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Tumors are complex biological entities that comprise cell types of different origins, with different muta-
tional profiles and different patterns of transcriptional dysregulation. The exploration of data related to
cancer biology requires careful analytical methods to reflect the heterogeneity of cell populations in can-
cer samples. Single-cell techniques are now able to capture the transcriptional profiles of individual cells.
However, the complexity of RNA-seq data, especially in cancer samples, makes it challenging to cluster
single-cell profiles into groups that reflect the underlying cell types. We have developed a framework
for a systematic examination of single-cell RNA-seq clustering algorithms for cancer data, which uses a
range of well-established metrics to generate a unified quality score and algorithm ranking. To demon-
strate this framework, we examined clustering performance of 15 different single-cell RNA-seq clustering
algorithms on eight different cancer datasets. Our results suggest that the single-cell RNA-seq clustering
algorithms fall into distinct groups by performance, with the highest clustering quality on non-malignant
cells achieved by three algorithms: Seurat, bigSCale and Cell Ranger. However, for malignant cells, two
additional algorithms often reach a better performance, namely Monocle and SC3. Their ability to detect
known rare cell types was also among the best, along with Seurat. Our approach and results can be used
by a broad audience of practitioners who analyze single-cell transcriptomic data in cancer research.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tumors are composed of complex subpopulations of varying
cell types, including but not limited to neoplastic cells, stromal
fibroblasts, endothelial and immune cells [1–4]. This can be the
result of a number of factors, including cancer stem cell differenti-
ation, accumulation of mutations over time, selective pressures
from the cancer microenvironment and more. A primary concern
with such high heterogeneity of the tumor and its microenviron-
ment is that it may drive metastasis and drug resistance, leading
to progression of disease [2,5]. Therefore, identifying the composite
cell subpopulations of a tumor becomes critical in making diagnos-
tic and treatment decisions. Single-cell RNA sequencing (scRNA-
seq) captures the gene expression profiles of individual cells,
allowing multiple cell populations within a sample to be character-
ized and identified based on transcriptomics. This makes clustering
of scRNA-seq a powerful tool for determining tumor composition
and furthering our understanding of cancer development.

Various clustering approaches have been applied to scRNA-seq
data to identify multiple cell populations. Tools such as Ascend
[6] and CIDR [7] use hierarchical clustering in which objects, or
cells, are sequentially grouped into larger clusters based on simi-
larity. Hierarchical clustering is reliable but can be slower or less
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efficient than other approaches, such as K-means clustering [8].
K-means clustering, used in tools including RaceID [9] and SC3
[10], assigns cells to the nearest cluster and then recomputes clus-
ter centers in an iterative manner. Some of its drawbacks, however,
are that the number of clusters must be set in advance, and cluster
sizes are assumed to be comparable, which may result in a loss of
rare cell subpopulations [8,11]. In contrast, density-based cluster-
ing does not make assumptions regarding cluster sizing. Density-
based approaches require a large sample volume to accurately esti-
mate cell clusters and are thus well-suited to large datasets used in
scRNA-seq studies [8]. Yet similarly to K-means clustering, they
assume comparable density across all clusters. Density-based
methods are also the basis of graph-based clustering approaches,
with which complex clusters of varying sizes, shapes and densities
can be identified. This, however, relies on scRNA-seq data transfor-
mation into a graph-based representation, which includes assump-
tions about cell population size [8,11].

Selecting the best clustering model for a given study can be
challenging, especially when applied to cancer data analysis. In
high dimensional spaces typically used in the analysis of mam-
malian cell samples, differentiating between cell populations is a
difficult task to begin with [8], and the heterogeneity associated
with the cancer microenvironment increases the complexity of this
task. Reliable approaches to dimensionality reduction and differen-
tial expression must therefore be taken, yet many scRNA-seq tools
rely on relatively simple statistical methods to accomplish this
[12]. Furthermore, many scRNA-seq clustering algorithms are
developed in the context of specific studies, or are designed with
specific cell types in mind: for example, RaceID was developed
with the goal of identifying rare enteroendocrine cells in murine
intestinal samples [9]. Although these tools can be used with any
other sample type, the context in which they were created may
affect how well they handle the complexities of the tumor
microenvironment.

Here we present a framework for a systematic evaluation of
scRNA-seq clustering algorithms. We then apply it to 15 different
tools to determine which of them are best suited for identifying
cell subpopulations within cancer samples in eight diverse data-
sets. To our knowledge, this is the largest cancer-related test set
used to date for evaluating scRNA-seq clustering methods. Our
results highlight the challenges associated with the clustering of
cancer scRNA-seq data, and our approach to their evaluation
demonstrates how currently available methods may be compre-
hensively scored and ranked. This, in turn, will help guide
researchers and clinicians in selecting the appropriate tools to gain
the most valuable information from their data.
2. Methods

2.1. Clustering algorithms

The 15 tools we selected represent a variety of clustering
approaches, including but not limited to graph-based, hierarchical
and K-means clustering (Table 1).
2.2. Datasets

Cancer microenvironments vary widely between individual
cancer types, thus to accurately assess tool performance, we used
eight different datasets encompassing tumors of the brain, breast,
lung, colorectal and pancreatic tissues, leukemia, melanoma and
metastatic melanoma (Table 2). The datasets were obtained from
either Gene Expression Omnibus (GEO), ArrayExpress (AE) or Gen-
ome Sequence Archive (GSA) and are further summarized below.
We have also made these datasets available previously through
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our R package called TMExplorer [32] and our recently developed
web portal, CReSCENT (https://crescent.cloud).

Acute myeloid leukemia (AML). 40 bone marrow aspirates were
isolated from 16 AML patients and five healthy donors for this
dataset [24]. The dataset comprises several malignant and normal
hematopoietic cell types.

