are shown in Table 1.

Image acquisition and processing

18F-FDG PET/CT images of all patients were collected on 
a Siemens Biograph64 PET/CT scanner. Before PET/CT 
scanning, patients should fast for at least 6 h, and 18F-FDG 
(3.70–5.55 MBq/kg) was intravenously injected when blood 
glucose < 11.1 mmol/L. PET/CT imaging was performed 
after sufferers rested quietly in the lounge for about 60 min. 
The body topogram was acquired using an electric current 
of 30 mA at a voltage of 120 kV. Next, whole-body CT 
scans were performed with a scan time of 18.67–21.93 s. 
Then whole-body PET scans were performed covering 5–6 
bed positions with a total acquisition time of 10.0–15.0 min. 
The TrueX iterative algorithm was used to reconstruct the 
PET images and CT values for attenuation correction. The 
intra-layer spatial resolutions of the PET and CT images are 
4.07 mm and 0.98 mm, and the sizes are 168 × 168 pixels 
and 512 × 512 pixels. The scanning parameters included tube 
voltage 120 kV, tube current 170 mA, layer thickness 3 mm.

The 3D slicer software manually segments the pancreatic 
lesion area and obtains the region of interest (ROI) from 
PET/CT images (Fig. 2). To reduce patient variability, the 
ROI was delineated by a nuclear medicine physician and 
rechecked by another nuclear doctor. During the review 
process, if there were controversial revision opinions, a 
third senior nuclear medicine scientist would be invited to 

Fig. 1   Study flowchart for selection criteria

Table 1   Detailed clinical statistics of patients with PDAC and AIP

AIP autoimmune pancreatitis, PDAC pancreatic ductal adenocarci-
noma, SUV standardized uptake values

Variable PDAC (n = 64) AIP (n = 48)

Patients’ sex (male/female) 35/29 43/5
Patients’ age (min/max/

mean ± SD)
32/88/66 ± 11.3 37/90/65 ± 12.0

Uptake status (focal/diffuse) 36/28 19/29
SUV (min/max/median) 2.71/24.62/9.41 1.34/6.11/3.58

Fig. 2   Manually delineated ROI of the pancreatic lesions on the 3D slicer software
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participate in the discussion and confirm the output. All phy-
sicians involved in ROI confirmation work have more than 
10 years of experience diagnosing pancreatic diseases.

To ensure a balanced distribution of experimental sample 
data, we selected slice sequences containing lesions in the 
3D image of each patient to generate a new PET/CT dataset 

(AIP: 612, PDAC: 577). Our preprocessing pipeline for sam-
ple images is shown in Fig. 3. First, CT and PET images’ 
pixel values were converted into Hounsfield unit (HU) and 
standardized uptake value (SUV). Second, we set the pixel 
value threshold range of CT images (− 10 ≤ HU ≤ 100) to 
reduce the interference of fat, bone tissue, and other factors 
on texture features. Then PET images were resampled using 
bilinear interpolation to keep the spatial resolution consist-
ent with CT images. Finally, we took the centroid of the ROI 
as the midpoint and cropped the CT, PET, and lesion label 
images into 64 × 64 image patches as the input of the classifi-
cation model; this way not only reduces the over-reliance on 
the ROI but also preserves the surrounding relevant details.

Model architecture and implementation

The model design process of this research is shown in Fig. 4, 
which consists of three parts, namely features extraction 
(part A), features fusion (part B), and classification predic-
tion (part C).

In the part of feature extraction, we planned to extract 
two groups of features: radiomics features and deep learning 
features. The Pyradiomics [38] open-source code in python 
was used to extract statistical features from PET and CT 
images. We chose the network framework from VGG11 [39] 
to extract features, which contains five blocks and the con-
volution layer with 3 × 3 kernel in each block. We use the 
VGG11 network model to train PET and CT images simul-
taneously to obtain high-level semantic features.

