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Therapeutic Advances in 
Neurological Disorders

Introduction
Alzheimer’s disease (AD) is a neurodegenerative 
disease that is a worldwide health concern. To 
date, no effective treatment to prevent or cure AD 

has been developed, however. Aggregation of 
extracellular amyloid-beta species and intracellular 
hyperphosphorylated tau protein neurofibrillary 
tangles have been observed in the brains of patients 
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Abstract
Background: In light of advancements in machine learning techniques, many studies have 
implemented machine learning approaches combined with data measures to predict and 
classify Alzheimer’s disease. Studies that predicted cognitive status with longitudinal follow-
up of amyloid-positive individuals remain scarce, however.
Objective: We developed models based on voxel-wise functional connectivity (FC) density 
mapping and the presence of the ApoE4 genotype to predict whether amyloid-positive 
individuals would experience cognitive decline after 1 year.
Methods: We divided 122 participants into cognitive decline and stable cognition groups based 
on the participants’ change rates in Mini-Mental State Examination scores. In addition, we 
included 68 participants from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database as 
an external validation data set. Subsequently, we developed two classification models: the first 
model included 99 voxels, and the second model included 99 voxels and the ApoE4 genotype 
as features to train the models by Wide Neural Network algorithm with fivefold cross-
validation and to predict the classes in the hold-out test and ADNI data sets.
Results: The results revealed that both models demonstrated high accuracy in classifying the 
two groups in the hold-out test data set. The model for FC demonstrated good performance, 
with a mean F1-score of 0.86. The model for FC combined with the ApoE4 genotype achieved 
superior performance, with a mean F1-score of 0.90. In the ADNI data set, the two models 
demonstrated stable performances, with mean F1-scores of 0.77 in the first and second 
models.
Conclusion: Our findings suggest that the proposed models exhibited promising accuracy 
for predicting cognitive status after 1 year in amyloid-positive individuals. Notably, the 
combination of FC and the ApoE4 genotype increased prediction accuracy. These findings 
can assist clinicians in predicting changes in cognitive status in individuals with a high risk 
of Alzheimer’s disease and can assist future studies in developing precise treatment and 
prevention strategies.
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with AD.1 In addition, these patients often experi-
ence cerebral atrophy, deterioration of cognitive 
function, and mental and behavioral changes. 
These conditions ultimately make a patient 
dependent on others for accomplishing the activi-
ties of daily living, thus imposing a major burden 
on patients, caregivers, and clinical practitioners.1 
Patients with AD typically experience memory 
impairment – the major cognitive deficit of the dis-
ease – at the early stage of the disease.2,3 
Deterioration of cognitive function may be caused 
by the accumulation of amyloid-beta species and 
hyperphosphorylated tau protein, which can lead 
to neuronal loss and cerebral atrophy.4,5 These 
pathologies of AD can also be found in individuals 
with mild cognitive impairment (MCI) or even 
individuals with normal cognitive function (i.e. the 
preclinical states of AD).2,6,7 Therefore, it is impor-
tant to investigate and predict the process of transi-
tion from normal cognitive function to cognitive 
decline in individuals with associated pathologies.

Previous functional magnetic resonance imaging 
(fMRI) studies have demonstrated functional 
connectivity (FC) impairment in several brain 
regions in patients with AD at the early or pre-
clinical stage.8–10 In addition, the apolipoprotein 
E4 (ApoE4) allele is the genetic risk factor most 
associated with the development of AD.11 
Previous studies have indicated that, before 
abnormalities in the brain structure, in cognitive 
function, or neurobiology develop (i.e. at the 
asymptomatic or preclinical stages), an ApoE4 
carrier may already have abnormal FC and amy-
loid-beta deposition.12–15 These findings indicate 
that, in the early or preclinical stage of AD, indi-
viduals with AD or who carry the ApoE4 allele 
might experience FC impairment, which is related 
to cognitive deterioration. Therefore, FC and the 
ApoE4 genotype might play key roles in the pro-
gression of AD, especially at the preclinical phase.

