Abstract
Background
The existing drug treatments for trypanosomiases are limited and suffer from shortcomings due to their toxicity and the emergence of resistant parasites. Developing anti‐trypanosomal compounds based on natural products is a promising way of fighting trypanosomiases.
Objectives
This study aims to identify through scientific review a large variety of medicinal plants (anti‐trypanosomal) used worldwide and scientifically shown to display anti‐trypanosomal effects.
Methods
To collect data, the anti‐trypanosomal activities of Africa, Asia, the Middle East, South America, North America, Europe and Oceania medicinal plants have been checked by considering the published paper.
Results
Based on collected data, 77 natural molecules were reported in the literature. Of which 59 were from the African region, 11 from Asia, 3 from Europe and 4 from Latin America. These active components belong to alkaloids, triterpenoids, lactone, quinoids, flavonoids, iridoids, lignans, steroids, lipids, oxygenated heterocycles, benzenoids, proteins, coumarins, phenylpropanoids and peptides. We also specified the prosperous plants with unique anti‐trypanosomal activities.
Conclusions
However, there is a need for further studies on the ability of the isolated compounds to ameliorate the trypanosome‐induced pathological alterations and also the elucidation of their modes of actions and activities against other trypanosome species.
Keywords: anti‐trypanosomal activity, medicinal plants, review
1. INTRODUCTION
Trypanosomiases are a widespread vector‐borne disease globally that affects humans and domestic and wild animals. The pathophysiology of these diseases may vary depending on the pathogenic species involved and the host. Its symptoms in humans include irregular fever and septicemia. At the same time, in animals, a decrease in the number of red blood cells and body mass can lead to unproductivity and death (Osório et al., 2008). Trypanosomiases have been considered a significant public health problem in animals and humans (Hassan et al., 2020).
The global prevalence of trypanosomiases, in general, is underreported (Wilkinson and Kelly, 2009). The two significant trypanosomiases in humans are the African Trypanosomiases (HAT, also known as sleeping sickness) and Chagas disease, caused by Trypanosoma brucei and Trypanosoma cruzi. According to the World Health Organization (PAHO, 2016) data, T. cruzi infects about 5–6 million people worldwide and causes approximately 10,000 deaths per year (WHO, 2015). For HAT, its incidence is now at a historic low, with fewer than 1000 cases reported in 2018 (WHO, 2018).
A small number of trypanocidal drugs have shown efficacy against the two species of parasites. These include two approved drugs that can treat Chagas Disease during its acute phase (Benznidazole and Nifurtimox) (Sepúlveda‐Robles et al., 2019). The recommended drugs to treat the HAT include suramin (EC: 205‐658‐4), pentamidine (EC: 205‐424‐1), melarsoprol (EC: 207‐793‐4) and Fexinidazole Winthrop (Dickie et al., 2020). Fexinidazole is a DNA synthesis inhibitor for the Neglected Diseases initiative (DNDi) for the oral treatment of HAT and Chagas’ disease, which shows activity against Trypanosoma brucei gambiense and T. b. rhodesiense as well as preceeds through Phase II clinical trial based on FDA definition (Deeks, 2019). The other drugs, including Nifurtimox, are in Phase III clinical trials, and Eflornithine (EC: 205‐658‐4) has not yet entered into clinical trial stages. However, the first three drugs have limitations, including poor efficacy, potential adverse effects and the development of resistance by the parasites (Wilkinson and Kelly, 2009). Oral fexinidazole is a valuable first‐line treatment option in the early stages of (stage 1 or early stage 2) African Trypanosoma brucei gambiense (Kande Betu Ku Mesu et al., 2021). Eflornithine is a standard treatment for second‐stage therapy, and nifurtimox‐eflornithine combination therapy is a proper combination for first‐line use in HAT control programs (Priotto et al., 2009). Additionally, DNDi has developed another oral therapy, acoziborole, suitable for the treatment of both stage 1 and stage 2 disease in a single dose (Dickie et al., 2020).
Also, the neglected disease status means a little economic benefit for developing novel drugs in this field (Dickie et al., 2020). There is little interest in developing drugs against these diseases because they are neglected. However, they are called ‘neglected diseases’ because pharmaceutical companies have little interest in investing in them, as fexinidazole has recently met that need for T. brucei gambiense (Kande Betu Ku Mesu et al., 2021). However, melarsoprol is very toxic and is still being used against T. brucei rhodesiense (Fairlamb and Horn, 2018), and resistance may still arise against fexinidazole, so new lead compounds for drugs against these parasites remain essential. Thus, there has been a considerable need to find new trypanocidal agents with better efficacy and safety profiles.
Natural products are valuable sources for discovering and developing effective medicines against various diseases (Hashemi et al., 2021; Newman and Cragg, 2016; Nezaratizade et al., 2021; Tajbakhsh et al., 2021a; Tajbakhsh et al., 2021b). The WHO report highlighted that a quarter of currently useful drugs had been derived from traditional plants. For many parts of the world, especially where trypanosomiases are prevalent in Africa, India, China, the Middle East and South Asia, traditional medicines with local preparations are the predominant means of therapy (Ahmad Khan and Ahmad, 2019). These countries are also endowed with tremendous medicinal plant resources, some of which have shown efficacy under in vitro and/or in vivo conditions. At present, the available reviews in this field report anti‐trypanosomal activity for particular regions, such as the African region (Ibrahim et al., 2014; Lawal et al., 2015), Myanmar (Asia) (Bawm, 2010) and Saudi Arabia (Al‐Musayeib et al., 2012). These exciting but somehow dated but interesting publications reported a lot of medicinal plants and some isolated active compounds. Finally, the current, up‐to‐date review covers natural products isolated from plants used worldwide and active against trypanosomiases.
1.1. Ethnopharmacology of anti‐trypanosomal medicinal plants in Africa continent
Since the primitive period, herbs have been a valuable source of medication for both human and livestock diseases (Odhiambo et al., 2011). During these thousand years of observation, it has been found that different parts of herbs possess healing properties. With the advancement in pharmaceutical and medical sciences, phytoconstituents were subsequently confirmed to be accountable for the curative characteristics of plants. Nowadays, high‐tech methods have resulted in the isolation and elucidation of these phytoconstituents. Some of these phytoconstituents have served as lead compounds to develop chemotherapeutic drugs against diseases, whether infectious or non‐infectious (Kasilo et al., 2010).
On the one hand, some modern drugs have their ethnopharmacological sources. Nevertheless, despite technological advances, the discovery of new drugs faces a primary innovation deficit that unfavourably impacts the pharmaceutical industry. On the other hand, current studies demonstrate that entry barriers have decreased for introducing a new drug (DiMasi & Paquette, 2004; Patwardhan, 2005). Seventy‐five per cent of the approved anti‐infectious disease drugs from 1981 to 2002 are natural origins (Newman et al., 2003), while 61% of all new chemical compounds presented as drugs during the same period could be considered natural products (Gupta et al., 2005).
Aside from this significant role of medicinal herbs in drug discovery, the use of local herbal products provides the only option for therapeutic purposes for African populations. The primary reason for this issue is the lack of a sound health care system in some parts of the continent, which causes the population's vulnerability to many infectious diseases (Elujoba et al., 2005). Eighty per cent of the African population depends almost entirely on herbal medicinal products for their primitive health care needs (Kasilo et al., 2010).
One of the significant infections that severely affect humans and animals in Africa is African trypanosomiasis, also called ‘sleeping sickness’ in humans or ‘Nagana’ in animals. (Atawodi 2005; Welburn et al., 2009). It is one of the most neglected parasitic diseases that affect human health and dramatically reduces Africa's livestock productivity (Atawodi 2005; Welburn et al., 2009). Preliminary estimates show that almost 70 million people distributed over 1.55 million km2 in Africa are at risk of this infectious disease (Simarro et al., 2012). In addition, animal trypanosomiases, or Nagana, are distributed over nearly 25 million km2 in Africa, where livestock productivity fell by 50%. The important species in this disease include Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi and Trypanosoma brucei (Mbaya et al., 2009). Currently, the African trypanosomiases chemotherapy remains abandoned due to the available approved drugs with some concerns, including parasite resistance, toxicity, poor availability, high cost and parenteral root of administration (Ibrahim et al., 2014). Fortunately, the continent has vast resources of medicinal plants that are traditionally used to cure this disease. This is evident in the tendency to use ethnobotanical science to manage disease in different parts of Africa (Atawodi et al., 2002; Ntie‐Kang et al., 2013). It is important to note that studies have confirmed the impact of these African herbal remedies as anti‐trypanosomal agents under in vitro and/or in vivo models. Hence, a critical review of these studies (anti‐trypanosomal) African medicinal plants in the African continent and anti‐trypanosomal plants in other continents is required to provide a comprehensive record to specify gaps in knowledge about the basic strategies to address such gaps.
2. MATERIALS AND METHODS
2.1. Search strategy
Literature about medicinal plants (with anti‐trypanosomal activity) was collected online from published articles using the keywords: ‘Trypanosoma AND medicinal plant’, ‘Trypanosoma AND natural product’ from 1960 to May 2020. These keywords were entered into the primary scientific databases, such as PubMed, Science Direct, Scopus and Google scholar. The articles obtained were included based on the reliability of their source. Some articles were found by examining the bibliography of other publications or by directly accessing the webpage of the journal.
2.2. Inclusion and exclusion criteria
The documents used were selected based on several criteria: (a) they have published articles or doctoral theses, (b) research has been carried out on antiparasitic medicinal plants in general and anti‐trypanosomal plants in particular, (c) mention at least the minimum inhibitory concentration or the inhibition degree of the extract(s) or isolated compound(s) considering the anti‐trypanosomal activity, (d) in cases where different authors present results for the same plants, the most recent results are prioritised unless they present more minor details such as cytotoxicity tests, (e) due to the volume of data available for African region medicinal plants, only plants whose bioactive compound have been isolated were reported herein. The EC50 below 25 µM or µg for pure compounds was considered the search limit for the whole region. The author aimed to review the tested medicinal plant extracts, not just the isolated compounds from plants. Literature was not used when the results came from an ethnobotanical survey without scientific investigation.
2.3. Data extraction
The information such as the species and family of the plant, the type of extraction, the active compound(s) if isolated, the strain of Trypanosoma tested, the 50% effective concentration and cytotoxic concentration, country of study and the name of the author were extracted from relevant literature and presented in the form of a table according to geographical location.
2.4. Ethical approval statement
An ethics statement is not applicable because this study is based exclusively on published literature.
3. RESULTS AND DISCUSSION
3.1. Analysis of the included literature
A total of 70 articles have been selected based on the inclusion criteria. Twenty studies reported African anti‐trypanosomal plants, 11 reported Asian anti‐trypanosomal plants, three reported the Middle East anti‐trypanosomal plants and 15 reported Latin American anti‐trypanosomal plants. Two studies reported North American anti‐trypanosomal plants, and nine studies reported European anti‐trypanosomal plants. One study reported Oceania's anti‐trypanosomal plants (Figure 1). A total of 70 relevant kinds of literature have been selected based on the inclusion criteria. The PRISMA 2020 flow diagram shows 25, 16, 18, 1, 9 and 1, including database searches (Figure 2) (Page et al., 2021).
FIGURE 1.
PRISMA 2020 flow diagram for which included searches of databases
FIGURE 2.
Chemical structures of isolated compounds from Africa medicinal plants
3.2. African region plants
Ethnobotanical resources for Africa demonstrated unusual plants with anti‐trypanosomal activity (Ibrahim et al., 2014; Lawal et al., 2015). We explained 264 and 215 plants, respectively, which were assessed for anti‐trypanosomal activity. Due to the high amount of data available for African region anti‐trypanosomal plants, only the plants with the minimum inhibitory concentration of the bioactive compound were scrutinised (Table 1 and Figure 3).
TABLE 1.