In the features fusion section, we combined the features 
of PET and CT images to form the multimodal features Fig. 3   PET and CT images are preprocessing workflow

Fig. 4   Overall flowchart of our proposed multidomain features fusion 
classification model. A features extraction part; B features fusion 
part; C classification prediction part. RAD_PET/CT, radiomics fea-

tures; DL_PET/CT, deep learning features; MF_PET/CT, multid-
omain fusion features
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of PET/CT images, then fused radiomics and deep learn-
ing features at the decision layer to obtain multidomain 
feature sets of PET/CT images. Thus, we got three feature 
sets, namely radiomics features, deep learning features, 
and multidomain fusion features.

According to the features extraction process described 
above, we established three classification models, radi-
omics classification model (RAD_model), deep learning 
classification model (DL_model), and multidomain fusion 
classification model (MF_model):

1.	 RAD_model: Radiomics features include texture fea-
tures (75), histogram features (18), and morphologi-
cal features (9). The radiomics features of PET and CT 
images were connected to obtain the PET/CT multi-
modal features (195), which were sent to the fully con-
nected layer (the morphological features of PET and CT 
images were the same, only one type was retained in the 
multimodal features).

2.	 DL_model: The VGG11 network was used to extract the 
deep learning features of PET and CT images, respec-
tively, then the multimodal features of PET/CT (8192) 
were obtained through the feature fusion of the fully 
connected layer. The parameters of the feature extraction 
layer of the network were fixed, and then the linear block 
was adjusted to complete the binary classification task.

3.	 MF_model: We integrated radiomics and deep learn-
ing features to form multidomain features of PET/CT 
(8387), then input them into the full connection layer to 
classify PDAC and AIP. The model expected to capture 
valuable information from the new feature set and took 
this complementary advantage to identify.

Feature correlation analysis

Radiomics features can be divided into morphological fea-
tures, first-order features, and texture features, which rep-
resent different statistical significance [40]. Morphological 
features describe the geometric features of the ROI, such 
as volume, surface area, the surface-to-volume ratio. First-
order features are sometimes called intensity features; they 
reflect voxel statistical variables and global properties on the 
ROI. Texture features focus on the voxel statistical relation-
ship between neighboring regions, and perceive the spatial 
variation of voxel intensity levels. Deep learning can capture 
image differences that cannot be noticed by human eyes, and 
the diversity of feature maps makes the acquired abstract 
features extremely rich.

To analyze the correlation and complementarity between 
radiomics features with different statistical properties and 
deep learning features, we tried to use the morphological 
features, first-order features, texture features, and deep learn-
ing features to form new feature sets through different com-
bination methods. As shown in Fig. 5, different feature sets 
were put into the fully connected layer for classification, and 
six prediction results were obtained. We hoped to infer the 
information categories of deep learning features by compar-
ing these classification results.

Statistical analysis

Continuous data were described as mean ± SD, and dis-
crete data and qualitative variables were expressed as natu-
ral number or percentages. The five-fold cross-validation 
strategy was used to ensure the stability of the model and 
reduce the results contingency caused by data distribution. 

Fig. 5   Fused deep learning and 
different statistical features of 
radiomics
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We evaluated model performance by calculating the mean 
of these quantitative indicators through five-fold cross-val-
idation, such as accuracy (Acc), sensitivity (Sen), specific-
ity (Spe), and area under the curve (AUC).

The DeLong test on Medcalc software (version 18.11.3) 
was used to verify the statistical significance of the AUC 
values between different models based on labels and pre-
diction scores. Sensitivity, specificity, and accuracies 
were compared statistically using McNemar's tests, and 
p value < 0.05 was considered statistically significant 
difference. Models training and evaluation were run on 
PyTorch (version 2021.2.3), using an NVIDIA GeForce 
RTX 3080ti GPU with 64 GB memory.

Results

Classification performance of fusion model

We got the classification results of multidomain features, 
radiomics features, and deep learning features. Figure 6a 
shows that the average ROC curve of MF_model was the 
best in the three feature classifications. The AUC of MF_
model was higher than RAD_model (AUC: 96.4 vs 89.5%, 
p < 0.0001, DeLong test) and DL_model (AUC: 96.4 vs 
93.6%, p < 0.0001, DeLong test), It is found in Fig. 6b that 
Acc, Sen, and Spe of MF_model were the highest among 
all models results at 90.1%, 87.5%, and 93.0% respectively. 
Table 2 summarizes the results of all methods.