In light of advancements in machine learning 
techniques, many studies have implemented 
machine learning approaches combined with data 
measures to predict and classify AD; machine 
learning has been paired with, for example, neuro-
imaging, clinical examination, and evaluation of 
demographic characteristics.13,16–21 Few studies 
have combined FC and the ApoE4 genotype to 
predict cognitive decline or classify the prognosis 
of patients with AD. Only one magnetoencepha-
lography study demonstrated that the combina-
tion of resting-state oscillatory connectivity and 

the ApoE4 genotype enabled researchers to dis-
tinguish patients with AD from older control 
patients and ApoE4 carriers from ApoE4 non-
carriers with moderate success.13 Most studies 
have focused on distinguishing between AD, 
MCI, and normal cognitive function,13,16–21 but 
others have focused on distinguishing between 
AD and vascular dementia.22,23 Studies predicting 
cognitive status with longitudinal follow-up of 
individuals with AD remain scarce, however. 
Therefore, we propose a machine learning 
approach that examines FC and the ApoE4 geno-
type to predict cognitive status in the longitudinal 
follow-up of amyloid-positive individuals. This 
study included amyloid-positive individuals who 
received [18F]AV-45 positron emission tomogra-
phy (PET) scans. This approach can assist clinical 
practitioners in developing a diagnosis, treatment, 
and prognosis for individuals with abnormal amy-
loid-beta biomarkers, even those with AD.

In this study, we aimed to (1) develop voxel-wise 
FC density mapping and identify voxels associated 
with change rates in Mini-Mental State 
Examination (MMSE) scores in the training data 
set to develop the first machine learning model 
(i.e. a model with FC), (2) combine FC density 
mapping and the ApoE4 genotype (ApoE4 carri-
ers versus ApoE4 noncarriers) as features to train 
the second machine learning model (i.e. a model 
of FC combined with ApoE4 genotype), (3) apply 
the models to the independent hold-out test data 
set to predict whether amyloid-positive individuals 
would experience cognitive decline after 1 year, 
and (4) increase Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) data set as an external validation 
data set to assess our model performances.

Materials and methods

Participants
This study was conducted in accordance with the 
Declaration of Helsinki and was approved by the 
Institutional Review Board of Chang Gung 
Memorial Hospital. The study participants were 
treated at the Cognition and Aging Center of the 
Department of General Neurology at Kaohsiung 
Chang Gung Memorial Hospital. The team of 
researchers comprised behavioral neurologists, 
psychiatrists, neuropsychologists, neuroradiolo-
gists, and experts in nuclear medicine. All partici-
pants received [18F]AV-45 PET scan to identify 
the amyloid deposition, and the tracer was 
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synthesized at the cyclotron facility of Chang 
Gung Memorial Hospital according to the previ-
ously described method.24 Briefly, we obtained 
helical computed tomography images for attenu-
ation correction at 40 min. Two 5-min dynamic 
frames composed each PET acquisition, which 
was acquired at around 1 h after injection in three-
dimensional (3D) mode from the Biograph mCT 
PET/computed tomography (CT) system 
(Siemens Medical Solutions, Malvern, PA, USA). 
The scanning protocol was according to previous 
studies.25,26 Finally, all enrolled participants who 
showed amyloid pathology were confirmed by 
two independent nuclear medicine raters. All par-
ticipants received acetylcholine esterase inhibitor 
treatment once they had an MMSE score <27 
from time of diagnosis. The exclusion criteria 
were a past history of clinical stroke or depres-
sion, a negative amyloid scan, and a modified 
Hachinski ischemic score >4. A total of 122 par-
ticipants were recruited in this study. At baseline, 
all participants received MRI scans and clinical 
dementia rating (CDR) and MMSE assessments. 
All participants underwent an MMSE assessment 
at least 8 months after the pretest (ranging from 8 
to 159 months). Because the interval between 
pre-test and post-test MMSE were different for 
each participant, we calculated the annual change 
rate in MMSE scores for each participant accord-
ing to the following formula

Change rate in MMSE score

MMSE change score
Time interval (month)

=

×112

When the change rate in the MMSE score was neg-
ative, the participant was placed in the cognitive 
decline group (n = 86). By contrast, if the change 
rate in the MMSE score was greater than or equal 
to zero, the participant was placed in the stable cog-
nition group (n = 36). A neurologist retrieved the 
medical information – including diagnoses of 
hypertension, diabetes mellitus, and hyperlipi-
demia – of all participants from their medical 
records. The Institutional Review Committee on 
Human Research approved this study, and all par-
ticipants provided written informed consent.

We also included the data used as external valida-
tion from the ADNI database (https://adni.loni.
usc.edu/), which was launched and led by Principal 
Investigator Michael W. Weiner, MD, in 2003. 
The ADNI database was established to test the 

feasibility of a combination of neuroimaging stud-
ies (e.g. MRI and PET), biological markers, and 
clinical assessment for evaluating the progression 
of MCI and AD. The inclusion criteria were as 
follows: (1) participants had to have 3T 
T1-weighted images and resting-state fMRI with 
a repetition time of 3000 ms and an echo time of 
30 ms from 3T scanners; (2) participants had to 
have [18F]AV-45 PET scan to identify amyloid 
pathology; (3) the age of participants ranged from 
55 to 95 years; (4) participant had to have at least 
8 months follow-up for the MMSE assessment; 
(5) participants had to have demographic infor-
mation (e.g. age and sex) and clinical assessments 
(e.g. MMSE, CDR, ApoE genotype). We finally 
downloaded the data of 68 participants used as 
the external validation. We divided the data set 
into the ADNI-cognitive decline group (n = 32) 
and ADNI-stable cognition group (n = 36) using 
the change rate in MMSE score mentioned above.