Breast cancer. Single cells from 11 human primary breast cancer
tumors of four different subtypes comprise this dataset, including
cancer cells, stromal cells, and immune cells from the tumor
microenvironment [25].

Colorectal cancer. This dataset represents single cells isolated
from 11 human primary colorectal cancer tumors at varying stages
[19]. Cell types include T cells, B cells, macrophages, fibroblasts,
mast cells, epithelial cells, and malignant cells from the tumor
microenvironment.

Glioblastoma. This dataset details the single cell expression pro-
file of cells isolated from four primary glioblastoma patients [26]. It
consists of cells from the tumor core and peritumoral space of each
patient, and samples are composed of tumor cells, vascular cells,
immune cells, neuronal cells, and glial cells.

Melanoma. This dataset contains gene expression profiles for
single cells isolated from 33 humanmelanoma tumors, 15 of which
were newly collected from patients, and 16 of which were from
previously reported tumors [27]. Cell types include malignant cells,
stromal cells, and immune cells that compose the melanoma
tumor microenvironment.

Metastatic melanoma. This dataset consists of single-cell expres-
sion profiles for cells isolated from 19 human melanoma tumors
[4]. It includes malignant, immune and stromal cells taken from
ten metastases to lymphoid tissues, five metastases to subcuta-
neous or intramuscular tissue, three metastases to the gastroin-
testinal tract, and one primary acral melanoma.

Lung cancer. For this dataset, single-cell expression profiles
were generated for cells isolated from five patients with untreated,
non-metastatic lung squamous carcinoma or lung adenocarcinoma
[28]. Cells were isolated from both tumor and normal lung tissue,
and cell types present include cancer cells, immune cells, fibrob-
lasts, endothelial cells, alveolar cells, and epithelial cells.

Pancreatic cancer. This dataset consists of pancreatic cells iso-
lated from 24 primary pancreatic ductal adenocarcinoma tumors
and 11 control pancreases. It comprises various subgroups of
malignant and stromal cell-types [29].

2.3. Data preprocessing

The specifics of data preprocessing are unique to each platform
and the original research study providing the data. In this work,
we used the publicly available raw counts matrix as a starting
point for all of our analysis. However, the authors of each original
study had applied the appropriate preprocessing steps based on
the platform used. More specifically, each paper had their own
criteria for excluding cells and genes from the analysis. Here we
provide a brief description of the preprocessing steps for each
dataset.

The breast dataset was obtained using the Fluidigm C1 plat-
form. Cells with low quality sequencing values were removed
using 4 different criteria including: (1) number of total reads; (2)
mapping rate; (3) number of detected genes; and (4) portion of
intergenic region. To filter out genes with low expression values,
the expression data was first normalized using log2(TPM). Genes
present in less than 10 % of tumor samples were filtered out. The
metastatic melanoma and melanoma datasets were obtained using
the SMART-Seq2 protocol and has similar preprocessing steps. The
authors quantified the number of cells with at least one mapped
read and calculated the average expression level of a set of house-
keeping genes. Cells and genes were filtered out if they were below
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Table 1
Algorithms included. Summary of all algorithms applied in this analysis, with three main clustering types indicated where applicable (G = graph-based, H = hierarchical, K = K-
means, O = other). The Normalization used for each algorithm is also provided, where TPM = transcripts per million, RPKM = reads per kilobase per million.

Algorithm
name
(source)

Software Brief description Normalization Type

AltAnalyze
[13]

Python
source
code

AltAnalyze uses a guide gene selection strategy that iteratively clusters cells with the
hierarchical-ordered partitioning and collapsing hybrid (HOPACH) [30] algorithm,
and removes genes and clusters with low intra-correlations. The top intra-correlated
genes are selected as guide genes, and the final clustering results are obtained by
running HOPACH on all the guide genes.

Raw counts H

Ascend [6] R package Clustering by Optimal Resolution (CORE) [31] method: Euclidean distance is first
calculated based on the first 20 principal components (PCs) from the principal
component analysis (PCA) reduced count matrix. Hierarchical clustering is then
applied on the distance matrix to obtain the initial clustering. Outlier cells from this
first round of clustering are identified and removed. A re-clustering is then
performed by a top down split and clusters are merged over multiple iterations.
During this process, adjusted Rand index (ARI) is used to compare different clusters
and identify the most stable number of clusters.

Raw counts H

bigSCale
[14]

MATLAB
source
code

bigSCale first computes a pairwise cell distance matrix based on the genes with a
high degree of variance. Then, Ward’s linkage is used on the distance matrix to assign
cells into different groups.

Raw counts. Scatter normalization is part
of the pipeline

H

Cell Ranger
[15]

Python/R Cell Ranger constructs a sparse k-nearest neighbors (kNN) graph where cells are
linked if they are among the k nearest Euclidean neighbors. The Louvain modularity
optimization algorithm is used to find highly connected modules in the graph. Then,
hierarchical clustering of cluster medoids in the PCA space is done and cluster
siblings are merged if there are no differentially expressed genes between them.

TPM G, H

CIDR [7] R package CIDR first imputes gene expression levels for dropout genes. Then, a dissimilarity
matrix is obtained by computing the Euclidean distance between every pair of cells.
Finally, PCA is used on the dissimilarity matrix, and a hierarchical clustering is
applied to the first few principal components for clustering.

Raw counts H

Monocle
[16]

R package tSNE is first performed to reduce the dimensionality of the dataset. A kNN network is
then constructed with k = 20. The Louvain algorithm is used on the kNN network for
clustering.