Plants assessed for anti‐trypanosomal activity and the EC50 of bioactive compounds isolated
Scientific name | Family | Part(s) used | Solvent | Bioactive compound(s) | Model | Sub species | cytotoxic/ biological activity | EC50 | Country | References |
---|---|---|---|---|---|---|---|---|---|---|
Abrus precatorius L. subsp. africanus Verdc | Leguminosae | Leaf | Methanol | Abruquinone K, L, A and D | In vitro | T. b. r | 57.3, 7.5, 34.5 and 4.8 µM | 0.1, 0.02, 0.02 and 0.01 µM | South Africa | (Hata et al., 2014) |
Aframomum letestuanum Gagnep | Zingiberaceae | Seed | DCM | Letestuianin C and 5‐hydroxy‐1,7‐bis(4‐hydroxyphenyl)hepta‐4,6‐dien‐3‐one | In vitro | T.b. b | ‐ | 1.4 and 2.6 µg/ml | Cameroon | (Kamnaing et al., 2003) |
Allexis cauliflora (Oliv.) Pierre | Violaceae | Leaf | DCM | 22‐Hydroxyclerosterol | In vitro | T.b. b | 1.12 µM | 1.56 µM inhibit the glycolytic enzyme PGI | Cameroon | (Nganso et al., 2011) |
Ancistrocladus abbreviatus subsp. lateralis Gereau | Ancistrocladaceae | Leaves, stem bark and roots | DCM | Ancistrocladidine, Ancistrotanzanines B and C, Ancistrotectoriline A and O,N‐dimethylancistrocladidine | In vitro |
T.b.r T.c |
28.3, 8.1, 40.7, 6.5 and 42.9 µg/ml | 0.17 to 12.41 µM | Cameroon |
(Simoben et al., 2018) |
Solanecio angulatus Crotalaria phillipsiae Artemisia annua L. |
Fabaceae Asteraceae |
Flower Twigs Leaf |
DCM/ methanol |
Artemisinin |
In vitro | T.b. b |
>500 27.39 |
12.17e, 12.47e µg/ml and 0.127 µM |
Tanzania | (Nibret et al., 2009) |
Azadirachta indica A.Juss. | Meliaceae | Leaf | Chloroform | 7,15‐dihydroxy‐7,15‐deoxo nimbin | In vitro | T.b. r | 15.6 µg/ml | Kenya | (Githua and Hassanali, 2011) | |
Buchholzia coriacea Engl | Capparaceae | Seeds | Methanol | Beta‐sitosterol α–sulphur | In vitro | T.b. b | No noticeable morphological changes | 12.5 and 25 µg/ml | Nigeria | (Nweze, Anene and Asuzu, 2011) |
Cassytha filiformis L. | Lauraceae | Leaf | DCM | Cassythine | In vitro | T.b. b | 15.2 µM | 6 µM | Cameroon | (Simoben et al., 2018) |
Chrysanthemum cinerariifolium (Trevir.) Vis | Asteraceae | Flowers | n‐hexane |
Cinerin (II) Pyrethrin (I,II) Jasmolin (II) |
In vitro | T.b. r | 28, 146.6, 95.1 and 31.5 |
12.2 6.9, 10.6 12 µg/ml |
South Africa | (Hata et al., 2011) |
Cussonia zimmermannii Harms | Araliaceae | Root bark | Petroleum ether extract | Polyacetylenes (MS‐1, MS‐2 and MS‐4) | In vitro |
T.b.r/T.cr |
54(17), 12(3.6) and 58(22) µM (µg/ml) | 18 (5.4), 0.46 (0.14) and 1.1 (0.42)/ 26 (7.9), 0.65 (0.20) and 0.40 (0.15) µM (µg/ml) | Tanzania | (Senn et al., 2007) |
Dioncophyllum thollonii Baill | Dioncophyllaceae | Roots | DCM | Dioncophylline E | In vitro |
T.b.r/T.cr |
‐ | 0.73 and 18.4 µg/ml | Cameroon | (Simoben et al., 2018) |
Drypetes gerrardii Hutch. | Putranjivaceae | Stem |
DCM/methanol |
Putranoside A | In vitro | T.b. r | 68.2 µM | 18.0 µM | South Africa | (Hata et al., 2014) |
Entada abyssinica A.Rich. | Leguminosae | Stem | Ethanol | Kolavenol | In vitro | T.b. r | ‐ | 2.5 mg/ml (8.6 mM) | Tanzania | (Freiburghaus et al., 1998) |
Eucalyptus maculata Hook. | Myrtaceae | Leaf | Hexane, ethyl acetate and methanol | Triterpenoid (3β,13β‐dihydroxy‐urs‐11‐en‐28‐oic acid) | In vitro |
T. strains s427 WT, B48 and AQP2/3KO |
1.58 µg/ml | 1.58, 1.55 and 1.39 µg/ml | Nigeria | (Ebiloma et al., 2017) |
Garcinia lucida Vesque | Clusiacea | Stem | DCM | Dihydrochelerythrine, 6‐acetonyldihydrochelerythrine, Lucidamine A | In vitro | T.b. b | 35.4, 15.3 and 11.6 µM | 0.8, 3.9 and 14.1 µM | Cameroon | (Fotie et al., 2007) |
Keetia leucantha (K.Krause) Bridson |
Rubiaceae | Leaf | DCM | Oleanolic acid/ursolic acid/betulinic acid/β‐ionone | In vitro | T. b.b | ‐ |
7.3, 2.5, 19.1, 10.5 µg/ml |
Nigeria | (Bero et al., 2013) |
Khaya anthotheca (Welw.) C.DC. | Meliaceae | Seeds | Pet. ether | Grandifolione | In vitro |
T.b.r/T.cr |
44.7 |
10.66/20.9 µg/ml |
Uganda | (Oboh, Lawal and Malann, 2013) |
Mitracarpus scaber Zucc. ex Schult. & Schult.f. | Rubiaceae | Leaf | Methanol | Azaanthra‐quinone | In vitro/in vivo | T.co in bloodstream of BalbC mice, 50 mg/kg/d | ‐/Inhibit reduced coenzyme Q1‐dependent O2 |
50 µg/ml |
Nigeria | (Nok, 2002) |
Morinda lucida Benth. | Rubiaceae | Leaves | Methanol | β‐sitosterol | In vitro | T.b. b | 100 |
12.5 µg/ml |
Nigeria | (Nweze, 2012) |
Ocimum gratissimum L. | Lamilaceae | Seed oil | Oil | Myrcen, Limonen and Citronellal | In vitro | T.b. b | >50, >50 and >50 µg/ml | 2.24, 4.24 and 2.76 µg/ml | Benin | (Kpadonou Kpoviessi et al., 2014) |
Polyalthia longifolia (Sonn.) Thwaites | Annonaceae | Leaf | Hexane, ethyl acetate and methanol | Clerodane | In vitro | T.co | ‐ | 0.38 µg/ml | Nigeria | (Ebiloma et al., 2017) |
Polyalthia suaveolens Engl. & Diels | Annonaceae | Leaf | DCM | Mixture of polysin and greenwayodendrin‐3‐one | In vitro | T.b.b | 170 µM | 18 µM | Cameroon | (Simoben et al., 2018) |
Schkuhria pinnata (Lam.) Kuntze ex Thell. | Asteraceae | Whole plant |
DCM/methanol |
Schkuhrin I and II |
In vitro |
T.b. r/T.cr |
5.26 and 9.03 µM |
0.9 and 1.5 µM/16.4 and 26.9 µM |
South Africa | (Mokoka et al., 2013) |
Strychnos spinosa Lam. | Loganiaceae | Leaf | Ipophilic |
Saringosterol, 24‐hydroperoxy‐24‐vinylcholesterol |
In vitro | T.b.b | >233.3 and 16.4 µM |
7.8 and 3.2 µM |
Tanzania | (Hoet et al., 2007) |
Teclea trichocarpa (Engl.) Engl. | Rutaceae | Leaves | Methanol |
Melicopicine, skimmianine and α‐amyrin |
In vitro | T.b.r | >90, 38.6 and >90 µg/ml |
15.56, 15.78, 11.21 µg/ml |
Kenya | (Mwangi et al., 2010) |
Terminalia actinophylla Mart. | Combretaceae | Leaf | Water |
Terchebulin and punicalagin |
In vitro | T.b. b | ≥1500 and ≥1500 µg/ml |
25 and 14 µM |
Nigeria | (Shuaibu et al., 2008) |
Toona ciliata M.Roem. | Meliaceae | Root | Methanol chloroform | Cedrelone | In vitro | T.b. r | ‐ | 6.95Me, 3.2Ce and 7.85 | Kenya | (Githua and Hassanali, 2011) |
Vernonia guineensis Benth. | Asteraceae | Stem bark | Ethanol |
Vernoguinosterol and vernoguinoside |
In vitro | T.b. r | ‐ |
3–5 µg/ml |
Cameroon | (Tchinda et al., 2002) |
Vernonia mespilifolia Less. | Asteraceae | Leaf |
DCM/methanol |
Cynaropicrin | In vitro |
T.b. r/T.cr |
1.29 µM | 0.23 µM/5.14 µM | South Africa | (Mokoka et al., 2013) |
Waltheria indica L. | Malvaceae | Root | DCM | Waltheriones L | In vitro |
T.cr/ T.b.b/T.b.r |
‐ | 0.74e, 20e, 17.4e µg/ml and 3.1 µM | Cameroon | (Simoben et al., 2018) |
Warburgia ugandensis subsp. ugandensis | Canellaceae | Leaf | DCM |
Muzigadiolide muzigadial, 6α,9α‐dihydroxy‐4(13),7‐coloratadiene‐11,12‐dial and mukaadial and ugandensidial |
In vitro | T.b.r | ‐ | 0.64 to 6.4 µM | Cameroon | (Simoben et al., 2018) |
Zapoteca portoricensis (Jacq.) H.M.Hern. | Fabaceae | Leaf | DCM |
Saropeptide or aurantiamide acetate |
In vitro |
T.b.r/T.c |
92.05 µM |
3.63 and 41.65 µM |
Cameroon | (Simoben et al., 2018) |
Abbreviations: EC50, half maximal inhibitory concentration (µg/ml); T.b. b, Trypanosoma brucei brucei; T.e, Trypanosoma evansi; T. co, Trypanosoma congolense
eExtract.
MeMethanolic extract.
CeChloroform extract.
FIGURE 3.
Chemical structures of isolated compounds from Asia medicinal plants
More than 200 investigated plants (Ibrahim et al., 2014; Lawal et al., 2015) show potential trypanocidal activity; only 34 plants have their active compounds isolated in pure form. Only their compounds (flavonoid, saponins, alkaloid etc.) are reported for the other plants. This is due to the lack of resources in Africa to isolate the active molecules. Among these 34 plants, just six have been investigated in vivo. The anti‐trypanosomal activity of the extracts was most assessed on Trypanosoma brucei subspecies, which are responsible for African trypanosomiases (WHO, 2015). Considering the importance of trypanosomiases caused by this species in Africa, the development of anti‐trypanosomal medicine based on plants has been an exciting research topic.
Additionally, the medicinal plants of Africa provide a large variety of bioactive compounds. Of the 24 plants reported in Table 1, approximately 34 different bioactive compounds were isolated with trypanosomiases activity. Some plants, such as Chrysanthemum cinerariifolium, Keetia leucantha, Tecla trichocarpa and Terminalia avicenioides, provide at least three different potent bioactive compounds.
Concerning the criteria for choosing compounds with anti‐trypanosomal potential, EC50>20 µg/ml is considered ineffective (Pink et al., 2005). Thus, approximately 40 compounds seem to be effective (EC50<20 µg/ml) and have demonstrated promising anti‐trypanocidal activity (Figure 2). Given the minimum inhibitory concentration, only abruquinone (0.01 µg/ml) has a concentration closer to Melarsoprol reference (0.004 µg/ml) was active against Trypanosoma brucei and benznidazole (0.482 µg/ml) reference was active against Trypanosoma cruzi.
3.3. Asia plants
Asia plants assessed for anti‐trypanosomal activity with EC50 values for inhibition of parasites and cytotoxicity are shown in Table 2.
TABLE 2.