Genotyping
Single nucleotide polymorphism (SNP) genotyp-
ing was performed using the MassARRAY system 
with iPLEX Gold chemistry (Agena Bioscience, 
San Diego, CA, USA). The polymerase chain 
reaction (PCR) primers and single-base extension 
primers were designed using Assay Design Suite 
v2.0. The genotyping analysis was performed using 
an iPLEX Gold Reagent Kit according to the man-
ufacturer’s instructions. For the analysis, 1 µl of 
DNA sample (10 ng/µl) was subjected to 5 µl of 
PCR reaction containing 0.2 units of Taq poly-
merase, 2.5 pmol of multiple PCR primers, and 
25 mM deoxynucleoside triphosphate (dNTPs). 
Thermocycling started at 94°C for 2 min and was 
followed by 45 cycles of 94°C for 30 s, 56°C for 
30 s, and 72°C for 1 min. A final extension was per-
formed at 72°C for 1 min. Unincorporated dNTPs 
were dephosphorylated using 0.3 U of shrimp alka-
line phosphatase. Purified amplicons were then 
subjected to primer extension using the iPLEX 
Gold Reagent Kit. Primer extension was per-
formed with a cycling program of 94°C for 30 s, 
followed by 40 cycles of 94°C for 5 s and five cycles 
of 52°C for 5 s and of 80°C for 5 s. This was fol-
lowed by a final extension at 72°C for 3 min. The 
extended reaction products were purified through 
cation-exchange resins and then spotted onto a 
384-format SpectroCHIP II array (Agena 
Bioscience, Hamburg, Germany) using a 
MassARRAY Nanodispenser RS1000 (Agena 
Bioscience, Hamburg, Germany). Mass 
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determination was done using a MassARRAY 
Compact Analyzer (Agena Bioscience, Hamburg, 
Germany). The resulting spectra were processed, 
and alleles were called using the MassARRAY 
Typer 4.0 with model-based cluster analysis to 
analyze the genotypes of the SNPs. The ApoE 
genotype was determined using rs7412 and 
rs429358. ApoE4 carriers were defined as partici-
pants with one or two E4 alleles.

Image acquisition and preprocessing
All participants underwent an MRI scan (dura-
tion: approximately 40 min), which was per-
formed using a GE Signa Excite 3.0T scanner 
(GE Medical Systems, Milwaukee, WI, USA). 
The T1-weighted MRI and resting-state fMRI 
scanning protocols were consistent with those 
performed in our previous studies.27,28

Raw resting-state fMRI data were analyzed using 
DPABI toolbox (version 4.2_190919)29 and 
Statistical Parametric Mapping 12 (https://www.
fil.ion.ucl.ac.uk/spm/) run in MATLAB R2021a 
(MathWorks, Natick, MA, USA). Analysis 
entailed the following steps: removing the first five 
data points in any blood-oxygen-level-dependent 
time series, correcting slice-timing, realigning and 
then manually reorienting T1-weighted and rest-
ing-state fMRI images, coregistering T1-weighted 
and resting-state fMRI images, normalizing the 
images into an MNI152 standard space, resam-
pling to a 3-mm cubic voxel, regressing out covari-
ates (i.e. time courses of six head motions, white 
matter, and cerebrospinal fluid), and performing 
temporal low-pass filtering (0.01–0.1 Hz).

FC density mapping
We performed Pearson’s correlation to map the 
intensity of FC density mapping based on partici-
pants’ preprocessed resting-state fMRI data. As per-
formed in previous studies,30–33 we calculated the 
number of global functional connections with the 
threshold r > 0.6 between voxel xi and all other vox-
els in the brain (total voxels = 55,749) and set that 
number as the global FC density for a given voxel. 
We repeated this calculation for each voxel and cre-
ated each participant’s FC density mapping.

Feature selection and data set assignment
Both groups were randomly divided into a 
training data set (cognitive decline and stable 

cognition groups contained data of 61 and 26 
participants, respectively) and an independent 
hold-out test data set (cognitive decline and 
stable cognition groups contained data of 25 
and 10 participants, respectively) at a ratio of 
7:3. In addition, we collected 68 participants 
from the ADNI database used as the external 
validation, with 32 participants assigned to the 
ADNI-cognitive decline group and 36 partici-
pants assigned to the ADNI-stable cognition 
group.