Raw counts G

pcaReduce
[17]

R package PCA is first used on the dataset to reduce its dimensions to q. Then k-means
clustering is applied on the q-dimensional matrix and divides cells into (q + 1)
clusters. After that, the probability of each pair of clusters being merged is calculated,
and the two clusters with the highest probability are merged. This process is
repeated until one cluster remains.

Log2 normalization H, K

PhenoGraph
[18]

Python
source
code

A weighted kNN network is first constructed with the weights being the number of
shared common nearest neighbors between two connected cells. Then, the Louvain
algorithm is used to divide cells in the network into different clusters.

Raw counts G

RaceID [9] R/C++ A cell similarity matrix is first constructed by computing the Pearson’s correlation
coefficients between all pairs of cells. Then, a distance matrix is obtained by
subtracting the similarity matrix from 1. Finally, k-means clustering is used on the
distance matrix to group cells into different clusters.

Raw counts. RaceID does an internal
normalization based on median transcript
across all cells.

K

RCA [19] R package A projection vector is calculated for each cell based on the Pearson correlation
coefficients between the dataset and the two reference bulk transcriptomes.
Average-linkage hierarchical clustering is then used on the projection vectors for
clustering.

RPKM H

SC3 [10] R package SC3 first runs k-means clustering on the dataset with different parameters
simultaneously. Then, a consensus matrix is computed by summarizing how often
each pair of cells is located in the same cluster. Finally, the result is determined by
complete-linkage hierarchical clustering of the consensus matrix.

Raw counts, scatter normalization is part
of the pipeline

H, K

Scran [20] R package Hierarchical clustering is applied on PCs. Normalization is done by deconvolving size
factors from cell pools.

Raw counts H

Seurat [21] R package Seurat’s default pipeline first finds variable features from the dataset, then applies
PCA to get the top 50 PCs. Finally, the Louvain algorithm is used on the 50 PCs for
clustering.

Raw counts. Log normalization is part of
the Seurat pipeline

G

SINCERA
[22]

R package Expression data are first transformed to z-scores. Hierarchical clustering is then used
to divide cells into different groups.

z-score scaling is part of the pipeline H

TSCAN [23] R package TSCAN first divides genes into different clusters using hierarchical clustering, which
reduces the number of features to the number of gene clusters. PCA is then applied to
further reduce the dataset dimensionality. Finally, a mixture of multivariate normal
distributions is fitted to the data, and cells are assigned to clusters based on their
probability of belonging to each cluster.

Raw counts H, O
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a threshold value. The colorectal dataset was obtained using Flu-
idigm C1 platform. The authors used the following criteria to deter-
mine which cells to exclude from the analysis: (1) the ratio
between exonic reads and raw reads in the BAM file; (2) total num-
ber of genes with FPKM >1; and (3) exonic reads. The glioblastoma
dataset was obtained using the SMART-Seq2 protocol. First, hierar-
chical clustering on all cells was performed using a set of prede-
fined housekeeping genes and then cells that have uniformly low
6377
expressions values were removed. The AML dataset was generated
using Seq-well. The authors excluded cells that did not meet a min-
imum unique molecular identifier (UMI) count and also looked at
the percent genes and ribosomal RNA. The lung and pancreatic
datasets were sequenced using 10x genomics technology. They
used a threshold UMI, number of expressed genes and percent of
genes from the mitochondrial genome to remove low quality cells
from the analysis.



Table 2
Summary of datasets used. Summary of the datasets used to evaluate scRNA-seq clustering algorithms. Cancer type, the number of cells, genes and tumors, sequencing technology
used, cell type and gene signature availability, and dataset accession numbers are provided. GEO: Gene Expression Omnibus; AE: ArrayExpress, GSA: Genome Sequence Archive.

Dataset Cancer type Cells Malignant
Cells

Non-
malignant
Cells

Genes Tumors Sequencing
technology

Cell type
available?

Gene signature
available?

Accession number

AML [24] Acute myeloid
leukemia

38,410 33,733 4,677 27,899 40 Seq-well No No GEO: GSE116256

Breast [25] Primary breast
cancer

515 317 198 57,915 11 Fluidigm C1 Yes Yes GEO: GSE75688

Colorectal [19] Colorectal cancer 376 271 105 57,241 11 Fluidigm C1 Yes Yes GEO: GSE81861
Glioblastoma

[26]
Primary
glioblastoma

3,589 1,091 2,498 23,368 4 SMART-seq2 No No GEO: GSE84465

Lung [28] Non-small cell lung
carcinoma

51,775 7,424 44,351 22,533 5 10x
Genomics

Yes Yes AE: E-MTAB-6149,
E-MTAB-6653

Melanoma
[27]

Melanoma 6,879 2,018 4861 23,686 33 SMART-seq2 Yes Yes GEO: GSE115978

Metastatic
melanoma
[4]

Metastatic
melanoma

4,645 1,783 2,862 23,686 19 SMART-seq2 Yes Yes GEO: GSE72056

Pancreatic
[29]

Pancreatic ductal
adenocarcinoma

57,530 11,315 46,215 24,005 24
tumors
11
controls

10x
Genomics

Yes Yes GSA: CRA001160

Table 3
Measures of clustering quality. The measures are assigned into three different groups
based on principal component analysis (see Results section).

Measure Brief description Range Group

Adjusted mutual
information
(AMI)

A variation of mutual information
between two clustering partitions,
adjusted for the effect of chance
agreements between partitions

0 to 1 1

Adjusted Rand
index (ARI)

A variation of Rand index as a measure
of the percentage of correct matches,
adjusted for the effect of chance
agreements between partitions

0 to 1 1

F-measure A measure of accuracy that balances
both the precision and recall

0 to 1 1

Variation of
information
(VI)

An information-based measure that
behaves like a true distance, with zero
representing equality of the two
partitions

0 to
infinity

1

Homogeneity Entropy-based measure that quantifies
whether only those data points that
are members of the same class are
assigned to the same cluster.