Results of fusion features with different radiomics

We successively fused high-level semantic features from 
deep learning with different radiomics. As shown in Table 3, 
the AUC value of the multidomain feature set containing 
first-order features (Prediction II) was improved compared 
with only deep learning features (AUC: 96.2% vs 93.6%, 
p < 0.0001, DeLong test), and the prediction results of the 
feature sets that integrate deep learning features and mor-
phological features (Prediction I) or texture features (Predic-
tion III) of radiomics had poor performance (AUC: 91.7% 
vs 92.2% vs 93.6%, p < 0.05, p < 0.05, DeLong test). The 
comparison of the six prediction results with the deep learn-
ing method is shown in Fig. 7.

Evaluation of multimodal features

As revealed in Fig. 8, the average ROC curve of PET/CT 
multimodal features was higher than only CT or PET fea-
tures in three classification models. In RAD_model, the 
average AUC of PET/CT features was 89.5% better than 
CT features (AUC: 89.5 vs 82.7%, p < 0.0001, DeLong test) 
and PET features (AUC: 89.5 vs 80.8%, p < 0.0001, DeLong 
test), the Acc increased to 80.0%. DL_model classification 
results showed that the average AUC of PET/CT features 
was 93.6%, superior to CT features and PET features. There 
was no crossover phenomenon in the ROC curve to identify 
the models’ performance easily, and the Acc of PET/CT was 
85.8%. In MF_model, the average AUC of PET/CT features 
was 96.4% higher than CT features (AUC: 96.4 vs 92.6%, 
p < 0.0001, DeLong test) and PET features (AUC: 96.4 vs 

Fig. 6   Performance comparison of three classification models based on PET/CT images. a The ROC curves and AUC values of RAD_model, 
DL_model, and MF_model. b Performance of RAD_model, DL_model, and MF_model in terms of AUC, Acc, Spe, and Sen
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92.7%, p < 0.0001, DeLong test). Although the AUC value 
of CT and PET was very similar, the Acc of CT was 84.3% 
and is better than PET images.

Discussion

The purpose of this study was to explore an effective method 
for noninvasive identification of PDAC and AIP diseases. 
We integrated radiomics and deep learning features to estab-
lish the multidomain features fusion model (MF_model) 

based on 18F-FDG PET/CT images, and the better compre-
hensive performance of MF_model reflected the value of 
multidomain features in distinguishing PDAC and AIP. We 
found that the first-order features contribute most to improv-
ing the deep learning model by verifying the results of dif-
ferent feature sets.

Radiomics is based on statistics which use specific 
functions to capture the visible information of images. 
The performance of the radiomics model depends on the 
segmentation area of the lesion, indicating that the experi-
ence and diagnostic ability of clinicians involved in ROI 

Table 2   Results of three models: AUC value, accuracy, sensitivity, and specificity

Methods Medical image Performance

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

RAD_model CT 82.7% ± 7.3% (76.2–
89.1%)

73.0% ± 5.6% (68.1–
77.9%)

76.2% ± 7.6% (69.5–
82.9%)

70.4% ± 10.7% (61.0–
79.8%)

PET 80.8% ± 6.1% (75.4–
86.1%)

73.4% ± 7.1% (67.2–
79.6%)

66.4% ± 9.5% (58.1–
74.8%)

81.2% ± 13.2% (69.7–
92.8%)

PET/CT 89.5% ± 6.1% (84.2–
94.8%)

80.0% ± 7.1% (73.8–
86.3%)

75.2% ± 9.3% (67.1–
83.4%)

85.5% ± 11.6% (75.4–
95.7%)

DL_model CT 90.4% ± 1.0% (89.6–
91.3%)

81.0% ± 1.4% (79.8–
82.3%)

79.2% ± 5.3% (74.6–
83.8%)

83.2% ± 4.5% (79.2–87.2%)

PET 86.7% ± 4.1% (83.2–
90.3%)

79.7% ± 5.0% (75.3–
84.0%)

75.6% ± 10.4% (66.5–
84.7%)

84.0% ± 5.3% (79.4–88.6%)