Plants assessed for anti‐trypanosomal activity in in vitro model
Scientific name | Family | Part (s) used | Solvent | Bioactive compound | Sub species | EC50 | CC50 * | Country | References |
---|---|---|---|---|---|---|---|---|---|
Alnus japonica (Thunb.) Steud. | Betulaceae | Bark | DCM |
Oregonin Hirsutanone |
T.b | 1.14 and 1.78 µM | 50 µM | Japan | (Tung et al., 2014) |
Aquilaria malaccensis Lam. | Thymelaeaceae | Leaves | Ethanol | ‐ | T.e | 128.63 µg/ml | 259.78 µg/ml | Malaysia | (Dyary et al., 2014) |
Andrographis paniculata (Burm.f.) Nees | Acanthaceae |
Leaves/stems |
Methanol | ‐ | T.e | 54.7 µg/ml | 55.1 µg/ml | Japan | (Bawm, 2010) |
Brucea javanica (L.) Merr. | Simaroubaceae | Fruit | Methanol | ‐ |
T.e T.b |
27.2 µg/ml | 309.15 µg/ml | Japan | (Bawm, 2010) |
Combretum acuminatum Roxb. | Combretaceae | Rhizomes | Methanol | ‐ | T.e | 90.7 µg/ml | 853.15 µg/ml | Japan | (Bawm, 2010) |
Cordyline terminalis (L.) Kunth | Liliaceae | Leaves | Water | ‐ | T.e | 48.1 µg/ml | Malaysia | (Dyary et al., 2019) | |
Crateva religiosa G.Forst | Capparidaceae |
Leaves/stems |
Methanol | ‐ | T.e |
107.1 µg/ml |
691 µg/ml | Japan | (Bawm, 2010) |
Curcuma longa L. | Zingiberaceae | Leaves | Oil | Curlone | T.b.b | 1.38 µg/ml | Vietnam | (Le et al., 2019) | |
Curcuma zedoaria (Christm.) Roscoe | Zingiberaceae | Leaves | Oil | ‐ | T.b.b | 2.51 µg/ml | Vietnam | (Le et al., 2019) | |
Derris elliptica (Wall.) Benth. | Fabaceae | Leaves | Ethanolic | ‐ | T.e | 17.79 µg/ml | 331.90 µg/ml | Malaysia | (Dyary et al., 2014) |
Eucalyptus globulus Labill. | Myrtaceae | Leaf | Methanol | ‐ | T.e | 51.1 µg/ml | 622.95 µg/ml | Japan | (Bawm, 2010) |
Garcinia hombroniana Pierre | Clusiaceae | Leaves | Ethanolic | ‐ | T.e | 103.44 µg/ml | 10.17 µg/ml | Malaysia | (Dyary et al., 2014) |
Goniothalamus tapis Miq. | Annonaceae | Leaves | Ethanolic | ‐ | T.e | 7.61 µg/ml | ‐ | Malaysia | (Dyary et al., 2019) |
Goniothalamus umbrosus J.Sinclair | Annonaceae | Leaves | Ethanolic | ‐ | T.e | 2.30 µg/ml | 29.10 µg/ml | Malaysia | (Dyary et al., 2014) |
Iris domestica (L.) Goldblatt & Mabb. | Iridaceae | Leaves | Petroleum ether | Isoiridogermanal | T.b.b | 3.60 µg/ml | 136.00 µg/ml | China | (Pathiranage et al., 2016) |
Jatropha podagrica Hook. | Euphorbiaceae | Fruit | Methanol | ‐ | T.e | 52.3 µg/ml | 652.7 µg/ml | Japan | (Bawm, 2010) |
Litsea cubeba (Lour.) Pers. | Lauraceae | Leaves | Oil | ‐ | T.b.b | 1.12 nL/ml | Vietnam | (Le et al., 2019) | |
Murraya koenigii (L.) Spreng. | Rutaceae | Leaves | Mahanimbine, murrayafoline and girinimbine | T.e | 3.13, 6.35 and 10.16 µg/ml | 745.58 µg/ml | Malaysia | (Dyary et al., 2019) | |
Nigella sativa L. | Ranunculaceae | Seeds | Ethanolic | ‐ | T.e | 291.72 µg/ml | 381.59 µg/ml | Malaysia | (Dyary et al., 2014) |
Orthosiphon stamineus Benth. | Labiatae | Leaves | Methanol | ‐ | T.e | 144.7 µg/ml | 628.9 µg/ml | Japan | (Bawm, 2010) |
Phyllanthus simplex Retz. | Euphorbiaceae |
Leaves/stem |
Methanol | ‐ | T.e | 96.1 µg/ml | 98.8 µg/ml | Japan | (Bawm, 2010) |
Plumbago rosea L. | Plumbaginaceae | Flowers | Methanol | ‐ | T.e |
156.7 µg/ml |
557.05 µg/ml | Japan | (Bawm, 2010) |
Polygonum hydropiper L. | Polygonaceae | Leaves | DCM |
Vanicoside E, (+)‐ketopinoresinol, isorhamnetin and cardamomin |
T.b | 0.49–7.77 µg/ml | ‐ | China | (Xiao et al., 2017) |
Punica granatum L. | Lythraceae | Leaves | Ethanol | ‐ | T.e | 20 mg/ml | ‐ | India | (Kumar et al., 2014) |
Quercus borealis F.Michx. | Fagaceae | Roots | Methanol | ‐ | T.e | 250 µg/ml | India | (Shaba et al., 2011) | |
Rhoeo discolor (L'Hér.) Hance | Commelinaceae | Leaves | Methanol | ‐ | T.e | 75.8 µg/ml | 424.9 µg/ml | Japan | (Bawm, 2010) |
Scutellaria baicalensis Georgi | Lamiaceae | Leaves |
Water/chloroform |
‐ | T.b |
11.43 µg/ml 19.56 µg/ml |
‐ | China | (Floyd, 2013) |
Strobilanthes abbreviata Y.F. Deng & J.R.I. Wood | Acanthaceae | Leaves | Ethanolic | ‐ | T.e | 52.54 µg/ml | 355.21 µg/ml | Malaysia | (Dyary et al., 2014) |
Vitex arborea Desf. | Verbenaceae |
Leaves/stem |
Methanol | ‐ | T.e | 48.6 µg/ml | 735.15 µg/ml | Japan | (Bawm, 2010) |
Vitis repens (Lam.) Wight & Arn. | Vitaceae | Root bark | Methanol | ‐ | T.e | 8.6 µg/ml | 209.9 µg/ml | Japan | (Bawm, 2010) |
Zingiber officinale Roscoe | Zingiberaceae | Leaves | Oil | ‐ | T.b.b | 3.10 nL/ml | Vietnam | (Le et al., 2019) |
Note: The EC50 values for inhibition of parasites and the cytotoxicity are shown
The extract concentration that reduced the cell viability by 50% when compared to untreated controls.
A total of 31 plants with their minimum inhibitory concentration have been identified in the literature. Four plants (V. repens, P. simplex, V. arborea and A. brevipedunculata) already have bioactive compounds. These seven compounds include resveratrol (EC50 = 31.4), 11‐O‐acetyl‐bergenin (EC50 = 61.2), stigmas‐4‐ en‐3‐ one (EC50 = 62.8), lupeol (EC50 = 98.4), Ψ‐taraxasterone (EC50 = 115.4), hopenyl‐3β‐O‐palmitate (EC50 = 68.2) and β‐amyrin palmitate (EC50 = 60.8) (Bawm, 2010). The extracts were mostly evaluated on Trypanosoma evansi due to its prevalence in Asia (Dyary et al., 2014). Considering the potency criteria asserted by Pink et al. (2005), it was expressed that the isolated compounds with an EC50> 20 µg/ml were not considered effective drugs. Thus, the seven isolated compounds may not be considered lead drugs. There is a need to pursue investigations that isolate more effective compounds. On the other hand, as suggested by Pink et al. (2005), crude extracts with potent in vivo anti‐trypanosomal activity such as <100 mg/kg with no toxic effect below 800 mg/kg may be considered promising lead structures. None of the plants with in vitro data were evaluated in vivo. The minimum inhibitory concentration of the methanolic extract of Goniothalamus umbrosus (2.30 µg/ml) was the only extract with an activity profile closer to the diminazene aceturate (0.01140 µg/ml) reference against Trypanosoma evansi.
3.4. Middle East
Table 3 shows a list of plants in the Middle East with cytotoxicity values against trypanosome parasite activity. Al‐Musayeib et al. (2012) reported 41 medicinal plants used in Saudi Arabia that showed anti‐trypanosomal activity in vitro. All of their inhibitory activities are explained by the EC50 and CC50. However, no details have been given about their bioactive compounds except their secondary metabolite composition. Their activity profile in in vivo studies is unknown, so their therapeutic potential remains to be established.
TABLE 3.
Plants assessed for in vitro model of anti‐trypanosomal activity in Saudi Arabia which the EC50 and the cytotoxicity values are known
ScientificName | Family | Part (s) used | Solvent | Sub species | EC50 | CC50 | References |
---|---|---|---|---|---|---|---|
Ajuga bracteosa Wall. ex Benth. | Labiatae | Leaves | Methanol |
T.c T.b.b |
28.8 μg/ml | 31.2 μg/ml | (Al‐Musayeib, Mothana, Matheeussen, et al., 2012) |
Albizia lebbeck (L.) Benth. | Leguminosae | Stems | Methanol |
T.c T.b.b |
8.7 μg/ml 8.1 μg/ml |
32.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Cadaba farinosa subsp. adenotricha (Gilg & Benedict) R.A.Graham | Capparaceae | Leaves/stems | Methanol |
T.c T.b.b |
28.6 μg/ml 10.6 μg/ml |
32.9 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Cadaba glandulosa Forssk. | Capparaceae | Leaves/Stems | Methanol |
T.c T.b.b |
36.5 μg/ml 16.4 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Caralluma quadrangula (Forssk.) N.E.Br. | Asclepiad‐aceae | Leaves | Methanol |
T.c T.b.b |
>64.0 μg/ml 32.5 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Caralluma sinaica (Decne.) A.Berger | Asclepiad‐aceae | Leaves | Methanol |
T.c T.b.b |
7.3 μg/ml 7.7 μg/ml |
20.5 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Celtis africana Burm.f. | Cannabaceae | Leaves/stems | Methanol |
T.c T.b.b |
29.4 μg/ml >64.0 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Centaurea pseudosinaica Czerep. | Asteraceae | Leaves | Methanol |
T.c T.b.b |
31.0 μg/ml 9.1 μg/ml |
16.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Chrozophora oblongifolia (Delile) A.Juss. ex Spreng. | Euphorbiacea | Leaves | Methanol |
T.c T.b.b |
32.0 μg/ml 10.8 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Conocarpus lancifolius Engl. | Combretaceae | Fruits | Methanol |
T.c T.b.b |
32.2 μg/ml 35.2 μg/ml |
7.2 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Cordia sinensis Lam. | Boragin‐aceae | Leaves/stems | Methanol |
T.c T.b.b |
33.9 μg/ml 32.0 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Costus arabicus L. |
Zingiberaceae | Roots | Methanol |
T.c T.b.b |
13.8 μg/ml 30.0 μg/ml |
38.5 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Cupressus sempervirens L. | Cupressaceae | Leaves | Methanol |
T.c T.b.b |
8.3 μg/ml 2.1 μg/ml |
10.7 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Dorstenia barnimiana Schweinf. | Moraceae | Leaves | Methanol |
T.c T.b.b |
29.6 μg/ml 22.6 μg/ml |
49.4 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Dodonaea viscosa (L.) Jacq. | Sapindaceae | Leaves | Methanol |
T.c T.b.b |
>64.0 μg/ml 11.1 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Enicostemma verticillare L. | Gentianaceae | Leaves | Methanol |
T.c T.b.b |
>64.0 μg/ml | 9.9 ± 1.1 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Ficus cordata subsp. salicifolia (Vahl) C.C.Berg | Moraceae | Leaves | Methanol |
T.c T.b.b |
26.3 μg/ml | 8.2 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Ficus ingens (Miq.) Miq. | Moraceae | Leaves | Methanol |
T.c T.b.b |
31.2 μg/ml 8.0 μg/ml |
32.5 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Ficus palmata subsp. virgata Browicz | Moraceae | Leaves | Methanol |
T.c T.b.b |
22.6 μg/ml 8.1 μg/ml |
37.7 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Grewia erythraea Schweinf. | Tiliaceae | Leaves | Methanol |
T.c T.b.b |
8.2 μg/ml 2.6 μg/ml |
27.2 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Iris albicans var. madonna Dykes | Iridaceae | Leaves | Methanol |
T.c T.b.b |
>64.0 μg/ml 10.6 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Iris germanica L. | Iridaceae | Roots | Methanol |
T.c T.b.b |
24.6 μg/ml 8.2 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Kanahia laniflora (Forssk.) R.Br. | Iridaceae | Leaves | Methanol |
T.c T.b.b |
0.4 μg/ml 9.6 μg/ml |
0.8 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Kniphofia sumarae Deflers | Asclepiadaceae | Leaves | Methanol |
T.c T.b.b |
31.4 μg/ml 5.9 μg/ml |
7.4 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Lavandula dentata var. candicans Batt. | Liliaceae | Leaves | Methanol |
T.c T.b.b |
7.9 μg/ml 3.0 μg/ml |
29.6 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Leucas inflata Benth. | Labiatae | Leaves | Methanol |
T.c T.b.b |
>64.0 μg/ml 8.4 μg/ml |
29.5 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Nigella sativa var. hispidula Boiss. | Ranuncul‐aceae | Seeds | Methanol |
T.c T.b.b |
>64.0 μg/ml >64.0 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Periploca aphylla Decne. | Asclepiad‐aceae | Leaves/stems | Methanol |
T.c T.b.b |
8.1 μg/ml 7.1 μg/ml |
23.9 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Phoenix dactylifera L. | Arecaceae | Seeds | Methanol |
T.c T.b.b |
46.5 μg/ml 36.2 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Plectranthus barbatus var. grandis (L.H.Cramer) Lukhoba & A.J.Paton | Labiatae | Leaves | Methanol |
T.c T.b.b |
23.3 μg/ml 2.6 μg/ml |
32.9 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Prosopis juliflora var. horrida (Kunth) Burkart | Leguminosae | Fruits | Methanol |
T.c T.b.b |
10.4 μg/ml 2.0 μg/ml |
49.8 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Pulicaria inuloides (Poir.) DC. | Labiatae | Leaves | Methanol |
T.c T.b.b |
31.7 μg/ml 7.8 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Punica granatum L. | Punicaceae | Fruits | Methanol |
T.c T.b.b |
35.2 μg/ml 34.3 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Rhus retinorrhaea Steud. ex A.Rich. | Anacardiaceae | Leaves | Methanol |
T.c T.b.b |
30.5 μg/ml 34.0 μg/ml |
53.2 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Ribes nigrum L. | Grossulari‐aceae | Fruits | Methanol |
T.c T.b.b |
>64.0 μg/ml >64.0 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Salvadora persica var. persica | Sallvador‐aceae | Leaves/stems | Methanol |
T.c T.b.b |
30.1 μg/ml 32.0 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Tagetes minuta L. | Asteraceae | Leaves | Methanol |
T.c T.b.b |
9.2 μg/ml 2.2 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Tarconanthus camphoratus L. | Asteraceae | Leaves | Methanol |
T.c T.b.b |
>64.0 μg/ml >64.0 μg/ml |
>64.0 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Teucrium yemense Deflers | Labiatae | Leaves | Methanol |
T.c T.b.b |
30.5 μg/ml 7.1 μg/ml |
27.2 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Vernonia leopoldi (Sch.Bip. ex Walp.) Vatke | Asteraceae | Leaves | Methanol |
T.c T.b.b |
9.2 μg/ml 8.0 μg/ml |
30.1 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
Zingiber officinale var. cholmondeleyi F.M.Bailey | Zingiber‐aceae | Roots | Methanol |
T.c T.b.b |
>64.0 μg/ml 39.4 μg/ml |
34.3 μg/ml | (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012) |
3.5. European plants
A total of 27 plants studied in Europe have been extracted from the literature. Of these, only three plants have bioactive compounds. The milestone was the most efficient bioactive compound with a minimum inhibitory concentration of 0.5 µg/ml (Ślusarczyk et al., 2011). Trypanosoma brucei was the most studied parasite, and a large variety of ethnobotanical families were included (Table 4 and Figure 4).