0 to 1 2

Majority Proportion of the data in the largest
cluster

0 to 1 2

Silhouette Clustering fitness that measures
whether each data point belongs
unambiguously to the cluster to which
it has been assigned

�1 to 1 3
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While the specifics of data preprocessing are unique to each
method, we performed the following steps prior to the running
of each clustering algorithm: (i) collection of raw counts data;
(ii) normalization of counts unique to each algorithm (Table 1).
Each dataset was preprocessed by log transforming normalized
values. The log10(TPM + 1) values were calculated for the
gene � cell matrices of every dataset. Some methods likewise
required the filtering out of genes with particularly low expression
levels. More specifically, AltAnalyze, Ascend, bigSCale, CIDR,
RaceID, RCA, SC3, Scran, SINCERA, TSCAN require filtering out of
low expressed genes. We used the default parameters of each algo-
rithm for the gene filtering. For bigSCale, CIDR, RCA, SC3, Scran,
only genes with an average raw count above 1 across all cells are
kept for the analysis. For Ascend, only genes with an average raw
count above 5 were kept. AltAnalyze requires the gene variance
to be above a threshold. For RaceID only genes with a minimum
transcript count of 1 in at least 5 cells are kept for the analysis.
For TSCAN we set a threshold that only genes with a minimum
expression value of 1 in at least 1 % of cells are retained. These
requirements are based on each algorithm’s technical
documentation.

For all clustering algorithms, default parameters were used
whenever possible. This was done to reduce variability across anal-
yses, as any parameter changes that improve algorithm perfor-
mance with one dataset may not have equivalent improvements
with other datasets. Furthermore, when consulting with authors
of the various algorithms, use of default parameters for the pur-
pose of performance evaluations and comparisons was the recom-
mended approach.

2.4. Clustering measures

Each of the clustering partitions generated by the algorithms
was compared to an appropriate benchmark grouping of cells, to
determine either how closely the detected clusters match the orig-
inal cell types, or how homogeneous the clusters are in terms of
the cell types present therein.

To evaluate the performance of each clustering algorithm on
each of the eight datasets, we used six different measures of simi-
larity between clustering partitions (Table 3). These six metrics
represent a broad selection of well-established approaches to mea-
suring similarity between different clustering partitions of the
same dataset.
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Adjusted mutual information (AMI) is an entropy-based mea-
sure that quantifies if the two partitions are independent of each
other, or if knowing one of them (e.g. Seurat clusters) reduces
the uncertainly about the other (e.g. the true cell subtypes). All
possible intersections of the clusters from the two partition are
considered, and the entropy-based measure is improved if each
cluster of the first partition overlaps to a large extent with only
one or few clusters of the second partition. Conversely, poor over-
lap between the two partitions creates a larger number of smaller
intersections, thus reducing the mutual information measure. It is
then adjusted so that a random cluster assignment has a baseline
of 0, whereas a perfect match has a value 1.

Adjusted Rand index (ARI) is a measure of similarity between
two clustering partitions. Rand index is defined as the proportion
of cell pairs that either appear together in the same cluster in both
clustering partitions, or appear in separate clusters in both parti-
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tions. The value is then adjusted so that a random cluster assign-
ment has a baseline of 0, whereas a perfect match has a value 1.

F-measure, also known as F1 score, quantifies the identification
of cell type as a classification problem. For a given cell type from
the benchmark, we first labeled all cells across the dataset as either
belonging or not belonging to that cell type, thereby forming the
positive and negative class labels, respectively. Each cluster thus
contained a mixture of binary class labels, from which we identi-
fied the majority label and assigned it to all cells in that cluster.
This ‘‘predicted” classification was then quantified using precision
(proportion of true positives among all cells labeled as positive)
and recall (proportion the desired cell type that was correctly iden-
tified as such). The F-measure for a given cell type was defined as
the harmonic mean of its precision and recall. The overall F-
measure was computed as the average value across all cell types,
weighted by their sizes.

Variation of information (VI) in an information-based measure
that is similar to the mutual information measure. It is based on
examining the entropy of a joined partition made of all possible
intersections of the two clustering partitions being compared.
Unlike the similarity measures, the VI behaves as a distance metric
so that identical partitions result in the lowest possible VI value of
0, and higher VI values represent divergence between the two
partitions.

The previous four measures are designed to quantify the overall
similarity between two clustering partitions. We also used two
measures that reflect the cell-type distributions, as follows.

Homogeneity is an information-based measure of the distribu-
tion of cell types within clusters, which uses conditional entropy of
the true cell types given the clustering partition. Homogeneity
takes its maximal value of 1 when each cluster contains only mem-
bers of a single cell type (resulting in the lowest entropy). Con-
versely, homogeneity is zero when the cell-type distribution
within each cluster matches the overall cell-type distribution and
so the clustering provides no additional information.

Majority is defined as the proportion of the majority cell type in
each cluster, where the cell types are defined in the benchmark
partition. For example, if a cluster has 70% B cells, 20% T cells
and 10% endothelial cells, we report a majority of 0.7 for that clus-
ter. The overall majority was computed as the average value across
all clusters, weighted by their sizes.

In addition, we also applied a well-known silhouette measure to
quantify the fitness of each clustering result. For each cell, its sil-
houette value compares two distance values: the average distance
to cells in its own cluster, and the average distance to the closest
cluster other than its own. A positive silhouette value indicates
that the cell is a much better fit in its own cluster than in the
next-best one. A negative silhouette indicates that there is a better
cluster to which the cell should be assigned. The overall silhouette
for a clustering partition is computed as the average value across
all cells. Unlike with the previous six measures, silhouette reflects
the quality of a clustering partition without comparing it to a
benchmark partition.