PET/CT 93.6% ± 1.5% (92.3–
94.9%)

85.8% ± 1.7% (84.3–
87.2%)

84.4% ± 8.1% (77.3–
91.5%)

87.9% ± 7.3% (81.5–94.3%)

MF_model CT 92.6% ± 1.6% (91.2–
94.1%)

84.3% ± 2.5% (82.1–
86.4%)

85.4% ± 9.3% (77.3–
93.5%)

83.2% ± 8.3% (75.9–90.5%)

PET 92.7% ± 2.5% (90.5–
94.9%)

82.8% ± 6.0% (77.5–
88.1%)

73.8% ± 15.0% (60.6–
86.9%)

91.6% ± 4.8% (87.4–95.8%)

PET/CT 96.4% ± 1.1% (95.4–
97.3%)

90.1% ± 1.6% (88.7–
91.5%)

87.5% ± 3.6% (84.3–
90.6%)

93.0% ± 3.0% (90.3–95.6%)

Table 3   Evaluation of six feature sets: AUC value, accuracy, sensitivity, and specificity

Mor morphological features of radiomics, Fir first-order features of radiomics, Tex texture features of radiomics, dl deep learning features; p 
value, McNemar test

Models Performance

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) P value

Mor + dl features (predic-
tion I)

91.7% ± 1.4% (90.4–
92.9%)

83.2% ± 2.8% (80.7–
85.6%)

82.5% ± 5.1% (78.0–
87.0%)

84.4% ± 8.6% (76.8–
91.9%)

0.0061

Fir + dl features (predic-
tion II)

96.2% ± 1.1% (95.2–
97.1%)

89.4% ± 1.8% (87.9–
91.0%)

89.9% ± 4.0% (86.4–
93.3%)

89.7% ± 6.1% (84.4–
95.0%)

0.0006

Tex + dl features (predic-
tion III)

92.2% ± 1.3% (91.1–
93.3%)

83.4% ± 3.4% (80.5–
86.4%)

84.0% ± 5.9% (78.9–
89.2%)

83.8% ± 10.0% (75.0–
92.6%)

0.0144

Mor + Fir + dl features 
(prediction IV)

96.0% ± 1.1% (95.0–
97.0%)

88.1% ± 3.1% (85.4–
90.8%)

87.3% ± 5.7% (82.3–
92.3%)

89.0% ± 9.7% (80.5–
97.5%)

0.0271

Mor + Tex + dl features 
(prediction V)

92.4% ± 1.1% (91.5–
93.4%)

84.4% ± 3.5% (81.3–
87.5%)

88.0% ± 2.9% (85.4–
90.6%)

81.7% ± 8.5% (74.3–
89.1%)

0.0474

Fir + Tex + dl features 
(prediction VI)

96.4% ± 1.0% (95.5–
97.3%)

90.5% ± 1.4% (89.4–
91.7%)

88.7% ± 4.7% (84.61–
92.7%)

92.6% ± 4.4% (88.7–
96.4%)

 < 0.0001
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delineation are essential factors in the result of the model. 
The features extraction process of radiomics is relatively 
fixed and ignores the individual differences of patients. We 
hoped to find a more flexible way to capture the details of 
the area around the lesion to improve the model’s accuracy 
further. The method of deep learning uses image patches 
for features extraction which can reduce the dependence of 
prediction results on accurate ROI description, and the con-
volutional layers generate spatial features from the images 
that integrate local images information from the initial and 
deep layers. The fusion of radiomics and deep learning fea-
tures to form a multidomain feature set has been applied to 
diagnosing and treating different diseases. PDAC prognosis 
and Parkinson's disease diagnosis research have proved the 
multidomain features' application value [41, 42]. According 
to our survey, the number of research papers on PDAC and 
AIP disease screening is limited, and fewer studies discuss 
the fusion classification model of radiomics and deep learn-
ing features. Therefore, we proposed to combine the advan-
tages of radiomics and deep learning to establish a fusion 
classification model of PDAC and AIP based on PET/CT 
images. This method improves the diagnostic accuracy of 
these two diseases by breaking through the limitations of 
radiomics methods and the shortcomings of subjective dif-
ferences of doctors. Figure 9 illustrates image slices in which 
clinical diagnosis misdiagnosed and MF_model diagnosis is 
correct. Under the condition of similar datasets, the Acc of 
our proposed method was improved by about 5% compared 
with the published radiomics methods [43].