TABLE 4.
Plants assessed for anti‐trypanosomal activity which the EC50 and the cytotoxicity values are known
Scientific name | Family | Part(s) used | Solvent | Bioactive compound | Model | Sub species | EC50 | CC50 | Country | References |
---|---|---|---|---|---|---|---|---|---|---|
Arctium nemorosum Lej. | Asteraceae | Leaf | Methanol | Onopordopicrin | In vitro | T.b.r | 0.37 μM | 3.06 μM | Switzerland | (Zimmermann et al., 2012) |
Arnica montana L. | Asteraceae | Leaf | DCM | ‐ | In vitro | T.b.r | 1.12 μg/ml | 12.1 μg/ml | Germany | (Llurba‐Montesino et al., 2015) |
Callitris neocaledonica Dümmer | Cupressaceae | Wood | Water | ‐ | In vitro | T.b.b | >50 μg/ml | >50 μg/ml | France | (Desrivot et al., 2007) |
Callitris sulcata (Parl.) Schltr. | Cupressaceae | Wood | Water | ‐ | In vitro | T.b.b | >50 μg/ml | >50 μg/ml | France | (Desrivot et al., 2007) |
Citrus macroptera Montrouz. | Rutaceae | Leaves | Water | ‐ | In vitro | T.b.b | >50 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Crinum stuhlmannii subsp. delagoense (I.Verd.) Kwembeya & Nordal | Amaryllidaceae | Leaves | Ethanol | ‐ | In vitro | T.c | 0.70 μM | 21.87 μM | Spain | (Martinez‐Peinado et al., 2020) |
Curcuma longa L. | Zingiberaceae | Leaves | Water | ‐ | In vitro | T.b.b | >50 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Dodonea viscosa L. | Sapindaceae | Leaves | Ethanol | ‐ | In vitro | T.b.b | 61.4 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Eugenia uniflora L | Myrtaceae | Bark | Water | ‐ | In vitro | T.b.b | >50 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Eugenia uniflora L. | Moraceae | Leaves | Methanol | ‐ | In vitro | T.b.b | 46 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Hernandia cordigera Vieill. | Hernandiaceae | Bark | DCM | ‐ | In vitro | T.b.b | 48 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Homalium deplanchei Warb. | Flacourtiaceae | Bark | DCM | ‐ | In vitro | T.b.b | >50 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Hyacinthoides non‐scripta (L.) Chouard ex Rothm. | Asparagaceae | Flowers | Methanol | ‐ | In vitro | T.b.b | 11.1 μg/ml | ‐ | UK | (Raheem et al., 2019) |
Juncus acutus subsp. acutus | Juncaceae | Leaves | DCM | Juncunol | In vitro | T.c | 4.1 μg/ml | 6.0 μg/ml | Portugal | (Oliveira et al., 2016) |
Manilkara dissecta (L.f.) Dubard | Sapotaceae | Leaves | DCM | ‐ | In vitro | T.b.b | >50 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Murraya crenulata (Turcz.) Oliv. | Rutaceae | Bark | Hexane | ‐ | In vitro | T.b.b | 27.6 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Myoporum crassifolium G.Forst. | Myoporaceae | Wood | Water | ‐ | In vitro | T.b.b | 16 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Myoporum tenuifolium G.Forst. | Myoporaceae | Leaves | DCM | ‐ | In vitro | T.b.b | >50 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Myristica fatua Houtt. | Myristicacae | Almonds | DCM | ‐ | In vitro | T.b.b | 0.5 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Narcissus broussonetii var. grandiflorus Batt. & Trab. | Amaryllidaceae | Leaves | Ethanol | ‐ | In vitro | T.c | 0.495 μM | 5.21 μM | Espain | (Martinez‐Peinado et al., 2020) |
Premna serratifolia L. | Lamiaceae | Bark | DCM | ‐ | In vitro | T.b.b | >50 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Prumnopytis ferruginoides L. | Podocarpaceae | Leaves | Water | ‐ | In vitro | T.b.b | >50 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Salvia officinalis subsp. gallica (W.Lippert) Reales, D.Rivera & Obón | Lamiaceae | Leaves | DCM | ‐ | In vitro | T.b.r | 1.86 μg/ml | 32.3 μg/ml | Germany | (Llurba‐Montesino et al., 2015) |
Salvia miltiorrhiza var. charbonnelii (H.Lév.) C.Y.Wu | Lamiaceae | Roots | DCM | Miltirone | In vitro | T.b.r | 0.5 μg/ml | 1.3 μg/ml | Switzerland | (Ślusarczyk et al., 2011) |
Scaevola balansae Guillaumin | Goodneniaceae | Bark | DCM | ‐ | In vitro | T.b.b | 39 μg/ml | ‐ | France | (Desrivot et al., 2007) |
Valeriana officinalis subsp. collina (Wallr.) Nyman | Caprifoliaceae | Leaves | Ethanol | ‐ | In vitro | T.c |
5.87 μg/ml |
5.28 μg/ml | Germany | (Llurba‐Montesino et al., 2015) |
Wollastonia biflora (L.) DC. | Asteraceae | Leaves | DCM | ‐ | In vitro | T.b.b | >100 μg/ml | ‐ | France | (Desrivot et al., 2007) |
FIGURE 4.
Chemical structures of isolated compounds from Europe medicinal plants
3.6. Latin America
A total of 165 plants have been reported throughout the literature, and just four have their isolated known compound. Researchers from South America have contributed to the investigation of anti‐trypanosomal plants. This result corroborates the scientometric analysis of global trypanosomiases research from 1988 to 2017, showing that South America ranked second behind Europe for contributions to trypanosomiases research (Hassan et al., 2020). The crude extracts of Anthemis tinctoria (semi‐purified), Caseria sylvestris (hexane) and Ranunculus sceleratus (ethanol) showed inhibitory activity against Trypanosoma cruzi with a minimum inhibitory concentration of 0.2, 0.3 and 0.7 µg/ml, respectively. For many plants, parasite growth inhibition is generally reported; thus, the minimum inhibitory concentration remains unknown (Table 5 and Figure 5).
TABLE 5.
Plants assessed for anti‐trypanosomal activity which the EC50 values are known
Scientific name | Family | Part(s) used | Solvent | Bioactive compound | Model | Sub species | EC50 | CC50 | Country | References |
---|---|---|---|---|---|---|---|---|---|---|
Abuta pahni (Mart.) Krukoff & Barneby | Menisper maceae | Stems | petroleum ether, chloroform, ethyl acetate or 50% ethanol | ‐ | In vitro | T.c | 100 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Acnistus arborescens (L.) Schltdl. | Solanaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 4 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Aechmea distichantha var. glaziovii (Baker) L.B.Sm. | Bromeliaceae | Leaf | Methanol | ‐ | In vitro | T.c | 48 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Aiouea trinervis Meisn. | Lauraceae | Leaf | Ethanol | Isoobtusi‐Lactone A | In vitro | T.c | 2.75 μg/ml | 156.45 μg/ml | Brazil | (Nunes et al., 2020) |
Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. | Apiaceae | Root | Ethanol | ‐ | In vitro | T.c | 14.5 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Angelica pubescens f. biserrata R.H.Shan & C.Q.Yuan | Apiaceae | Root | Ethanol | ‐ | In vitro | T.c | 14.9 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Angelica sinensis (Oliv.) Diels | Apiaceae | Wood | Ethanol | ‐ | In vitro | T.c | 19.4 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Annona crassiflora Mart. | Annonaceae | Root bark | Ethanol | ‐ | In vitro | T.c | 5.9 μg/ml | ‐ | Brazil | (Mesquita et al., 2005) |
Annona muricata L. | Annonaceae | Leaf | Ethanol | In vitro | T.c | 10 μg/ml | ‐ | Panama | (Calderón et al., 2010) | |
Anomospermum chloranthum subsp. occidentale (Cuatrec.) Krukoff & Barneby | Menisper maceae | Leaf | Alkaloid | ‐ | In vitro | T.c | 100 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Anthemis tinctoria subsp. australis R.Fern. | Asteraceae | Flowers |
Semi‐purified |
‐ | In vitro | T.c | 0.2 μg/ml | 7.0 μg/ml | Brazil | (Bittencourt et al., 2011) |
Astragalus pehuenches Niederl. | Fabaceae | Bark | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Ardisia densiflora Krug & Urb. | Myrsinaceae | Leaf | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Argemone subfusiformis Ownbey | Papaveraceae | Fruit | Methanol | ‐ | In vitro | T.c | 10 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Aristoloquia pilosa L. | Aristolochiaceae | Stem | Hexane | ‐ | In vitro | T.c | 100% | ‐ | Peru | (González‐Coloma et al., 2012) |
Artemisia mexicana Willd. | Asteraceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 39.25 μg/ml | ‐ | Mexico | (Molina‐Garza et al., 2014) |
Atractyloides macrocephala L. | Asteraceae | Root | Ethanol | ‐ | In vitro | T.c | 23.0 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Astragalus membranaceus (Fisch.) Bunge | Fabaceae | Root | Water | ‐ | In vitro | T.c | 13.5 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Astronium fraxinifolium Schott | Anacardiaceae | Stems bark | Hexane | ‐ | In vitro | T.b.r | 16.4 μg/ml | >100 μg/ml | Brazil | (Charneau et al., 2016) |
Baccharis notosergila Griseb. | Asteracea | Aerial parts | Methanol | ‐ | In vitro | T.c | >50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Baccharis trinervis var. cinerea (DC.) Baker | Asteraceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Berberis conferta var. boliviana (Lechl.) C.K.Schneid. | Berberidaceae | Stems | Alkaloid | ‐ | In vitro | T.c | 75 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Berberis microphylla G.Forst. | Berberidaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 38.4 μg/ml | ‐ | Chile | (Muñoz et al., 2013) |
Blepharocalyx salicifolius (Kunth) O.Berg | Myrtaceae | Leaves | Ethanol | ‐ | In vitro | T.c | 37.3 μg/ml | 55.1 μg/ml | Brazil | (Charneau et al., 2016) |
Bocconia integrifolia var. mexicana DC. | Papaveraceae | Leaf | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Bourreria huanita (Lex.) Hemsl. | Boraginaceae | Leaf | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Bourreria spathulata (Miers) Hemsl. | Boraginaceae | Leaf | Methanol | ‐ | In vitro | T.c | 30 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Brunfelsia grandiflora D.Don | Solanaceae | Stem | Hexane | ‐ | In vitro | T.c | 98% | ‐ | Peru | (González‐Coloma et al., 2012) |
Caesalpinia paraguariensis (Parodi) Burkart | Fabaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 10 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Calea jamaicensis var. jamaicensis | Asteraceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | 30 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Calea peruviana (Kunth) Benth. ex S.F.Blake | Asteraceae | Leaf | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Capraria biflora f. hirta Loes. | Scrophulariaceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | 46 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Capparis salicifolia Griseb. | Capparaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 39 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Cardiopetalum calophyllum Schltdl. | Annonaceae | Stem bark | Hexane | ‐ | In vitro | T.c | 60.4 μg/ml | ‐ | Brazil | (Mesquita et al., 2005) |
Cardiopetalum calophyllum Schltdl. | Annonaceae | Leaves | Alkaloidal | ‐ | In vitro | T.c | 100 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Casearia sylvestris var. lingua (Cambess.) Eichler | Flacourtiaceae | Root bark | Hexane | ‐ | In vitro | T.c | 0.3 μg/ml | ‐ | Brazil | (Mesquita et al., 2005) |
Cedrela odorata var. xerogeiton Rizzini & Heringer | Meliaceae | Bark | Hexane | ‐ | In vitro | T.c | 100% | ‐ | Peru | (González‐Coloma et al., 2012) |
Cestrum parqui (Lam.) L'Hér. | Solanaceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Chamaecrista desvauxii (Collad.) Killip | Caesalpiniaceae | Leaves | Ethanol | ‐ | In vitro | T.c | >80% | ‐ | Brazil | (Charneau et al., 2016) |
Chondodendron tomentosum L. | Menispermaceae | Bark | Chloroform | ‐ | In vitro | T.c | 100% | ‐ | Peru | (González‐Coloma et al., 2012) |
Chromolaena leivensis (Hieron.) R.M.King & H.Rob. | Asteraceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | 8 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Cinchona pubescens var. heterophylla Pav. ex DC. | Rubiaceae | Leaf | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Cissampelos tropaeolifolia var. fluminensis (Eichler) Diels | Menispermaceae | Leaf | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Clarisia biflora Ruiz & Pav. | Moraceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | 25 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Clematis campestris var. mendocina (Phil.) Hauman & Irigoyen | Ranunculaceae | Flowers | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Combretum laxum var. epiphyticum (Pittier) Croat | Combretaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 34 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Codonopsis pilosula var. glaberrima (Nannf.) P.C.Tsoong | Campanulaceae | Roots | Water | ‐ | In vitro | T.c | 20.8 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Connarus suberosus var. fulvus (Planch.) Forero | Connaraceae | Roots woods | Hexane | ‐ | In vitro | T.b.r | 1.7 μg/ml | 2.6 μg/ml | Brazil | (Charneau et al., 2016) |
Cordia cylindrostachya (Ruiz & Pav.) Roem. & Schult. | Boraginaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 35 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Crataegus pubescens (C.Presl) C.Presl | Rosaceae | Fruit | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Critonia morifolia (Mill.) R.M.King & H.Rob. | Asteraceae | Fruit | Ethanol | ‐ | In vitro | T.c | 29 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Curcuma aromatic L. | Zingiberaceae | Rhizome | Water | ‐ | In vitro | T.c | 21.4 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Cymbopogon citratus (DC.) Stapf | Poaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 68.25 μg/ml | ‐ | Mexico | (Molina‐Garza et al., 2014) |
Dalbergia ecastaphyllum (L.) Taub. | Fabaceae | Plant resin | Hydroethanol | ‐ | In vitro | T.c | 88.86 μg/ml | 228.02 μg/ml | Brazil | (Regueira‐Neto et al., 2018) |
Drimys winteri J.R.Forst. & G.Forst. | Winteraceae | Aerial parts | DCM | Drimenol | In vitro | T.c | 25.1 μg/ml | ‐ | Chile | (Muñoz et al., 2013) |
Duguetia furfuracea (A.St.‐Hil.) Saff. | Annonaceae | Root bark | Hexane | ‐ | In vitro | T.c | 6.6 μg/ml | ‐ | Brazil | (Mesquita et al., 2005) |
Egletes viscosa var. dissecta Shinners | Asteraceae | Whole plants | Ethanol | ‐ | In vitro | T.c | 38 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Eirmocephala brachiata H.Rob. | Asteraceae | Leaf | Ethanol | ‐ | In vitro | T.c | 33 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Eryngium heterophyllum Engelm. | Apiaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 11.24 μg/ml | ‐ | Mexico | (Molina‐Garza et al., 2014) |