We used bootstrapping of each of the six performance measures
to determine the significance of differences between algorithm
performances for each dataset. To do this, we evaluated N measure
values for each algorithm’s performance with a given dataset,
where N is the number of cells in the dataset. We then sampled
with replacement from N, using a sample size equal to that of N,
and calculated a mean measure from this sampling. This was done
10,000 times. Using the 2.5th and 97.5th percentiles of these aver-
ages, we determined the 95% confidence interval for the perfor-
mance measures.

The confidence intervals were then used to generate indepen-
dent distributions of the quality measures, which were used to
compute a robust ranking of the clustering algorithms. For each
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metric, we ran N = 10,000 random simulations by adding a differ-
ent random jitter to each performance measure. The amount of jit-
ter was determined by the confidence interval computed for that
measure, dataset and algorithm. This approach allowed us to sim-
ulate randomized distributions independently for each measure, in
order to reduce the effect of interdependencies between the mea-
sures and thus generate a wider coverage of their joint distribution.
Each of the N = 10,000 sets of performance values was then used to
compute algorithm ranks, allowing us to make robust estimates of
the resulting rank distribution.

The proportion of malignant and non-malignant cells varied sig-
nificantly across these data; furthermore, malignant cells may have
highly aberrant gene expression with a large degree of heterogene-
ity, whereas non-malignant cell types typically represent stable
transcriptional profiles. Therefore, we separated the cell popula-
tions into malignant and non-malignant components for bench-
marking purposes. We used the cell types reported in the
original publications as the truth sets to which the non-
malignant cell clustering was compared. Although cell types do
not necessarily correspond to all possible cell groups within the
data, they nevertheless represent biologically relevant partitions
of the data into major categories that should be reflected in tran-
scriptional patterns. As such, a clustering algorithm should be able
to detect such categories and perhaps to refine them further into
subgroups.

For malignant cells, their grouping into cell subtypes was
unavailable in all datasets except the AML. Therefore, for bench-
marking purposes we derived the malignant-cell groups based on
shared patterns of copy-number variation (CNV) detected by the
InferCNV method of the Trinity CTAT Project (https://github.com/
broadinstitute/inferCNV). We also grouped malignant cells by
patient identity as an alternative benchmark, given that the tran-
scriptional profiles in malignant cells are known to reflect individ-
ual differences.
2.5. Systematic scoring framework

The main analysis workflow focused on combining different
clustering-quality measures into a systematic ranking of algo-
rithms (Fig. 1). We applied 15 different clustering algorithms
(Table 1) to each of the eight scRNA-seq datasets (Table 2). Each
such algorithm-dataset pair generated a clustering partition, which
was then systematically assessed using seven different measures of
clustering quality. The results were normalized to the same range
from 0 (lowest) to 1 (highest) using the quantiles of the distribu-
tion of each of the seven measures used. Quality measures them-
selves were examined to identify redundancies between them.
Thereafter groups of non-redundant measures were formed. For
each group, values were aggregated using medians first among
the measures, then further across all eight datasets. This robust
quality score was used for the ranking of the algorithm. Finally,
for each algorithm its rankings across all groups of non-
redundant measures were examined to arrive at a final rank.
3. Results

We applied our evaluation framework for the scRNA-seq clus-
tering, first by applying the 15 clustering algorithms to various ver-
sions of the eight datasets. This process generated a large collection
of initial clustering partitions, which were evaluated using a range
of metrics. We demonstrate how a systematic aggregation of the
results eventually leads to the final algorithm ranking for either
non-malignant or malignant cell types.

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV


Fig. 1. The main analysis workflow consisted of four stages. First, the clustering algorithms were applied to the eight cancer datasets to generate clustering partitions (blue).
Then seven different metrics of clustering quality were examined and grouped into three distinct groups by similarity (yellow). By combining three representative measures,
one per group, we generated quality scores first for each clustering partition and then for each algorithm (green). Finally, we ranked the algorithms by quality scores for each
choice of measures, and then combined these ranks into a final ranking (pink). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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3.1. Data partitions

Overall, we were able to obtain 102 clustering partitions of non-
malignant cells and 112 partitions of malignant cells, where each
partition represented an algorithm-dataset pair (Supplementary
Figure S1). Some of the algorithms were unable to scale up to the
larger datasets such as the Lung and Pancreatic datasets, which
contain tens of thousands of cells. For two of the datasets
(Colorectal and Glioblastoma) there was no patient information
in the original publication, therefore only 82 comparisons of
malignant-cell clusters to patient-based groups were possible.

Most of the clustering algorithms were not scalable beyond
10 K cells and failed to cluster the full AML, Pancreatic and Lung
datasets. For many of the clustering algorithms including RaceID,
Ascend, CIDR, and TSCAN, the biggest memory consumer was the
distance matrix calculation. For large datasets, SC3 uses a support
vector machine (SVM) model and can scale up to 10 K cells but fails
for the larger datasets in our analysis. Scran is a consensus cluster-
ing method that tries multiple values of K and builds a consensus.
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In the CIDR pipeline, imputing the expression value of dropout
genes takes the longest time.

3.2. Clustering quality in non-malignant cells

We first examined the clustering quality in non-malignant cells
and established the baseline distributions of the quality measures.
Using non-malignant cells for this purpose had two advantages:
the original studies provided the non-malignant cell type annota-
tions and their transcriptional profiles were expected to be rela-
tively homogeneous within each subtype (unlike those of the
malignant cells). This scenario also reflected the typical usage of
scRNA-seq clustering in non-cancer data.