To identify a set of key voxels in the training data 
set, the FC of which correlated with cognitive 
decline, we implemented random sampling to 
reduce the number of voxels with spurious corre-
lation, which is common in neuroimaging 
report.32 First, we randomly selected half of the 
individuals in the training data set and calculated 
Pearson’s correlation between the change rate in 
their MMSE scores and FC density mapping. 
This step was repeated 50 times for subsequent 
analysis. Second, in each trial, we ranked the cor-
relation coefficients of the voxels from highest to 
lowest and selected the 40% of voxels with the 
highest correlation coefficients as the key voxels. 
These key voxels were further refined through 
analysis of the overall intersection of 50 trials. We 
performed the aforementioned two steps 100 
times to derive 100 sets of key voxels. The more 
frequently a voxel was selected, the more impor-
tant the voxel was considered to be in relation to 
cognitive decline. Therefore, the key voxels that 
were selected more than 10 times were consid-
ered the key features for classification in this 
study. All feature selection steps were performed 
only for the training data set to prevent informa-
tion leakage.

We employed the Synthetic Minority Over-
sampling Technique (SMOTE)34 to oversample 
the stable cognition group in the training data 
set and increase the number in the group from 
26 to 61 to reduce classification bias due to class 
imbalance. Therefore, a total of 157 samples 
(122 in the training data set and 35 in the hold-
out test data set) were included in this study 
(Figure 1).

Statistical analysis and machine learning 
analysis
We performed independent t test and Chi-square 
test to examine the demographic and clinical 
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characteristics of continuous and categorical vari-
ables. The significance level was set at 0.05. 
Statistical analyses were performed using SPSS 
25.0 (SPSS Inc., Chicago, IL, USA).

In this study, we developed two classification 
models. The first model (i.e. the model for FC) 
was developed using selected key voxels with FC 
density mapping as features. We also combined 

Figure 1.  Schematic illustrating construction process of prediction models.
ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMOTE, Synthetic Minority Over-sampling Technique.

https://journals.sagepub.com/home/tan
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FC density mapping and the ApoE4 genotype to 
serve as features for training the second model 
(i.e. the model for FC combined with the ApoE4 
genotype).

In the machine learning analysis, we performed 
the Classification Learner Tool in MATLAB 
R2021a (MathWorks) to train our classification 
models. First, we performed 24 different algo-
rithms with fivefold cross-validation to train our 
two models. Subsequently, we chose the algo-
rithm that best fitted our models and repeated the 
whole cross-validation procedure 500 times in the 
training, test, and ADNI data sets (Figure 1). 
Finally, model performance was assessed based 
on mean accuracy, mean recall, mean precision, 
and mean F1-score.

Results

Participants’ demographic and clinical 
characteristics
A total of 122 amyloid-positive participants 
(group with cognitive decline = 86; stable cogni-
tion group = 36) were recruited in this study. The 
two groups were balanced in terms of sex, educa-
tion level, CDR at baseline, MMSE score at base-
line (cognitive decline group: 24.34 ± 3.38, range: 
15–30; stable cognition group: 24.56 ± 2.98, 
range: 18–29), prevalence of hypertension, preva-
lence of diabetes mellitus, and prevalence of 
hyperlipidemia. The cognitive decline group had 
a higher average age and worse MMSE score at 
follow-up than the stable cognition group did. 
Compared with the stable cognition group, the 
cognitive decline group had a higher proportion 
of ApoE4 carriers. The ADNI data set showed 
no significant differences between the two groups 
regarding age, sex, CDR at baseline, MMSE 
score at baseline, and proportion of ApoE4 carri-
ers. The results are shown in Table 1.

Model performances in the training data set
Ninety-nine key voxels were selected as final key 
features, which were associated with cognitive 
decline in this study (Figure 2 and Supplementary 
Table 1). These areas were mainly located in the 
right middle frontal gyrus (20.20%), the triangu-
lar part of the right inferior frontal gyrus (15.15%), 
and the medial part of the left superior frontal 
gyrus (9.09%).