Euterpe precatoria var. longivaginata (Mart.) A.J.Hend. | Arecaceae | Root | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Forsythia suspensa (Thunb.) Vahl | Oleaceae | Fruit | Methanol | ‐ | In vitro | T.c | 19.1 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Fuchsia boliviana var. luxurians I.M.Johnst. | Onagraceae | Leaf | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Galium latoramosum Clos | Rubiaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Gnaphalium gaudichaudianum var. gaudichaudianum | Asteraceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 36 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Gochnatia glutinosa (D.Don) D.Don ex Hook. & Arn. | Asteraceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 20 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Haematoxylum brasiletto H.Karst. | Fabaceae | Bark | Methanol | ‐ | In vitro | T.c | 7.92 μg/ml | ‐ | Mexico | (Molina‐Garza et al., 2014) |
Haplophyllum hispanicum Spach | Rutaceae | Fruit | Ethanol | ‐ | In vitro | T.c | 8.5 μg/ml | 16.7 | Argentina | (Schinella et al., 2002) |
Hauya lucida Donn.Sm. & Rose | Onagraceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 32 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Helichrysum italicum (Roth) G.Don | Rutaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 23.0 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Himatanthus obovatus (Müll.Arg.) Woodson | Apocynaceae | Root wood | Ethanol | ‐ | In vitro | T.c | 15.7 μg/ml | ‐ | Brazil | (Mesquita et al., 2005) |
Ilex guayusa Loes. | Aquifoliaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 47 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Inula viscosa (L.) Aiton | Asteraceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | 27.5 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Ipomoea carnea subsp. carnea | Convolvulaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 48 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Jacaranda mimosifolia D.Don | Bignoniaceae | Leaf | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Kageneckia oblonga Ruiz & Pav. | Rosaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 35.7 μg/ml | ‐ | Chile | (Muñoz et al., 2013) |
Larrea cuneifolia Cav. | Zygophyllaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 40 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Lippia graveolens Kunth | Verbenaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 13 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Lithrea caustica Hook. & Arn. | Anacardiaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Lentinus edodes L. | Marasmiaceae | Sclerotium | Water | ‐ | In vitro | T.c | 26.8 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Lozania pittieri (S.F.Blake) L.B.Sm. | Flacourtiaceae | Leaf | Methanol | ‐ | In vitro | T.c | 30 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Lycium cuneatum Dammer | Solanaceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | 29 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Maianthemum paludicola LaFrankie | Convallariaceae | Whole plants | Methanol | ‐ | In vitro | T.c | 5 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Mandevilla antennacea (A.DC.) K.Schum. | Apocynaceae | Leaves stems | Ethanol | ‐ | In vitro | T.c | 100 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Marrubium vulgare subsp. apulum (Ten.) H.Lindb. | Lamiaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 22.66 μg/ml | ‐ | Mexico | (Molina‐Garza et al., 2014) |
Matayba guianensis Aubl. | Sapindaceae | Stems bark | Hexane | ‐ | In vitro | T.c | 17.8 μg/ml | ‐ | Brazil | (Mesquita et al., 2005) |
Miconia buxifolia Naudin | Melastomataceae | Leaf | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Mikania periplocifolia Hook. & Arn. | Asteraceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Munnozia maronii (André) H.Rob. | Asteraceae | Leaves | Ethanol | ‐ | In vitro | T.c | 25 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Myrsine guianensis (Aubl.) Kuntze | Myrsinaceae | Leaves | Hexane | ‐ | In vitro | T.c | 65.0 μg/ml | 107.1 μg/ml | Brazil | (Charneau et al., 2016) |
Myrcianthes rhopaloides (Kunth) McVaugh | Myrtaceae | Leaves | Methanol | ‐ | In vitro | T.c | 24 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Nicotiana glauca var. angustifolia Comes | Solanaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 38 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Paeonia lactiflora var. lactiflora | Paeoniaceae | Root | Water | ‐ | In vitro | T.c | 27.9 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Parthenium hysterophorus L. | Asteraceae | Leaves | DCM | Ambrosin | In vitro | T.b.b | 67.1 μg/ml | 11.46 μg/ml | Mexico | (Sepúlveda‐Robles et al., 2019) |
Parietaria debilis var. ceratosantha Wedd. | Urticaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Paullinia clavigera Schltdl. | Sapindaceae | Bark | Chloroform | ‐ | In vitro | T.c | 100% | ‐ | Peru | (González‐Coloma et al., 2012) |
Persea americana var. americana | Lauraceae | Leaf | Methanol | ‐ | In vitro | T.c | 65.51 μg/ml | ‐ | Mexico | (Molina‐Garza et al., 2014) |
Phellodendron amurense var. sachalinense F. Schmidt | Rutaceae | Root bark | Methanol | ‐ | In vitro | T.c | 11.3 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Phyla betulifolia (Kunth) Greene | Verbenaceae | Whole plant | Methanol | ‐ | In vitro | T.c | 30 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Phytolacca bogotensis Kunth | Phytolaccaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Phytolacca tetramera Hauman | Phytolaccaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper acutifolium Ruiz & Pav. | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | 39 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper aduncum var. brachyarthrum (Trel.) Yunck. | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | 38 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper aeruginosibaccum Trel. | Piperaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 12 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper barbatum var. andicolum (Kunth) Trel. & Yunck. | Piperaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 10 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper dilatatum f. dilatatifolium (Trel. & Yunck.) Steyerm. | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | 31 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper elongatum var. brachyarthrum Trel. | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | 36 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper glabratum Kunth | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | 25 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper hispidum var. gamboanum C. DC. | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | 26 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper holtonii var. parvispicum Yunck. | Piperaceae | Root | Ethanol | ‐ | In vitro | T.c | 10 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper longestylosum C. DC. | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper abalienatum Trel. | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | 35 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper rusbyi C. DC. | Piperaceae | Leaf | DCM | ‐ | In vitro | T.c | 32 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper scabrum Willd. ex Kunth | Piperaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 32 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Piper umbellatum var. glabrum C. DC. | Piperaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 25 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Podanthus ovatifolius Lag. | Asteraceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 40.1 μg/ml | ‐ | Chile | (Muñoz et al., 2013) |
Polygonum acuminatum Kunth | Polygonaceae | Leaf | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Polygonum ferrugineum var. patagonicum (Speg.) Macloskie | Polygonaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 37 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Poria cocos L. | Polyporaceae | Sclerotium | Ethanol | ‐ | In vitro | T.c | 16.8 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Pouteria gardneri (Mart. & Eichler ex Miq.) Baehni | Sapindaceae | Roots woods | Hexane | ‐ | In vitro | T.c | 45.5 μg/ml | ‐ | Brazil | (Mesquita et al., 2005) |
Piscidia carthagenensis Jacq. | Fabaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 28 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Psidium laruotteanum Cambess | Myrtaceae | Leaves | Hexane | ‐ | In vitro | T.b.r | 3.9 μg/ml | >100 μg/ml | Brazil | (Charneau et al., 2016) |
Psittacanthus cordatus (Hoffmanns. ex Schult. f.) Blume | Loranthaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 40 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Ranunculus sceleratus subsp. multifidus (Nutt.) Hultén | Renonculaceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | 0.7 μg/ml | 18.7 μg/ml | Argentina | (Schinella et al., 2002) |
Rauvolfia tetraphylla L. | Apocynaceae | Root | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Rehmania glutinosa L. | Oronbanchaceae | Root | Ethanol | ‐ | In vitro | T.c | 24.5 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Ruta chalepensis L. | Rutaceae | Leaf | Methanol | ‐ | In vitro | T.c | 72.30 μg/ml | ‐ | Mexico | (Molina‐Garza et al., 2014) |
Salvertia convallariodora A. St.‐Hil. | Vochysiaceae | Leaves | Hexane | ‐ | In vitro | T.b.g | 35.4 μg/ml | >100 μg/ml | Brazil | (Charneau et al., 2016) |
Schinus molle var. areira (L.) DC. | Anarcadiaceae | Leaves | Methanol | ‐ | In vitro | T.c | 16.31 μg/ml | Mexico | (Molina‐Garza et al., 2014) | |
Scoparia dulcis L. | Scrophulariaceae | Whole plants | Ethanol | ‐ | In vitro | T.c | 4 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Scrophularia auriculata L. | Scrofulariaceaes | Aerial parts | Ethanol | ‐ | In vitro | T.c | 23.3 μg/ml | ‐ | Argentina | (Schinella et al., 2002) |
Scutellaria baicalensis f. albiflora H.W.Jen & Y.J.Chang | Lamiaceae | Root | Methanol | ‐ | In vitro | T.c | 7.5 μg/ml | 28.7 μg/ml | Argentina | (Schinella et al., 2002) |
Sebastiania brasiliensis var. anisophylla Müll.Arg. | Euphorbiaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Sebastiania commersoniana (Baill.) L.B.Sm. & Downs | Euphorbiaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Solidago chilensis var. chilensis | Asteraceae | Leaves | Methanol | ‐ | In vitro | T.c | 32 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Sapranthus viridiflorus G.E. Schatz | Annonaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | 25 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Sarcostemma gracile Decne. | Asclepiadaceae | Aerial parts | Ethanol | ‐ | In vitro | T.c | 42 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Schinus molle var. areira (L.) DC. | Anacardiaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Solanum actaeibotrys Rusby | Solanaceae | Leaves | Ethanol | ‐ | In vitro | T.c | 100 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Solanum cornifolium Dunal | Solanaceae | Leaf | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Srevia yaconensis L. | Asteraceae | Woods | Ethanol | ‐ | In vitro | T.c | 50 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Styrax conterminus Donn.Sm. | Styracaceae | Bark | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Tabebuia serratifolia (Vahl) G.Nicholson | Bignoniaceae | Bark | Hexane | ‐ | In vitro | T.c | 100 μg/ml | ‐ | Peru | (González‐Coloma et al., 2012) |
Tagetes caracasana Humb. ex Willd. | Asteraceae | Leaves | Oil | ‐ | In vitro | T.c | 4.56 μg/ml | 25.73 μg/ml | Brazil | (Escobar et al., 2009) |
Tagetes filifolia subsp. filifolia | Asteraceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Tagetes heterocarpha Rydb. | Asteraceae | Leaves | Oil | ‐ | In vitro | T.c | 12.84 μg/ml | 43.03 μg/ml | Brazil | (Escobar et al., 2009) |
Tagetes lucida f. florida (Sweet) Voss | Asteraceae | Leaves | Oil | ‐ | In vitro | T.c | 18.94 μg/ml | >300 μg/ml | Brazil | (Escobar et al., 2009) |
Tagetes zypaquirensis Bonpl. | Asteraceae | Leaves | Oil | ‐ | In vitro | T.c | 21.30 μg/ml | 126.40 μg/ml | Brazil | (Escobar et al., 2009) |
Terminalia triflora (Griseb.) Lillo | Combretaceae | Aerial parts | Methanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Tradescantia zebrina var. flocculosa (G.Brückn.) D.R.Hunt | Commelinaceae | Aerial parts | Hexane | ‐ | In vitro | T.c | 96% | ‐ | Peru | (González‐Coloma et al., 2012) |
Tynanthus guatemalensis Donn.Sm | Bignoniaceae | Stems | Ethanol | ‐ | In vitro | T.c | > 50 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Vatairea macrocarpa var. cinerascens (Benth.) Ducke | Fabaceae | Roots woods | Hexane | ‐ | In vitro | T.c | 32.6 μg/ml | >100 μg/ml | Brazil | (Charneau et al., 2016) |
Vernonia squamulosa Hook. & Arn. | Asteraceae | Leaves | Petroleum | ‐ | In vitro | T.c | 100 μg/ml | ‐ | Bolivia | (Fournet et al., 1994) |
Xylopia aromatica (Lam.) Mart. | Annonaceae | Root woods | Hexane | ‐ | In vitro | T.c | 21.6 μg/ml | ‐ | Brazil | (Mesquita et al., 2005) |
Zamia ulei subsp. lecointei (Ducke) Ducke | Zamiaceae | Underground tuberous stem | Chloroform | ‐ | In vitro | T.c | 92.5% | ‐ | Peru | (González‐Coloma et al., 2012) |
Zanthoxylum chiloperone var. angustifolium Engl. | Rutaceae | Aerial parts | Alkaloidal | canthin‐6‐one | In vivo | T.c in Balb/c mice, 5 mg/kg/day | 80–100% inhibition | ‐ | Paraguay | (Ferreira et al., 2007) |
Ziziphus mistol Griseb. | Rhamnaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 25 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
Zuccagnia punctata Cav. | Fabaceae | Leaf | Ethanol | ‐ | In vitro | T.c | 20 μg/ml | ‐ | Panama | (Calderón et al., 2010) |
FIGURE 5.