To examine the redundancies among the seven measures of
clustering quality, we first applied principal component (PC) anal-
ysis to the set of 102 clustering results in the 7-dimensional space
defined by the quality measures, and then computed the correla-
tions among all measures and all PCs. This analysis revealed that
the measures generally fall into three distinct groups (Fig. 2).



Fig. 2. Clustering quality was assessed using seven different measures for each pair
of algorithm and dataset: AMI, ARI, F-measure, homogeneity, majority, silhouette
and VI distance. Principal component (PC) analysis with feature scaling was then
performed on the collection of 102 clustering partitions in the space defined by the
quality measures. The heatmap shows absolute Pearson correlation among the
seven different measures, as well as the top three principal components (PCs). The
latter collectively explain over 90% of the variance in the measurement data, as
indicated in their labels. A group of four different measures: AMI, ARI, F-measure
and VI are best correlated with PC1, which captures 61% of the variation. Two other
measures, the homogeneity and majority, are also highly correlated and are best
reflected by PC2. The remaining silhouette measure is represented by PC3.
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Group 1, represented by the principal component PC1, contains
AMI, ARI, F-measure and VI; these four highly correlated measures
are optimized when two clustering partitions are identical. Group
2, represented by PC2, contains homogeneity and majority, two
highly correlated measures that are optimized whenever clusters
contain cells of only one type. Group 3 contains the silhouette,
which quantifies whether each cell in the data is closer on average
to the cluster into which it was assigned than to any other cluster;
hence it is a measure of cluster fitness rather than similarity
between partitions.
3.3. Summary score

Next, we selected a representative measure from each of the
three groups, for which there are eight possible triplets (e.g. AMI,
homogeneity and the silhouette triplet). The measures may have
different ranges and distributions; thus, we converted their origi-
nal values into the quantiles of the respective distributions. This
normalization step made the three quantiles in each triplet numer-
ically comparable to each other in the range from 0 to 1 while
reflecting different aspects of the clustering quality. We then
aggregated them further into a single summary score by taking
the median of the three quantile values. As a result, each of the
102 clustering partitions was represented with a single quality
score derived from the three quantile values.
3.4. Algorithm ranking

For each algorithm we computed the median of its quality
scores across all of the available datasets. This allowed us to gener-
ate the ranking for the 15 algorithms for each of the eight possible
triplets of representative measures (Fig. 3). The heatmaps show
that the quality of clustering varies across different datasets. Some
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datasets, such as Breast and Glioblastoma, had consistently higher
clustering scores generated by each algorithm; whereas other
datasets, such as Lung and Melanoma, presented difficulties to
most algorithms.

The procedure was repeated in 10,000 randomized iterations in
which the performance-measure values were resampled with ran-
dom jitter within their respective distributions estimated using
bootstrap (see Methods). Finally, we examined the eight triplet-
based rankings across all iterations and computed the distribution
of ranks for each algorithm (Fig. 4A). Given the very large number
of randomized iterations, the differences between the algorithm
ranking distributions are robust. These results revealed a group
of the top three best performing algorithms: Seurat (mean rank
1.56), bigSCale (mean rank 2.35), and Cell Ranger (mean rank
2.71). These algorithms consistently appeared at the top of the
ranking, for all combinations of quality measures. They achieve
the top rank of one (or tie for it) in, respectively, 61.6%, 22.3%
and 12.7% of all randomized iterations. On the other hand, a group
of algorithms with consistently poor performance included RaceID,
Scran, PhenoGraph and AltAnalyze, which consistently appeared at
the bottom of the ranking. The other nine clustering algorithms
had a wider distribution of ranks in the middle of the range, neither
reaching the top spots nor falling to the bottom spots.

The same analysis was then performed on the set of malignant
cells. An original classification of malignant cell subtypes was
unavailable for all but one of the datasets. Therefore, we instead
compared malignant cell clustering to either the CNV-based or
patient-based groupings, which reflected the different origins and
evolutionary patterns of malignant cells in a biologically relevant
way (Fig. 4B-C). Interestingly, two clustering algorithms which
previously achieved only a medium-ranked performance ranking
on non-malignant cells, exhibited a substantially better ranking
on the malignant cells: SC3 was the top ranked algorithm in both
comparisons and Monocle improved to be the top second or third.
For the CNV-based comparison the best performers SC3, bigSCale
and Monocle achieved the top rank (or tied for it) in 62.7%, 29.0%
and 11.2% of all randomized iterations, respectively. For the
patient-based comparison, SC3 was the only algorithm to reach
the top rank in all 100% of randomized iterations. SC3 uses k-
means, hierarchical and consensus clustering approaches, and
Monocle uses graph-based clustering (see Methods). Two algo-
rithms that were top-ranked for non-malignant cell clustering,
Seurat and bigSCale, remained in the top four for the malignant
cells, whereas the third one, Cell Ranger, dropped to the middle
of the range. Meanwhile two algorithms that performed poorly
on non-malignant cells, RaceID and PhenoGraph, improved their
ranking somewhat, while the medium-ranked Ascend and RCA fell
to near the bottom of the ranks. Otherwise, the remaining patterns
of ranks were generally similar to those for non-malignant cells.
3.5. Example: AML dataset

We demonstrate our approach to algorithm evaluation on the
AML dataset, which was the only dataset on our list with a sub-
grouping of the malignant cells. The original publication for the
AML dataset included the annotations for five known subtypes of
malignant cells based on the cell origins. We examined the results
of the 15 clustering algorithms on the AML data and compared
them to the known cell subtypes (both malignant and non-
malignant) as well as to the patient-based and CNV-based groups.
The clustering of the non-malignant AML cells was roughly similar
to the corresponding ranking over all eight datasets as shown
before, the top three still being Cell Range, bigSCale and Seurat
(although in a different order than before) and with the SC3 and
Monocle being the next two highest-ranked algorithms. The clus-



Fig. 3. Example of the ranking of the 15 clustering algorithms based on eight different combinations of the three metrics used in the generation of the summary quality score.
For each dataset-algorithm pair, the three representative measures (e.g. AMI, homogeneity and silhouette) were converted into quantile values based on the three respective
data distributions. Thereafter for each dataset-algorithm pair, a median of the three quantile-normalized measures was generated, and is shown in the heatmap using the
color-coded scale. The heatmap rows are then ranked by their median-per-row values, with the best performing algorithms shown at the top of the heatmap. The heatmap
also shows that the datasets differ significantly in terms of the clustering quality: for example, most algorithms have better performance achieved on the Glioblastoma
dataset but the poorer performance on the Melanoma dataset.