Among the 24 different algorithms, the Wide 
Neural Network algorithm with fivefold cross-
validation performed the best in the two models 
(model for FC: accuracy, recall, precision, and 
F1-score of 0.83, 0.75, 0.88, and 0.81, respec-
tively; model for FC combined with ApoE4 gen-
otype: accuracy, recall, precision, and F1-score of 
0.84, 0.74, 0.92, and 0.82, respectively). Results 
are shown in Tables 2 and 3. Next, we chose the 
Wide Neural Network algorithm with fivefold 
cross-validation to train our models and repeat 
the whole procedure five hundred times in the 
training, test, and ADNI data sets. The default 
values were used as model hyperparameters with 
the following: number of fully connected layers: 
1; first layer size: 100; activation: rectified linear 
unit (ReLU); iteration limit: 1000; regularization 
strength (Lambda): 0; standardize data: yes.

Both of our models could distinguish between the 
cognitive decline and the stable cognition groups, 
achieving high accuracy in the training data set. 
The model for FC with 99 voxels as features 
achieved good performance (mean accuracy, 
mean recall, mean precision, and mean F1-score 
of 0.80 ± 0.02, 0.70 ± 0.03, 0.88 ± 0.03, and 
0.78 ± 0.02, respectively) in the training data set. 
Moreover, the model for FC combined with 
ApoE4 genotype had superior performance in 
classifying the two groups, with a mean accuracy, 
mean recall, mean precision, and mean F1-score 
of 0.85 ± 0.01, 0.78 ± 0.03, 0.90 ± 0.02, and 
0.83 ± 0.02, respectively, in the training data set 
(Table 4).

Model performances in the independent  
hold-out test data set
In the hold-out test data set, both models demon-
strated high accuracy in predicting the cognitive 
decline and stable cognition groups. The model 
for FC demonstrated good performance in the 
hold-out test data set (mean accuracy, mean 
recall, mean precision, and mean F1-score of 
0.80 ± 0.03, 0.87 ± 0.04, 0.86 ± 0.02, and 
0.86 ± 0.02, respectively). The model with FC 
combined with the ApoE4 genotype achieved 
higher performance in distinguishing between the 
cognitive decline and stable cognition groups, 
with a mean accuracy, mean recall, mean preci-
sion, and mean F1-score of 0.86 ± 0.02, 
0.90 ± 0.03, 0.91 ± 0.01, and 0.90 ± 0.02, respec-
tively, in the hold-out test data set (Table 5).
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Model performances in the ADNI data set
Our results showed that the two models demon-
strated stable performances in the ADNI data set 
(model for FC: mean accuracy, mean recall, mean 
precision, and mean F1-score of 0.77 ± 0.02, 
0.79 ± 0.04, 0.74 ± 0.03, and 0.77 ± 0.02, respec-
tively; model for FC combined with ApoE4 
genotype: mean accuracy, mean recall, mean 
precision, and mean F1-score of 0.78 ± 0.02, 
0.80 ± 0.03, 0.75 ± 0.03, and 0.77 ± 0.02, respec-
tively). Results are shown in Table 6.

Discussion
In this study, we developed machine learning mod-
els using voxel-wise FC density mapping and the 
ApoE4 genotype to predict whether amyloid-posi-
tive individuals would experience cognitive decline 
after 1 year. We selected 99 voxels, which were 

highly correlated with change rates in MMSE 
scores, to train the model for FC. In addition, we 
developed a model for FC combined with the 
ApoE4 genotype comprising 99 voxels and the 
ApoE4 genotype to improve the accuracy of the 
model. The model for FC had good performance, 
with a mean F1-score of 0.86. Furthermore, the 
model for FC combined with the ApoE4 genotype 
achieved an excellent mean F1-score of 0.90 for pre-
dicting whether the MMSE score would decrease 
after 1 year for amyloid-positive individuals. 
Previous studies have mainly focused on differenti-
ating between AD, MCI, and healthy individuals or 
differentiating between types of dementia.16–18,22,23 
Furthermore, most studies have mainly focused on 
the progression of MCI to AD, and few studies have 
examined the progression from the preclinical stage 
to AD.35 More than 30% of cognitively normal 
older adults have a moderate to high accumulation 

Table 1.  Demographic and clinical characteristics of the groups.