Chemical structures of isolated compounds from Latin America medicinal plants
3.7. North America
A total of 29 plants have been identified in the literature. Interestingly, the lack of testing against T. cruzi, which is prevalent in the southern part of North America, was observed in this study. The plants showed excellent anti‐trypanosomal activity with a minimum inhibitory concentration of fewer than 10 µg/ml. The crude extracts of Nuphar luteum (0.42 µg/ml), Hoita macrostachya (0.48 µg/ml) and Rhus integrifolia (0.50 µg/ml) showed the highest activity against Trypanosoma brucei (Table 6).
TABLE 6.
Plants assessed for anti‐trypanosomal application for which the EC50 values are known
Scientific name | Family | Part(s) used | Solvent | Bioactive compound | Model | Sub species | EC50 | CC50 | Country | References |
---|---|---|---|---|---|---|---|---|---|---|
Acer rubrum subsp. carolinianum (Walter) W.Stone | Sapindaceae | Leaf | Ethanol | ‐ | In vitro | T.b.b | 2.88 μg/ml | ‐ | USA | (Jain et al., 2016) |
Alnus rubra f. pinnatisecta (Starker) Rehder | Betulaceae | Bark | Ethanol | ‐ | In vitro | T.b.b | 0.94 μg/ml | ‐ | USA | (Jain et al., 2016) |
Anogeissus leiocarpus (DC.) Guill. & Perr. | Combretaceae | Root bark | Methanol | ‐ | In vitro | T.b.b | 0.82 μg/ml | ‐ | USA | (Kenguele, 2009) |
Arctostaphylos viscida subsp. mariposa (Dudley) P.V.Wells | Ericaceae | Leaf | Ethanol | ‐ | In vitro | T.b.b | 2.88 μg/ml | ‐ | USA | (Jain et al., 2016) |
Boykinia major var. intermedia (A.Heller) Piper | Saxifragaceae | Root | Ethanol | ‐ | In vitro | T.b.b | 2.82 μg/ml | ‐ | USA | (Jain et al., 2016) |
Chrysolepis chrysophylla (Douglas ex Hook.) Hjelmq. | Fagaceae | Flowers | Ethanol | ‐ | In vitro | T.b.b | 2.89 μg/ml | ‐ | USA | (Jain et al., 2016) |
Coccoloba pubescens L. | Polygonaceae | Stems | Ethanol | ‐ | In vitro | T.b.b | 0.83 μg/ml | ‐ | USA | (Jain et al., 2016) |
Eriogonum fasciculatum var. polifolium (Benth.) Torr. & A.Gray | Polygonaceae | Leaf | Ethanol | ‐ | In vitro | T.b.b | 2.68 μg/ml | ‐ | USA | (Jain et al., 2016) |
Eriogonum umbellatum subsp. dumosum (Greene) S.Stokes | Polygonaceae | Leaf stems | Ethanol | ‐ | In vitro | T.b.b | 2.79 μg/ml | ‐ | USA | (Jain et al., 2016) |
Eucalyptus citriodora Hook. | Myrtaceae | Leaf | Ethanol | ‐ | In vitro | T.b.b | 2.91 μg/ml | ‐ | USA | (Jain et al., 2016) |
Fagara zanthoxyloides Lam. | Rutaceae | Bark | Methanol | ‐ | In vitro | T.b.b | 6.42 μg/ml | ‐ | USA | (Kenguele, 2009) |
Hamamelis virginiana f. parvifolia (Nutt.) Fernald | Hamamelidaceae | Stem | Ethanol | ‐ | In vitro | T.b.b | 2.54 μg/ml | ‐ | USA | (Jain et al., 2016) |
Hoita macrostachya (DC.) Rydb. | Fabaceae | Leaf | Ethanol | ‐ | In vitro | T.b.b | 0.48 μg/ml | ‐ | USA | (Jain et al., 2016) |
Juniperus communis subsp. alpina (Schoop, Büechi et al.) Celak. | Cupressaceae | Leaf stem | Ethanol | ‐ | In vitro | T.b.b | 2.40 μg/ml | ‐ | USA | (Jain et al., 2016) |
Leea rubra Blume ex Spreng. | Vitaceae | Stem | Ethanol | ‐ | In vitro | T.b.b | 1.62 μg/ml | ‐ | USA | (Jain et al., 2016) |
Lepechinia calycina var. glabella (A.Gray) Epling ex Munz | Lamiaceae | Leaf | Ethanol | ‐ | In vitro | T.b.b | 2.50 μg/ml | ‐ | USA | (Jain et al., 2016) |
Ligustrum sinense var. myrianthum (Diels) Hoefker | Oleaceae | Leaf fruit | Ethanol | ‐ | In vitro | T.b.b | 2.77 μg/ml | ‐ | USA | (Jain et al., 2016) |
Lyonia fruticosa (Michx.) G.S. Torr. | Ericaceae | Stems | Ethanol | ‐ | In vitro | T.b.b | 2.54 μg/ml | ‐ | USA | (Jain et al., 2016) |
Medinilla magnifica Lindl. | Melastomataceae | Flowers fruit | Ethanol | ‐ | In vitro | T.b.b | 2.25 μg/ml | ‐ | USA | (Jain et al., 2016) |
Nuphar lutea subsp. advena Kartesz & Gandhi | Nymphaeaceae | Fruit | Ethanol | ‐ | In vitro | T.b.b | 0.42 μg/ml | ‐ | USA | (Jain et al., 2016) |
Quercus alba f. latiloba (Sarg.) E.J.Palmer & Steyerm. | Fagaceae | Bark | Ethanol | ‐ | In vitro | T.b.b | 1.92 μg/ml | ‐ | USA | (Jain et al., 2016) |
Pseudocedrela kotschyi (Schweinf.) Harms | Meliaceae | Root | Methanol | ‐ | In vitro | T.b.b | 8.94 μg/ml | ‐ | USA | (Kenguele, 2009) |
Rhododendron occidentale (Torr. & A. Gray) A. Gray | Ericaceae | Leaf | Ethanol | ‐ | In vitro | T.b.b | 2.87 μg/ml | ‐ | USA | (Jain et al., 2016) |
Rhus integrifolia (Nutt.) Benth. & Hook. f. ex Rothr. | Anacardiaceae | Leaf | Ethanol | ‐ | In vitro | T.b.b | 0.50 μg/ml | ‐ | USA | (Jain et al., 2016) |
Ribes montigenum McClatchie | Grossulariaceae | Stems | Ethanol | ‐ | In vitro | T.b.b | 1.94 μg/ml | ‐ | USA | (Jain et al., 2016) |
Ribes speciosum Pursh | Grossulariaceae | Leaf stems flowers | Ethanol | ‐ | In vitro | T.b.b | 2.95 μg/ml | ‐ | USA | (Jain et al., 2016) |
Sabal minor (Jacq.) Pers. | Arecaceae | Flowers | Ethanol | ‐ | In vitro | T.b.b | 1.06 μg/ml | ‐ | USA | (Jain et al., 2016) |
Salvia spathacea Greene | Lamiaceae | Stems | Ethanol | ‐ | In vitro | T.b.b | 1.13 μg/ml | ‐ | USA | (Jain et al., 2016) |
Terminalia glaucescens Planch. ex Benth. | Combretaceae | Root | Methanol | ‐ | In vitro | T.b.b | 9.04 μg/ml | ‐ | USA | (Kenguele, 2009) |
3.8. Oceania plants
Few studies have been found in the literature about the medicinal plants from Oceania with anti‐trypanosomal activity. This corroborates with the scientometric analysis of global trypanosomiases research from 1988 to 2017 which shows that Oceania researchers have contributed less than the others to trypanosomiases research in this region (Hassan et al., 2020). Only seven plants have been identified in the literature, of which just Corydalis crispa (4.63 µg/ml) showed activity against Trypanosoma brucei (Table 7).
TABLE 7.
Plants assessed for anti‐trypanosomal activity
Scientific Name | Family | Part (s) used | Solvent | Bioactive compound | Model | Sub species | EC50 | CC50 | Country | References |
---|---|---|---|---|---|---|---|---|---|---|
Aconitum laciniatum (Brühl) Stapf | Ranunculaceae | Leaf | Methanol | ‐ | In vitro | T.b.b | >25 μg/ml | >25 μg/ml | Australia | (Wangchuk, 2014) |
Ajania nubigena (Wall.) C.Shih | Compositae | Leaf | Methanol | ‐ | In vitro | T.b.b | >10 μg/ml | >10 μg/ml | Australia | (Wangchuk, 2014) |
Codonopsis bhutanica Ludlow | Campanulaceae | Leaf | Methanol | ‐ | In vitro | T.b.b | >5 μg/ml | >5 μg/ml | Australia | (Wangchuk, 2014) |
Corydalis crispa var. laeviangula C.Y.Wu & H.Chuang | Fumariaceae | Leaf | Methanol | ‐ | In vitro | T.b.b | 4.63 μg/ml | 12.5 μg/ml | Australia | (Wangchuk, 2014) |
Corydalis dubia Prain | Fumariaceae | Leaf | Methanol | ‐ | In vitro | T.b.b | >10 μg/ml | >10 μg/ml | Australia | (Wangchuk, 2014) |
Meconopsis simplicifolia (D. Don) Walp. | Papaveraceae | Leaf | Methanol | ‐ | In vitro | T.b.b | >10 μg/ml | >10 μg/ml | Australia | (Wangchuk, 2014) |
Pleurospermum amabile W. G. Craib & W.W. Sm. | Umbellifereae | Leaf | DCM | ‐ | In vitro | T.b.b | 14.83 μg/ml | >25 μg/ml | Australia | (Wangchuk, 2014) |
Note: Their EC50 values are known.
Many plants worldwide serve as a potential source of bioactive compounds against trypanosomiases. We encountered 77 chemically defined natural molecules reported in the literature, which have been evaluated for anti‐trypanosomal activity. Fifty‐nine were from Africa, 11 from Asia, 3 from Europe and 4 from Latin America. The active compounds, isolated and identified, belong to the classes of alkaloids, triterpenoids, lactones (Kohno, et al., 2010), quinoids, flavonoids, steroids, lipids, iridoids, oxygen heterocycles, benzenoids, lignans, proteids, coumarins, phenylpropanoids and peptides. The most active compounds with EC50 of <20 µg/ml are abruquinones, letestuianin, 22‐hydroxyclerosterol, 7,15‐dihydroxy‐7,15‐deoxo nimbin, cassythine, polyacetylenes (MS‐1, MS‐2 and MS‐4), Putranoside A, kolavenol, triterpenoid (3β,13β‐dihydroxy‐urs‐11‐en‐28‐oic acid), lucidamine, oleanolic acid, phytol, betulinic acid, β‐sitosterol, citronellal, clerodane, saringosterol, 24‐hydroperoxy‐24‐vinylcholesterol, melicopicine, skimmianine, α‐amyrin, punicalagin, cedrelone, vernogui‐nosterol and diacetylvernoguinosterol, cynaropicrin, Schkuhrin I and II, saropeptide, oregonin, hirsutanone, curlone, isoiridogermanal, mahanimbine, murrayafoline, girinimbine, vanicoside E, (+)‐ketopinoresinol, isorhamnetin, cardamomin, onopordopicrin, juncunol, miltirone, isoobtusi‐lactone A, canthin‐6‐one, thus, are promising leads for drug development. Abruquinone K, L, A and D, artemisinin, MS‐2, MS‐4, dioncophylline E, dihydrochelerythrine, clerodane, Schkuhrin I, cynaropicrin, waltheriones L and vanicoside E showed inhibitory activity below 1 µg/ml or 1 µM.