Fig. 4. Distribution of ranks for each of the 15 algorithms, based on eight different combinations of the three metrics used in the generation of the summary quality score,
repeated in 10,000 randomized iterations. Each box in the boxplot thus represents 80,000 values of rank. The algorithms are sorted by the median rank. They fell into three
categories (indicated with orange, blue, purple) based on their performance on the non-malignant cells. The top three algorithms are Seurat, bigSCale, and Cell Ranger.
Fractional ranks represent ties. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tering achieved by SC3 and Monocle on the malignant cells were
ranked in the top four in all comparisons (Fig. 5).

The clustering results of bigSCale, SC3 and Cell Ranger were the
best matches for true malignant cell subtypes, CNV-based groups
and patient-based groups, respectively (Fig. 5 B-D). We visualized
these six groupings side-by-side, via the color-coding on the same
t-distributed stochastic neighbor embedding (tSNE) plot (Fig. 6).
Visualization of the malignant cells of the AML dataset using tSNE
revealed a number of distinct groups in the data. Most of the tSNE
groups comprised heterogeneous mixtures of the five ‘‘true” malig-
nant cell subtypes (Fig. 6B), and also did not correspond well with
the CNV groups (Fig. 6D). However, patient-based groups matched
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the tSNE groups much better (Fig. 6F). We point out that patient
groups for the AML data were based on both the patient ID and
the day of observation for each patient.

We also observed that the clustering algorithms differed widely
in their granularity, with bigSCale detecting only six clusters and
Cell Ranger as many as 20 clusters within the AML dataset (Fig. 6
A, E). Of the top-ranked algorithms examined, the bigSCale cluster-
ing captured some of the tSNE groups relatively well but created
heterogeneous mixtures in other tSNE groups. The three algo-
rithms corresponded well with each other, while containing the
number of clusters comparable to their respective benchmarks
(Fig. 6 B, D, F).



Fig. 5. Distribution of ranks for each of the 15 algorithms applied to the AML dataset only, based on eight different combinations of metrics used in the generation of the
summary quality score, repeated in 10,000 randomized iterations. Each box in the boxplot thus represents 80,000 values of rank. Algorithms fall into three categories
(indicated with orange, blue, purple) based on their performance on the non-malignant cells. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3.6. Partition size and cell categories

Our framework for systematic algorithm evaluation is based on
using established metrics of partition quality, which reflect the dif-
ferences in the partition sizes. In addition, we directly examined
the partition sizes and granularity of the results, and also each
algorithm’s ability to detect underrepresented cell types.

Generally, the algorithms often estimated more clusters than
there were cell types in the original dataset annotation (Supple-
mentary Figure S2), some of which may reflect underlying biolog-
ical subcategories of cells (such as multiple cell populations within
the tumor type), while other differences may be a genuine discrep-
ancy. Higher granularity also created opportunities to capture
underrepresented cell types and smaller clusters.

We explored the ability of each clustering algorithm to detect
underrepresented cell types. We defined a cell type to be underrep-
resented if the number of cells is less than 500 and is less than 20 %
of the dataset, or the number of cells is less than 5 % of the dataset.
These two different criteria were required because some datasets
had more granular labels and therefore more rare cell types.
Detailed cell type annotations were available only for non-
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malignant cells in all datasets except AML, whereas we were also
interested in the malignant cells. Therefore, we applied the 15 clus-
tering algorithms to the full datasets in order to capture the com-
bined influence of all cell types present in the tumor
microenvironment on the results.

Each dataset is composed of several different cell types, some
of which are common to all datasets, such as B cells and T cells,
while others are unique to specific datasets, e.g. stromal cells in
the Breast dataset. The number of clusters varied by algorithm,
and most clusters were heterogeneous with respect to the cell
categories they comprised: for example, a cluster may contain
90 % immune cells and 10 % fibroblasts. The most abundant cat-
egory was assigned to the whole cluster: in the example above,
the cluster would be assigned an ‘‘Immune” category. An F-
measure was then computed for each cluster, comparing the
predicted category to the true cell-type labels treated as binary
(e.g. immune or non-immune cells). The F-measure values were
averaged across all clusters for a given algorithm and cell type
(Fig. 7).

The results show that the ability of the algorithms to detect
underrepresented cell types varied substantially across the data-



Fig. 6. A visual representation of the malignant component of the AML dataset is shown using tSNE, with individual malignant cells represented with colored dots. The colors
represent either the clusters detected by either the top ranked algorithms (bigSCale, SC3, Cell Ranger; left side panels); or the cell groups used as benchmarks, representing
true malignant cell types, inferCNV groups or patient ID groups (right side panels).

