Table 3.
Model performance of 24 classification algorithms in training data set (model for functional connectivity combined with the ApoE4 genotype).
| Algorithm | Accuracy | Recall | Precision | F1-score |
|---|---|---|---|---|
| Fine tree | 0.70 | 0.71 | 0.69 | 0.70 |
| Medium tree | 0.70 | 0.70 | 0.69 | 0.69 |
| Coarse tree | 0.64 | 0.61 | 0.65 | 0.63 |
| Linear discriminant | 0.79 | 0.61 | 0.95 | 0.74 |
| Logistic regression | 0.62 | 0.30 | 0.82 | 0.44 |
| Kernel Naïve Bayes | 0.70 | 0.70 | 0.69 | 0.69 |
| Linear SVM | 0.66 | 0.64 | 0.67 | 0.65 |
| Quadratic SVM | 0.75 | 0.67 | 0.80 | 0.73 |
| Cubic SVM | 0.75 | 0.57 | 0.88 | 0.69 |
| Fine KNN | 0.80 | 0.66 | 0.93 | 0.77 |
| Medium KNN | 0.66 | 0.43 | 0.81 | 0.56 |
| Coarse KNN | 0.49 | 0.79 | 0.49 | 0.60 |
| Cosine KNN | 0.64 | 0.87 | 0.60 | 0.71 |
| Cubic KNN | 0.71 | 0.48 | 0.91 | 0.63 |
| Weighted KNN | 0.71 | 0.41 | 1.00 | 0.58 |
| Boosted trees | 0.49 | 0.79 | 0.49 | 0.60 |
| Bagged trees | 0.76 | 0.72 | 0.79 | 0.75 |
| Subspace discriminant | 0.75 | 0.61 | 0.84 | 0.71 |
| Subspace KNN | 0.78 | 0.62 | 0.90 | 0.73 |
| Narrow neural network | 0.81 | 0.74 | 0.87 | 0.80 |
| Medium neural network | 0.83 | 0.72 | 0.92 | 0.81 |
| Wide neural network | 0.84 | 0.74 | 0.92 | 0.82 |
| Bilayered neural network | 0.75 | 0.69 | 0.79 | 0.74 |
| Trilayered neural network | 0.75 | 0.59 | 0.86 | 0.70 |
The bold values represent the best-performing algorithm among the 24 classification algorithms in the training data set (model for functional connectivity combined with the APOE4 genotype).
ApoE4, apolipoprotein E4; KNN, K-nearest neighbor; SVM, support vector machine.