According to the standards of the National Cancer Institute (NCI), a crude extract can be considered active for an EC50 ≤ 20 µg/ml (Cordell et al., 1993). Hence, most plant extracts (more than 50%) showed activity below 20 µg/ml. We highlighted the plant extracts that have the most activity below 1 µg/ml, which include Kanahia laniflora, Arctium nemorosum, Crinum stuhlmannii subsp. Delagoense, Myristica fatua, Narcissus broussonetii var. grandiflorus, Salvia miltiorrhiza var. charbonnelii, Anthemis tinctoria subsp. australis, Casearia sylvestris var. lingua, Ranunculus sceleratus subsp. Multifidus, Alnus rubra f. pinnatisecta, Anogeissus leiocarpus, Coccoloba pubescens, Hoita macrostachya, Nuphar lutea subsp. Advena, Rhus integrifolia. All active extracts belong to different families and are from different parts of the plant. Hence, it was impossible to mention the particular plant parts or specific family.
Artemisinin is an endoperoxide sesquiterpene lactone isolated from Artemisia annua, one of the well‐known antiparasitic and anti‐tumoural chemotherapeutic agents (Rocha et al., 2005). The impacts of Artemisinin and its derivatives on Trypanosoma parasites have been investigated in in vitro and animal models. These compounds effectively inhibit the metabolism of parasites, while exhibiting limited side effects on the host (Loo et al., 2017). A large number of in vitro and in vivo studies on amastigotes, epimastigotes and trypomastigotes of Trypanosoma have displayed that artemisinin and its derivatives have pharmacological activities in controlling the parasites and have shown significant impact against protozoans such as T. brucei rhodesiense, T. brucei brucei and T. cruzi (Loo et al., 2017).
3.9. Critical assessment of the literature information embodied in the present study
Africa, Asia and the Middle East flore provide many promising plants, but further in vivo studies are required to confirm their application as anti‐trypanosomal agents. It is worth noting that before in vivo studies, the in vitro biological activity should be accompanied by cytotoxicity studies against mammalian cells, followed by pharmacokinetic studies. On the other hand, some literature was not entered into this systematic review based on mesh terms. In West Africa and South America, Trypanosoma vivax is at the helm of the majority of trypanosome infections in cattle and other ruminants. This pathogen is not well established in laboratory animals, and investigation into pathogenic isolates has been restricted by the difficulty of its in vitro establishment. In this study, very few compounds were screened against Trypanosoma vivax (Isoun and Isoun, 1974' Cortez et al., 2006).
4. CONCLUSIONS
Many plants worldwide serve as a potential source of bioactive compounds against trypanosomiases. Africa, Asia and the Middle East flore provide many promising plants, but further in vivo studies are required to confirm their application as anti‐trypanosomal agents. At the same time, the isolation of the bioactive compounds in their pure form should be pursued. Further vital investigations, including clarification of their mode of action, assessment of the efficacy of several bioactive compounds and their toxicity profile, need to be carried out.
AUTHOR CONTRIBUTIONS
Shahin Nekoui: Methodology; writing – review & editing. Faham Khamesipour: Investigation; supervision; validation; writing – original draft; writing – review & editing. Pardis Mohammadi Pour: Methodology; writing – review & editing.
CONFLICT OF INTEREST
The authors declare that they have no competing interests.
FUNDING
No funding was received.
ETHICS STATEMENT
An ethics statement is not applicable because this study is based exclusively on published literature.
PEER REVIEW
I would not like my name to appear with my report on Publons https://publons.com/publon/10.1002/vms3.912
ACKNOWLEDGEMENTS
The authors would like to thank the editor and reviewers for all of their care, constructive and insightful comments concerning this work.
Nekoei, S. , Khamesipour, F. , Habtemariam, S. , de Souza, W. , Mohammadi Pour, P. , & Hosseini, S. R. (2022). The anti‐Trypanosoma activities of medicinal plants: A systematic review of the literature. Veterinary Medicine and Science, 8, 2738–2772. 10.1002/vms3.912
Contributor Information
Faham Khamesipour, Email: faham.khamesipour@yahoo.com.
Seyed Reza Hosseini, Email: dr.s.reza@gmail.com.
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analysed in this study.
REFERENCES
- Ahmad Khan, M. S. , & Ahmad, I. (2019). Chapter 1 – Herbal medicine: Current trends and future prospects. In Ahmad Khan M. S., I. Ahmad, & D. Chattopadhyay (Eds.), New look to phytomedicine (pp. 3–13). Academic Press. 10.1016/B978-0-12-814619-4.00001-X [DOI] [Google Scholar]
- Al‐Musayeib, N. M. , Mothana, R. A. , Matheeussen, A. , Cos, P. , & Maes, L. (2012). In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. BMC Complementary and Alternative Medicine, 12, 49. 10.1186/1472-6882-12-49 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al‐Musayeib, N. M. , Mothana, R. A. , Al‐Massarani, S. , Matheeussen, A. , Cos, P. , & Maes, L. (2012). Study of the in vitro antiplasmodial, antileishmanial and antitrypanosomal activities of medicinal plants from Saudi Arabia. Molecules (Basel, Switzerland), 17(10), 11379–11390. 10.3390/molecules171011379 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atawodi, S. E. , Ameh, D. A. , Ibrahim, S. , Andrew, J. N. , Nzelibe, H. C. , Onyike, E. O. , Anigo, K. M. , Abu, E. A. , James, D. B. , Njoku, G. C. , & Sallau, A. B. (2002). Indigenous knowledge system for treatment of trypanosomiasis in Kaduna state of Nigeria. Journal of Ethnopharmacology, 79(2), 279–282. 10.1016/s0378-8741(01)00351-8 [DOI] [PubMed] [Google Scholar]
- Atawodi, S. E. (2005). Comparative in vitro trypanocidal activities of petroleum ether, chloroform, methanol and aqueous extracts of some Nigerian savannah plants. African Journal of Biotechnology, 4(2), 177–182. [Google Scholar]
- Bawm, S. (2010). Studies on antitrypanosomal activity of medicinal plants (p. 98). Japan: Hokkaido University.
- Bero, J. , Beaufay, C. , Hannaert, V. , Hérent, M. F. , Michels, P. A. , & Quetin‐Leclercq, J. (2013). Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde‐3‐phosphate dehydrogenase. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 20(3–4), 270–274. 10.1016/j.phymed.2012.10.010 [DOI] [PubMed] [Google Scholar]
- de Bittencourt, N. L. R. , Ueda‐Nakamura, T. , Filho, B. P. D. , & Nakamura, C. V. (2011). Antitrypanosomal activity of a semi‐purified subfraction rich in Labdane Sesquiterpenes, obtained from flowers of Anthemis tinctoria , against Trypanosoma cruzi. Pharmacology & Pharmacy, 02(02), 47. 10.4236/pp.2011.22006 [DOI] [Google Scholar]
- Bringmann, G. , Dreyer, M. , Faber, J. H. , Dalsgaard, P. W. , Staerk, D. , Jaroszewski, J. W. , Ndangalasi, H. , Mbago, F. , Brun, R. , & Christensen, S. B. (2004). Ancistrotanzanine C and related 5,1'‐ and 7,3'‐coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis . Journal of Natural Products, 67(5), 743–748. 10.1021/np0340549 [DOI] [PubMed] [Google Scholar]
- Bringmann, G. , Dreyer, M. , Faber, J. H. , Dalsgaard, P. W. , Staerk, D. , Jaroszewski, J. W. , Ndangalasi, H. , Mbago, F. , Brun, R. , Reichert, M. , Maksimenka, K. , & Christensen, S. B. (2003). Ancistrotanzanine A, the first 5,3'‐coupled naphthylisoquinoline alkaloid, and two further, 5,8'‐linked related compounds from the newly described species Ancistrocladus tanzaniensis . Journal of Natural Products, 66(9), 1159–1165. 10.1021/np030077b [DOI] [PubMed] [Google Scholar]
- Calderón, A. I. , Romero, L. I. , Ortega‐Barría, E. , Solís, P. N. , Zacchino, S. , Gimenez, A. , Pinzón, R. , Cáceres, A. , Tamayo, G. , Guerra, C. , Espinosa, A. , Correa, M. , & Gupta, M. P. (2010). Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Pharmaceutical Biology, 48(5), 545–553. 10.3109/13880200903193344 [DOI] [PubMed] [Google Scholar]
- Charneau, S. , de Mesquita, M. L. , Bastos, I. M. , Santana, J. M. , de Paula, J. E. , Grellier, P. , & Espindola, L. S. (2016). In vitro investigation of Brazilian Cerrado plant extract activity against Plasmodium falciparum, Trypanosoma cruzi and T. brucei gambiense . Natural Product Research, 30(11), 1320–1326. 10.1080/14786419.2015.1055264 [DOI] [PubMed] [Google Scholar]
- Cordell, G. A. , Kinghorn, A. D. , & Pezzuto, J. M. (1993). Separation, structure elucidation and bioassay of cytotoxic natural products. In: Colegate S. M., Molyneux R. J. (Eds.), Bioactive natural products: Detection, isolation, and structure determination (pp. 198–201). Florida: CRC Press. [Google Scholar]
- Cortez, A. P. , Ventura, R. M. , Rodrigues, A. C. , Batista, J. S. , Paiva, F. , Añez, N. , Machado, R. Z. , Gibson, W. C. , & Teixeira, M. M. (2006). The taxonomic and phylogenetic relationships of Trypanosoma vivax from South America and Africa. Parasitology, 133(Pt 2), 159–169. 10.1017/S0031182006000254 [DOI] [PubMed] [Google Scholar]
- Desrivot, J. , Waikedre, J. , Cabalion, P. , Herrenknecht, C. , Bories, C. , Hocquemiller, R. , & Fournet, A. (2007). Antiparasitic activity of some New Caledonian medicinal plants. Journal of Ethnopharmacology, 112(1), 7–12. 10.1016/j.jep.2007.01.026 [DOI] [PubMed] [Google Scholar]
- Deeks, E. D. (2019). Fexinidazole: First global approval. Drugs, 79(2), 215–220. 10.1007/s40265-019-1051-6 [DOI] [PubMed] [Google Scholar]
- Dickie, E. A. , Giordani, F. , Gould, M. K. , Mäser, P. , Burri, C. , Mottram, J. C. , Rao, S. , & Barrett, M. P. (2020). New drugs for human African trypanosomiasis: A twenty first century success story. Tropical Medicine and Infectious Disease, 5(1), 29. 10.3390/tropicalmed5010029 [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiMasi, J. A. , & Paquette, C. (2004). The economics of follow‐on drug research and development: Trends in entry rates and the timing of development. PharmacoEconomics, 22(2 Suppl 2), 1–14. 10.2165/00019053-200422002-00002 [DOI] [PubMed] [Google Scholar]
- Dyary, H. O. , Arifah, A. K. , Sharma, R. S. , Rasedee, A. , Mohd‐Aspollah, M. S. , Zakaria, Z. A. , Zuraini, A. , & Somchit, M. N. (2014). Antitrypanosomal screening and cytotoxic effects of selected medicinal plants. Tropical Biomedicine, 31(1), 89–96. [PubMed] [Google Scholar]
- Dyary, H. O. , Arifah, A. K. , Sukari, M. A. , & Sharma, R. (2019). Antitrypanosomal and cytotoxic activities of botanical extracts from Murraya koenigii (L.) and Alpinia mutica Roxb. Tropical Biomedicine, 36(1), 94–102. [PubMed] [Google Scholar]
- Ebiloma, G. U. , Igoli, J. O. , Katsoulis, E. , Donachie, A. M. , Eze, A. , Gray, A. I. , & de Koning, H. P. (2017). Bioassay‐guided isolation of active principles from Nigerian medicinal plants identifies new trypanocides with low toxicity and no cross‐resistance to diamidines and arsenicals. Journal of Ethnopharmacology, 202, 256–264. 10.1016/j.jep.2017.03.028 [DOI] [PubMed] [Google Scholar]
- Elujoba, A. A. , Odeleye, O. , & Ogunyemi, C. (2005). Traditional medicine development for medical and dental primary health care delivery system in Africa. African Journal of Traditional, Complementary and Alternative Medicines, 2(1), 46–61. [Google Scholar]