The high-level semantic features extracted by deep learn-
ing were difficult to define in biological or morphological 
terms, but we combined radiomics features into six different 
feature sets, fused them with deep learning features for clas-
sification training, and conjectured the information attributes 

Fig. 7   Difference of AUC values between the six different prediction 
results and the deep learning model
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of high-level semantic features by comparing the model 
results. It was found that the first-order features had positive 
impacts on the classification model, while the morphological 
features and texture features had negative effects by observ-
ing the experimental data. We suspect that the high-level 
semantic features extracted by CNN contain information 
related to morphological and texture features. The connec-
tion of these features would lead to information redundancy 
or negative correlation, which could reduce model results. 
The first-order features reflect the attenuation distribution of 
ROI voxels and reveal the homogeneity of the images, com-
bining them with high-level semantic features to make the 
information complementarity to each other. Therefore, the 
fusion method (Prediction III) of deep learning features and 
first-order features not only captures abstract features that 
cannot be discerned by the naked eye but also considers the 
description information of the voxel intensity distribution 
in the lesion area. Hence, the feature sets showed excellent 
analytical performance.

In addition, we explored the advantages of PET/CT 
images in identifying PDAC and AIP diseases, then com-
pared the performance differences between multimodal 
and single-type features. Among the three groups of mod-
els (RAD_model, DL_model, and MF_model), the PET/
CT multimodal features prediction results were better than 
only CT and PET features. The resolution of CT images is 
higher than PET images, and the CT images can provide the 
contour information between the lesion area and the sur-
rounding blood vessels, making the anatomical information 
more discriminative. PET images reflect the metabolic level 
of lesions and can serve as valuable supplementary infor-
mation in disease classification. PET/CT images combine 
the advantages of CT and PET images to form diversified 
information, so multimodal features got the best results in 
experiments. This conclusion was consistent with published 
research findings. Xing [44] used XGBoost to establish the 
pathological grading prediction model of PDAC, and then 
found that PET/CT images had more analysis advantages 
than only CT and PET images. Zhang [43] used the support 

vector machine (SVM) algorithm to establish a classifica-
tion model for PDAC and AIP diseases based on PET/CT 
images, and then concluded that the PET/CT multimodal 
features classification results were better than single-type 
features.

There were two main limitations of this study worth dis-
cussing. On the one hand, we used five-fold cross-validation 
to reduce the risk of model overfitting due to small datasets. 
However, we lack the generalization ability of external data-
sets for validating the model. We are already coordinating 
the collection of multi-center data to validate the reliability 
of the model and improve the applicability of the method 
in the clinic. It will take some time to achieve this goal. On 
the other hand, deep learning captures unique image fea-
tures invisible to the human eyes, and the abstract nature 
of features increases the difficulty of model interpretability. 
Although we explored correlations between features, the 
impact of the deep learning process on results is still unclear. 
Some studies have used occlusion heat map analysis and 
concept attribution strategies [33, 45] to explain the “black 
box” decision, but these methods are still controversial and 
limited. Improving the interpretability of deep learning 
results is still a research direction we need to work on in 
the future.

Conclusion

We established a novel multidomain fusion model of radi-
omics and deep learning features based on 18F-FDG PET/CT 
images which demonstrated the superior diagnostic perfor-
mance of multidomain features for noninvasively discrimi-
nating PDAC and AIP. This method will have the potential to 
become a clinical auxiliary tool to improve the performance 
of disease diagnosis. Moreover, we speculate that first-order 
features play a vital role in improving deep learning models 
through comparative experiments with different feature sets.

Fig. 9   Representative PET/CT 
slices (white arrows pointing 
to the lesion) which clinical 
diagnosis misdiagnosed and 
MF_model diagnosis is correct. 
a the slice of a 73-year-old 
man with AIP misdiagnosed 
as PDAC. b the slice of a 
67 year-old woman with PDAC 
misdiagnosed as AIP
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