Table 3.
Algorithm | Accuracy | Recall | Precision | F1-score |
---|---|---|---|---|
Fine tree | 0.70 | 0.71 | 0.69 | 0.70 |
Medium tree | 0.70 | 0.70 | 0.69 | 0.69 |
Coarse tree | 0.64 | 0.61 | 0.65 | 0.63 |
Linear discriminant | 0.79 | 0.61 | 0.95 | 0.74 |
Logistic regression | 0.62 | 0.30 | 0.82 | 0.44 |
Kernel Naïve Bayes | 0.70 | 0.70 | 0.69 | 0.69 |
Linear SVM | 0.66 | 0.64 | 0.67 | 0.65 |
Quadratic SVM | 0.75 | 0.67 | 0.80 | 0.73 |
Cubic SVM | 0.75 | 0.57 | 0.88 | 0.69 |
Fine KNN | 0.80 | 0.66 | 0.93 | 0.77 |
Medium KNN | 0.66 | 0.43 | 0.81 | 0.56 |
Coarse KNN | 0.49 | 0.79 | 0.49 | 0.60 |
Cosine KNN | 0.64 | 0.87 | 0.60 | 0.71 |
Cubic KNN | 0.71 | 0.48 | 0.91 | 0.63 |
Weighted KNN | 0.71 | 0.41 | 1.00 | 0.58 |
Boosted trees | 0.49 | 0.79 | 0.49 | 0.60 |
Bagged trees | 0.76 | 0.72 | 0.79 | 0.75 |
Subspace discriminant | 0.75 | 0.61 | 0.84 | 0.71 |
Subspace KNN | 0.78 | 0.62 | 0.90 | 0.73 |
Narrow neural network | 0.81 | 0.74 | 0.87 | 0.80 |
Medium neural network | 0.83 | 0.72 | 0.92 | 0.81 |
Wide neural network | 0.84 | 0.74 | 0.92 | 0.82 |
Bilayered neural network | 0.75 | 0.69 | 0.79 | 0.74 |
Trilayered neural network | 0.75 | 0.59 | 0.86 | 0.70 |
The bold values represent the best-performing algorithm among the 24 classification algorithms in the training data set (model for functional connectivity combined with the APOE4 genotype).
ApoE4, apolipoprotein E4; KNN, K-nearest neighbor; SVM, support vector machine.