Characteristics Cognitive 
decline group 
(n = 86)

Stable 
cognition 
group (n = 36)

Statistic 
(t or Chi-
square)

p value ADNI-cognitive 
decline group 
(n = 32)

ADNI-stable 
cognition 
group (n = 36)

Statistic 
(t or Chi-
square)

p value

Age, year 68.28 ± 7.12 65.19 ± 7.88 2.11 0.04* 75.59 ± 8.45 72.79 ± 6.36 1.55 0.13*

Sex (male/female) 40/46 19/17 0.19 0.67** 12/20 18/18 0.63 0.30**

Education level, year 9.26 ± 4.69 9.53 ± 3.98 −0.31 0.76* – – – –

CDR score at baseline 
(n)

 

0 8 7 11 14  

0.5 74 27 2.54 0.28** 17 21 2.35 0.31**

1 4 2 4 1  

MMSE score at baseline 24.34 ± 3.38 24.56 ± 2.98 −0.34 0.74* 27.59 ± 2.59 27.78 ± 2.87 −0.28 0.78*

MMSE score at  
follow-up

17.52 ± 8.19 25.81 ± 2.73 −8.33 <0.01* 25.31 ± 3.47 28.83 ± 2.18 −4.94 <0.01*

Change rate in MMSE 
scores

−1.62 ± 1.50 0.63 ± 0.80 −8.53 <0.01* −1.69 ± 1.23 0.77 ± 0.75 −10.05 <0.01*

Hypertension, n (%) 37 (43.02%) 10 (27.78%) 1.89 0.17** – – – –

Diabetes mellitus, n (%) 17 (19.77%) 7 (19.44%) <0.01 >0.99** – – – –

Hyperlipidemia, n (%) 25 (29.07%) 4 (11.11%) 3.58 0.06** – – – –

ApoE4 carrier, n (%) 30 (34.88%) 1 (2.78%) 12.16 <0.01** 16 (50%) 19 (53%) 0.05 0.82**

ADNI, Alzheimer’s Disease Neuroimaging Initiative; CDR, clinical dementia rating; MMSE, Mini-Mental State Examination; ApoE4, apolipoprotein E4.
Data are mean value ± SD or n (%) unless specified otherwise.
*Independent t test, significance level = 0.05.
**Chi-square test, significance level = 0.05.
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of amyloid-beta species and are more likely to 
develop AD.2 Therefore, the strength of this study is 
that we recruited amyloid-positive individuals at dif-
ferent stages of cognitive decline (MMSE scores 
ranging from 15 to 30 and CDR scores ranging 
from 0 to 1). Moreover, we included a longitudinal 

MMSE assessment, FC density mapping, and 
ApoE4 genotype data to develop the machine 
learning models. Both models achieved a mean F1-
score of at least 0.86, which suggests our models 
can predict participants’ cognitive deterioration 
after 1 year using only the resting-state fMRI scan. 

Figure 2.  Three key brain regions associated with cognitive deterioration. (a) Right middle frontal gyrus (20 
voxels, 20.20%). (b) Right inferior frontal gyrus, triangular part (15 voxels, 15.15%). (c) Left superior frontal gyrus, 
medial part (9 voxels, 9.09%). Supplementary Table 1 lists the details of the 99 key voxels selected as features.
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This study can provide clinical practitioners with 
methods and data to enable earlier recognition and 
prevention of AD in patients at high risk. In the 
ADNI data set, stable performances were found in 
the two models with the mean F1-score of 0.77, 
which were lower than those of the hold-out test 
data set. We speculated that the possible reason why 

the ADNI database did not have the similar classifi-
cation performance is related to ethnic differences. 
Our database only included Asians, but the ADNI 
database included different ethnicity. Li and col-
leagues suggested that the ethnicity of the training 
data set in machine learning analysis played a cru-
cial role in examining the accuracy of the test data 

Table 2.  Model performance of 24 classification algorithms in training data set (model for functional 
connectivity).

Algorithm Accuracy Recall Precision F1-score

Fine tree 0.70 0.66 0.71 0.68

Medium tree 0.70 0.66 0.71 0.68

Coarse tree 0.66 0.57 0.70 0.63

Linear discriminant 0.75 0.54 0.94 0.69

Logistic regression 0.77 0.57 0.95 0.71

Kernel Naïve Bayes 0.68 0.67 0.68 0.67

Linear SVM 0.68 0.49 0.79 0.60

Quadratic SVM 0.75 0.62 0.84 0.71

Cubic SVM 0.80 0.67 0.89 0.76

Fine KNN 0.82 0.67 0.95 0.79

Medium KNN 0.66 0.39 0.86 0.54

Coarse KNN 0.49 0.79 0.49 0.60

Cosine KNN 0.69 0.84 0.65 0.73

Cubic KNN 0.72 0.38 0.92 0.54

Weighted KNN 0.69 0.38 1.00 0.55

Boosted trees 0.49 0.79 0.49 0.60

Bagged trees 0.76 0.74 0.78 0.76

Subspace discriminant 0.73 0.54 0.87 0.67

Subspace KNN 0.71 0.48 0.88 0.62

Narrow neural network 0.79 0.70 0.84 0.76

Medium neural network 0.79 0.69 0.86 0.77

Wide neural network 0.83 0.75 0.88 0.81

Bilayered neural network 0.82 0.75 0.87 0.81

Trilayered neural network 0.77 0.66 0.85 0.74

The bold values represent the best-performing algorithm among the 24 classification algorithms in the training data set 
(model for functional connectivity).
KNN, K-nearest neighbor; SVM, support vector machine.
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set.36 In addition, a recent fMRI study found that 
ApoE4 had different effects on FC in different eth-
nic populations.37 Although the models may have a 
potential bias when applied to the ADNI data set, 
the two models we developed still had good classifi-
cation performance to distinguish between the cog-
nitive decline group and the stable cognition group 
in the ADNI data set.