A. Mahalanabis, A.L. Turinsky, M. Husić et al. Computational and Structural Biotechnology Journal 20 (2022) 6375–6387
sets, even among the same cell types: e.g. B cells were generally
detected more accurately by clustering the Breast data, but less
so in the Colorectal data. Nevertheless, previously top-ranked algo-
rithms such as Seurat, Monocle and SC3 achieved the highest med-
ian F-measures overall for detecting underrepresented cell types.
3.7. Other algorithm characteristics

In addition to clustering quality, we also examined other char-
acteristics of the algorithms in our final ranking (Table 4). In terms
of software implementation, the top three best algorithms on non-
malignant cells - Seurat, bigSCale and Cell Ranger - are single cell
analysis pipelines that include a clustering step. Seurat and bigS-
Cale are available as R packages, while the Cell Ranger pipeline pro-
vides command line interfaces for running the clustering step. Cell
Ranger requires a hd5f file as input to the clustering step, while the
other algorithms can work with a counts file or a SingleCellExper-
iment object.

Some of the algorithms that have to compute large distance
matrices did not scale to run on the large datasets. Seurat has
the shortest average run time of 2 min and the lowest variability
in run times ranging from 1 min to less than 2 min. Scran had
the highest average run time of 12 min and the highest variability
in run times ranging from 9 min to 45 min.
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4. Discussion

The complexity of transcriptional dysregulation in cancer sam-
ples requires careful examination of the underlying cell popula-
tions. Many automated methods are now being developed to
handle large-scale scRNA-seq datasets, and their performance
characteristics vary rather widely. However, our results suggest
that there are common patterns related to the quality of scRNA-
seq clustering that should be taken into consideration.

While different quality measures may be applied to evaluate
the clustering algorithms, we have demonstrated that there is a
substantial degree of redundancy among some measures and that
they generally fall into several categories. Our data-driven analysis
revealed three such categories: measures that are optimized when
clustering partitions are identical, measures of class homogeneity
within clusters, and unsupervised measures of cluster fitness that
do not compare partitions directly, such as the silhouette.

Furthermore, our framework provides a way to combine these
diverse measures systematically into unified quality scores by tak-
ing a representative from each group and aggregating the results in
several stages into the final algorithm ranking. We used a robust
median-based approach at each step to improve the reproducibil-
ity of the results. Our analysis reveals a group of clustering algo-
rithms whose quality is consistently high for different datasets
and evaluation scenarios. Interestingly, while the commonly used



Fig. 7. The heatmap represents the F-measure of detecting each cell type (rows) in each dataset, either by clustering all cells or only non-malignant cells (columns). The left-
most column represents the median values across all dataset versions.

Table 4
Comparison of top five algorithms using all cells. The table presents a comparison of algorithm characteristics other than the clustering quality, such as the required resources or
the usability of the software.

Algorithm Average run
time (all cells)

Space RAM Requirement Software Usability

bigSCale 9 min Scalable to more than 50 K cells Available as an R package. Harder to tune parameters
Cell Ranger 20 min Scalable to more than 50 K cells Cell Ranger is comprised of single cell analysis pipelines that include a clustering step. Cell

Ranger required a hd5f file as input to the clustering step while the other algorithms can
work with a counts file or SingleCellExperiment object

Seurat 2 min Scalable to more than 50 K cells The Seurat pipeline is available as an R package and has extensive documentation and an
active GitHub page

SC3 10 min Scalable to more than 10 K cells, but
does not scale to 50 K cells

SC3 is available as an R package

Monocle 5 min Scalable to more than 50 K cells The Monocle pipeline is available as an R package
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Seurat pipeline appears among the top performers for non-
malignant cells, other tools such as Monocle or SC3 may be prefer-
able for malignant cell data.

We also observed that despite conceptual differences across the
algorithms and quality metrics, some scRNA-seq datasets are con-
sistently harder to cluster properly, such as the Lung and Mela-
noma dataset for which the unified clustering-quality scores are
generally lower; whereas other datasets present much less diffi-
culty, such as the Breast and Glioblastoma data for which such
scores are consistently higher (Fig. 3).
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The algorithms varied in terms of their performance (Table 4,
Fig. 8). All the algorithms were running on high performance clus-
ters with the default of one CPU core of 2.30 GHz, 60–120 GB of
memory and virtual memory depending on the size of the datasets.
The large datasets (Lung, Pancreatic, AML with greater than 30,000
cells) required 120 GB of memory while the smaller datasets
(Breast, Colorectal with less than 10,000 cells) could successfully
run with 60 GB or less. The same amount of RAM was used for
all algorithms when running them on the same dataset, making
the comparisons consistent across algorithms.



Fig. 8. The heatmap represents the timing in minutes for each algorithm (rows) in each dataset (columns), by clustering malignant cells (left) and non-tumor cells (right). The
left-most column in each heatmap represents the median values across all dataset versions.
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There are several limitations in our study that can be improved
upon. First, we could not obtain clustering partitions for some of
the larger datasets due to poor algorithm scalability. Obtaining
these metrics may potentially affect our final rankings. We also
combined the three categories of measures on an equal basis,
whereas one can devise a weighting scheme to express prefer-
ences. We also attempted to use several types of clustering ensem-
bles but observed little if any improvement from using them. This
did not justify the substantial increase in the complexity of the
analysis, and therefore we did not pursue this direction further.
However, a more systematic approach to ensemble clustering
may be needed to make definitive conclusions about using ensem-
bles as opposed to single top-performing algorithms for clustering.

Overall, we hope that this study demonstrates a robust and
transparent approach to the ranking of scRNA-seq clustering meth-
ods, and as such will be useful to a wide range of practitioners.

5. Data availability

The data underling this article have been made available in a
consistent format in our TMExplorer single-cell RNA-seq database
and search tool [32]. The accession numbers (i.e., Gene Expression
Omnibus (GEO), ArrayExpress (AE) or Genome Sequence Archive
(GSA)) of all datasets are provided in the Table 2. The source codes
of the analyses performed in this study are available in GitHub at
https://github.com/shooshtarilab/Clustering/tree/master.
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