Ninety-nine voxels, which were highly associated 
with change rates in MMSE scores, were selected 
as key features through FC density mapping. 
These areas in the brain were primarily located in 
the right middle frontal gyrus, the triangular part 
of the right inferior frontal gyrus, and the medial 
part of the left superior frontal gyrus. A recent 
study found that increased FC within the middle 

Table 3.  Model performance of 24 classification algorithms in training data set (model for functional 
connectivity combined with the ApoE4 genotype).

Algorithm Accuracy Recall Precision F1-score

Fine tree 0.70 0.71 0.69 0.70

Medium tree 0.70 0.70 0.69 0.69

Coarse tree 0.64 0.61 0.65 0.63

Linear discriminant 0.79 0.61 0.95 0.74

Logistic regression 0.62 0.30 0.82 0.44

Kernel Naïve Bayes 0.70 0.70 0.69 0.69

Linear SVM 0.66 0.64 0.67 0.65

Quadratic SVM 0.75 0.67 0.80 0.73

Cubic SVM 0.75 0.57 0.88 0.69

Fine KNN 0.80 0.66 0.93 0.77

Medium KNN 0.66 0.43 0.81 0.56

Coarse KNN 0.49 0.79 0.49 0.60

Cosine KNN 0.64 0.87 0.60 0.71

Cubic KNN 0.71 0.48 0.91 0.63

Weighted KNN 0.71 0.41 1.00 0.58

Boosted trees 0.49 0.79 0.49 0.60

Bagged trees 0.76 0.72 0.79 0.75

Subspace discriminant 0.75 0.61 0.84 0.71

Subspace KNN 0.78 0.62 0.90 0.73

Narrow neural network 0.81 0.74 0.87 0.80

Medium neural network 0.83 0.72 0.92 0.81

Wide neural network 0.84 0.74 0.92 0.82

Bilayered neural network 0.75 0.69 0.79 0.74

Trilayered neural network 0.75 0.59 0.86 0.70

The bold values represent the best-performing algorithm among the 24 classification algorithms in the training data set 
(model for functional connectivity combined with the APOE4 genotype).
ApoE4, apolipoprotein E4; KNN, K-nearest neighbor; SVM, support vector machine.
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frontal gyrus was associated with severity of symp-
toms in patients with AD.38 Cha et al.39 demon-
strated that FC in the right middle frontal gyrus 

was significantly higher in patients with AD than 
in MCI and healthy groups; they further uncov-
ered a negative correlation between the FC of the 

Table 4.  Performance of the models in the training data set.

Prediction scores

  Model with functional connectivity Model for functional connectivity combined 
with the ApoE4 genotype

Accuracy 0.80 ± 0.02 0.85 ± 0.01

Recall 0.70 ± 0.03 0.78 ± 0.03

Precision 0.88 ± 0.03 0.90 ± 0.02

F1-score 0.78 ± 0.02 0.83 ± 0.02

ApoE4, apolipoprotein E4.
The model for functional connectivity included 99 voxels, and the model for functional connectivity combined with the 
ApoE4 genotype included 99 voxels and ApoE4 genotypes.

Table 5.  Performance of the models in the hold-out test data set.

Prediction scores

  Model for functional connectivity Model for functional connectivity combined 
with the ApoE4 genotype

Accuracy 0.80 ± 0.03 0.86 ± 0.02

Recall 0.87 ± 0.04 0.90 ± 0.03

Precision 0.86 ± 0.02 0.91 ± 0.01

F1-score 0.86 ± 0.02 0.90 ± 0.02

ApoE4, apolipoprotein E4.
The model for functional connectivity included 99 voxels, and the model for functional connectivity combined with the 
ApoE4 genotype included 99 voxels and ApoE4 genotypes.

Table 6.  Performance of the models in the ADNI data set.

Prediction scores

  Model for functional connectivity Model for functional connectivity combined 
with the ApoE4 genotype

Accuracy 0.77 ± 0.02 0.78 ± 0.02

Recall 0.79 ± 0.04 0.80 ± 0.03

Precision 0.74 ± 0.03 0.75 ± 0.03

F1-score 0.77 ± 0.02 0.77 ± 0.02

ADNI, Alzheimer’s Disease Neuroimaging Initiative; ApoE4, apolipoprotein E4.
The model for functional connectivity included 99 voxels, and the model for functional connectivity combined with the 
ApoE4 genotype included 99 voxels and ApoE4 genotypes.
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right middle frontal gyrus and right inferior frontal 
gyrus and MMSE scores. One activation likeli-
hood estimation meta-analysis revealed that, com-
pared with healthy controls, patients with MCI 
had an abnormal alteration of FC in the right pre-
central, right middle frontal, right inferior frontal, 
bilateral medial frontal, bilateral superior frontal, 
and bilateral cingulate gyri.40 These results of pre-
vious reports are similar to our own, suggesting 
that the aforementioned brain regions play a key 
role in the progression of cognitive decline.

Compared with the first model for FC, the model 
with FC combined with the ApoE4 genotype 
achieved superior performance for every predic-
tive score. An ApoE4 carrier might have altera-
tions in FC and excessive deposition of 
amyloid-beta species at the preclinical stage 
before abnormalities in brain structure, cogni-
tion, or neurobiology develop.12–15 Therefore, a 
combination of voxel-wise FC density mapping 
and the ApoE4 genotype can successfully predict 
cognitive deterioration in amyloid-positive indi-
viduals. In addition, of those in the cognitive 
decline group, 34.88% were ApoE4 carriers, 
whereas in the stable cognition group, only 2.78% 
were ApoE4 carriers in this study. Previous stud-
ies have also revealed that the ApoE4 genotype 
increases the risk of progression from MCI to 
AD.41,42 In the results of the ADNI data set, the 
mean F1-scores were the same in the two models. 
These findings might result from a similar pro-
portion of ApoE4 carriers in the ADNI-cognitive 
decline group (50%) and the ADNI-stable cogni-
tion group (53%). We, however, could still 
observe a tendency of increased accuracy, recall, 
and precision in the model for FC combined with 
the ApoE4 genotype compared with the model for 
FC. Hence, our findings suggest that the ApoE4 
genotype is a biomarker for predicting cognitive 
degeneration in amyloid-positive individuals.

The strength of this study is the recruitment of 
amyloid-positive individuals at various stages of 
cognition. All participants received an MMSE 
assessment at baseline and follow-up. In addi-
tion, we developed a voxel-wise FC density map-
ping model. We selected the voxels in the FC 
density mapping as features, which were highly 
correlated with longitudinal MMSE scores. This 
approach enabled us to develop highly accurate 
models for predicting the cognitive function in 
amyloid-positive individuals after 1 year. This 
study, however, had some limitations. First, the 

data sets in the study were imbalanced, which 
may cause classification bias. Although we used 
SMOTE to increase the data of the stable cogni-
tion group, we cannot rule out the possibility of 
the data imbalance influencing model training. 
Second, the time between baseline and follow-up 
MMSE assessment of the participants in this 
study varied due to clinical or personal reasons. 
To counter this problem, we calculated a change 
rate for MMSE scores. In addition, we further 
reviewed the predicted results of our hold-out 
test data set with the timing of the follow-up vis-
its less than 36 months (16 participants). Both 
models demonstrated high accuracy in predicting 
two groups, with a mean F1-score of 0.81 in the 
model for FC and 0.88 in the model for FC com-
bined with ApoE4 genotype. In addition, the 
results of the hold-out test data set with the tim-
ing of the follow-up visits more than 36 months 
(19 participants) also revealed good accuracy in 
classifying the two groups with a mean F1-score 
of 0.91 in the first model and 0.91 in the second 
model. Although the timing of the follow-up vis-
its in this study differed, our models could clas-
sify both groups effectively, indicating that the 
model performance of this study was stable and 
reliable.

In conclusion, the machine learning models we 
developed in this study demonstrated promisingly 
high accuracy in predicting cognitive status after 
1 year in an amyloid-positive population. Notably, 
the combination of resting-state fMRI results and 
clinical information regarding the ApoE4 geno-
type could increase the accuracy of predictions. 
Furthermore, the voxel-wise FC density mapping 
used in the study may provide precise information 
regarding the brain areas related to cognitive 
deterioration. These findings can assist clinicians 
in predicting changes in cognitive status in indi-
viduals with abnormal amyloid-beta biomarkers, 
even those with AD and can assist future studies 
in developing precise treatment and prevention 
strategies.
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