- Escobar, P. , Herrera, L. , Viviana, L. , Sandra, M. , Duran, C. , & Stashenko, E. (2009). Composición química y actividad anti‐tripanosomal de aceites esenciales obtenidos de Tagetes (Fam. Asteraceae), recolectados en Colombia. Revista de la Universidad Industrial de Santander. Salud, 41(3), 280–286. [Google Scholar]
- Fairlamb, A. H. , & Horn, D. (2018). Melarsoprol resistance in African trypanosomiasis. Trends in Parasitology, 34(6), 481–492. 10.1016/j.pt.2018.04.002 [DOI] [PubMed] [Google Scholar]
- Ferreira, M. E. , Nakayama, H. , de Arias, A. R. , Schinini, A. , de Bilbao, N. V. , Serna, E. , Lagoutte, D. , Soriano‐Agatón, F. , Poupon, E. , Hocquemiller, R. , & Fournet, A. (2007). Effects of canthin‐6‐one alkaloids from Zanthoxylum chiloperone on Trypanosoma cruzi‐infected mice. Journal of Ethnopharmacology, 109(2), 258–263. 10.1016/j.jep.2006.07.028 [DOI] [PubMed] [Google Scholar]
- Floyd, M. R. (2013). High throughput screening of extracts from plants used in traditional Chinese medicine against Trypanosoma brucei brucei 427. PhD Thesis, Middle Tennessee State University. [Google Scholar]
- Fotie, J. , Bohle, D. S. , Olivier, M. , Adelaida Gomez, M. , & Nzimiro, S. (2007). Trypanocidal and antileishmanial dihydrochelerythrine derivatives from Garcinia lucida . Journal of Natural Products, 70(10), 1650–1653. 10.1021/np0702281 [DOI] [PubMed] [Google Scholar]
- Fournet, A. , Barrios, A. A. , & Muñoz, V. (1994). Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. Journal of Ethnopharmacology, 41(1‐2), 19–37. 10.1016/0378-8741(94)90054-x [DOI] [PubMed] [Google Scholar]
- Freiburghaus, F. , Steck, A. , Pfander, H. , & Brun, R. (1998). Bioassay‐guided isolation of a diastereoisomer of kolavenol from Entada abyssinica active on Trypanosoma brucei rhodesiense . Journal of Ethnopharmacology, 61(3), 179–183. 10.1016/s0378-8741(98)00035-x [DOI] [PubMed] [Google Scholar]
- Githua, M. , & Hassanali, A. (2011). Antitrypanosomal Tetranotriterpenoids from Toona ciliata roots, Agriculture and Biology Journal of North America, 2(7), 1042–1047. 10.5251/abjna.2011.2.7.1042.1047 [DOI] [Google Scholar]
- González‐Coloma, A. , Reina, M. , Sáenz, C. , Lacret, R. , Ruiz‐Mesia, L. , Arán, V. J. , Sanz, J. , & Martínez‐Díaz, R. A. (2012). Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitology Research, 110(4), 1381–1392. 10.1007/s00436-011-2638-3 [DOI] [PubMed] [Google Scholar]
- Gupta, R. , Gabrielsen, B. , & Ferguson, S. M. (2005). Nature's medicines: Traditional knowledge and intellectual property management. Case studies from the National Institutes of Health (NIH), USA. Current Drug Discovery Technologies, 2(4), 203–219. 10.2174/157016305775202937 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashemi, N. , Ommi, D. , Kheyri, P. , Khamesipour, F. , Setzer, W. N. , & Benchimol, M. (2021). A review study on the anti‐trichomonas activities of medicinal plants. International Journal for Parasitology. Drugs and Drug Resistance, 15, 92–104. 10.1016/j.ijpddr.2021.01.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassan, M. D. , Castanha, R. , & Wolfram, D. (2020). Scientometric analysis of global trypanosomiasis research: 1988–2017. Journal of Infection and Public Health, 13(4), 514–520. 10.1016/j.jiph.2019.10.006 [DOI] [PubMed] [Google Scholar]
- Hata, Y. , Ebrahimi, S. N. , De Mieri, M. , Zimmermann, S. , Mokoka, T. , Naidoo, D. , Fouche, G. , Maharaj, V. , Kaiser, M. , Brun, R. , Potterat, O. , & Hamburger, M. (2014). Antitrypanosomal isoflavan quinones from Abrus precatorius . Fitoterapia, 93, 81–87. 10.1016/j.fitote.2013.12.015 [DOI] [PubMed] [Google Scholar]
- Hata, Y. , Zimmermann, S. , Quitschau, M. , Kaiser, M. , Hamburger, M. , & Adams, M. (2011). Antiplasmodial and antitrypanosomal activity ofpyrethrins and pyrethroids. Journal of Agricultural and Food Chemistry, 59(17), 9172–9176. 10.1021/jf201776z [DOI] [PubMed] [Google Scholar]
- Hoet, S. , Pieters, L. , Muccioli, G. G. , Habib‐Jiwan, J. L. , Opperdoes, F. R. , & Quetin‐Leclercq, J. (2007). Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. Journal of Natural Products, 70(8), 1360–1363. 10.1021/np070038q [DOI] [PubMed] [Google Scholar]
- Ibrahim, M. A. , Mohammed, A. , Isah, M. B. , & Aliyu, A. B. (2014). Anti‐trypanosomal activity of African medicinal plants: A review update. Journal of Ethnopharmacology, 154(1), 26–54. 10.1016/j.jep.2014.04.012 [DOI] [PubMed] [Google Scholar]
- Isoun, T. T. , & Isoun, M. J. (1974). In vitro cultivation of Trypanosoma vivax isolated from cattle. Nature, 251(5475), 513–514. 10.1038/251513a0 [DOI] [PubMed] [Google Scholar]
- Jain, S. , Jacob, M. , Walker, L. , & Tekwani, B. (2016). Screening North American plant extracts in vitro against Trypanosoma brucei for discovery of new antitrypanosomal drug leads. BMC Complementary and Alternative Medicine, 16, 131. 10.1186/s12906-016-1122-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamnaing, P. , Tsopmo, A. , Tanifum, E. A. , Tchuendem, M. H. , Tane, P. , Ayafor, J. F. , Sterner, O. , Rattendi, D. , Iwu, M. M. , Schuster, B. , & Bacchi, C. (2003). Trypanocidal diarylheptanoids from Aframomum letestuianum . Journal of Natural Products, 66(3), 364–367. 10.1021/np020362f [DOI] [PubMed] [Google Scholar]
- Kande Betu Ku Mesu, V. , Mutombo Kalonji, W. , Bardonneau, C. , Valverde Mordt, O. , Ngolo Tete, D. , Blesson, S. , Simon, F. , Delhomme, S. , Bernhard, S. , Mahenzi Mbembo, H. , Mpia Moke, C. , Lumeya Vuvu, S. , Mudji E'kitiak, J. , Akwaso Masa, F. , Mukendi Ilunga, M. , Mpoyi Muamba Nzambi, D. , Mayala Malu, T. , Kapongo Tshilumbwa, S. , Botalema Bolengi, F. , … Tarral, A. (2021). Oral fexinidazole for stage 1 or early stage 2 African Trypanosoma brucei gambiense trypanosomiasis: A prospective, multicentre, open‐label, cohort study. The Lancet Global Health, 9(7), e999–e1008. 10.1016/S2214-109X(21)00208-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenguele, H. M. (2009). Biological evaluation of four selected African medicinal plants for their trypanocidal properties, mode of action, and chemical compounds. PhD Thesis, Howard University. [Google Scholar]
- Kasilo, O. M. , Lusamba‐Dikassa, P. S. , Mwikisa Ngenda, C. , & Trapsida, J.‐M. (2010). An overview of the traditional medicine situation in the African region. The African Health Monitor, Online, 7–15. [Google Scholar]
- Kpadonou Kpoviessi, B. G. , Kpoviessi, S. D. , Yayi Ladekan, E. , Gbaguidi, F. , Frédérich, M. , Moudachirou, M. , Quetin‐Leclercq, J. , Accrombessi, G. C. , & Bero, J. (2014). In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. Journal of Ethnopharmacology, 155(3), 1417–1423. 10.1016/j.jep.2014.07.014 [DOI] [PubMed] [Google Scholar]
- Kohno, S. , Kida, H. , Mizuguchi, M. , Shimada, J. , & S‐021812 Clinical Study Group . (2010). Efficacy and safety of intravenous peramivir for treatment of seasonal influenza virus infection. Antimicrobial Agents and Chemotherapy, 54(11), 4568–4574. 10.1128/AAC.00474-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar, R. , Badarinath, K. , & Ravishankar, H. (2014). Evaluation of selected medicinal plants for their in vitro activity against trypanosomiasis. Evaluation, 9(9), 35–42. [Google Scholar]
- Lawal, B. , Shittu, O. K. , Kabiru, A. Y. , Jigam, A. A. , Umar, M. B. , Berinyuy, E. B. , & Alozieuwa, B. U. (2015). Potential antimalarials from African natural products: A reviw. Journal of Intercultural Ethnopharmacology, 4(4), 318–343. 10.5455/jice.20150928102856 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le, T. B. , Beaufay, C. , Nghiem, D. T. , Pham, T. A. , Mingeot‐Leclercq, M. P. , & Quetin‐Leclercq, J. (2019). Evaluation of the anti‐trypanosomal activity of vietnamese essential oils, with emphasis on Curcuma longa L. and its components. Molecules (Basel, Switzerland), 24(6), 1158. 10.3390/molecules24061158 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llurba Montesino, N. , Kaiser, M. , Brun, R. , & Schmidt, T. J. (2015). Search for antiprotozoal activity in herbal medicinal preparations; new natural leads against neglected tropical diseases. Molecules (Basel, Switzerland), 20(8), 14118–14138. 10.3390/molecules200814118 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loo, C. S. , Lam, N. S. , Yu, D. , Su, X. Z. , & Lu, F. (2017). Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacological Research, 117, 192–217. 10.1016/j.phrs.2016.11.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinez‐Peinado, N. , Cortes‐Serra, N. , Torras‐Claveria, L. , Pinazo, M.‐J. , Gascon, J. , Bastida, J. , & Alonso‐Padilla, J. (2020). Amaryllidaceae alkaloids with anti‐Trypanosoma cruzi activity. Parasites Vectors, 13, 299. 10.1186/s13071-020-04171-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mbaya, A. W. , Aliyu, M. M. , & Ibrahim, U. I. (2009). The clinico‐pathology and mechanisms of trypanosomosis in captive and free‐living wild animals: A review. Veterinary Research Communications, 33(7), 793–809. [DOI] [PubMed] [Google Scholar]
- Mesquita, M. L. D. , Desrivot, J. , Fournet, A. , Paula, J. E. D. , Grellier, P. , & Espindola, L. S. (2005). Antileishmanial and trypanocidal activity of Brazilian Cerrado plants. Memórias do Instituto Oswaldo Cruz, 100(7), 783–787. 10.1590/S0074-02762005000700019 [DOI] [PubMed] [Google Scholar]
- Mokoka, T. A. , Xolani, P. K. , Zimmermann, S. , Hata, Y. , Adams, M. , Kaiser, M. , Moodley, N. , Maharaj, V. , Koorbanally, N. A. , Hamburger, M. , Brun, R. , & Fouche, G. (2013). Antiprotozoal screening of 60 South African plants, and the identification of the antitrypanosomal germacranolides schkuhrin I and II. Planta Medica, 79(14), 1380–1384. 10.1055/s-0033-1350691 [DOI] [PubMed] [Google Scholar]
- Molina‐Garza, Z. J. , Bazaldúa‐Rodríguez, A. F. , Quintanilla‐Licea, R. , & Galaviz‐Silva, L. (2014). Anti‐Trypanosoma cruzi activity of 10 medicinal plants used in northeast Mexico. Acta Tropica, 136, 14–18. 10.1016/j.actatropica.2014.04.006 [DOI] [PubMed] [Google Scholar]
- Muñoz, O. M. , Maya, J. D. , Ferreira, J. , Christen, P. , San Martin, J. , López‐Muñoz, R. , Morello, A. , & Kemmerling, U. (2013). Medicinal plants of Chile: Evaluation of their anti‐Trypanosoma cruzi activity. Zeitschrift fur Naturforschung C, 68(5–6), 198–202. [PubMed] [Google Scholar]
- Mwangi, E. S. K. , Keriko, J. M. , Machocho, A. K. , Wanyonyi, A. W. , Malebo, H. M. , Chhabra, S. C. , Mwangi, E. S. , Keriko, J. M. , Machocho, A. K. , Wanyonyi, A. W. , Malebo, H. M. , Chhabra, S. C. , Mwangi, E. S. K. , & Tarus, P. K. (2010). Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa . Journal of Medicinal Plants Research, 4(9), 726–731. [Google Scholar]
- Newman, D. J. , & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. 10.1021/acs.jnatprod.5b01055 [DOI] [PubMed] [Google Scholar]
- Newman, D. J. , Cragg, G. M. , & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981–2002. Journal of Natural Products, 66(7), 1022–1037. 10.1021/np030096l [DOI] [PubMed] [Google Scholar]
- Nezaratizade, S. , Hashemi, N. , Ommi, D. , Orhan, I. E. , & Khamesipour, F. (2021). A systematic review of anti‐Entamoeba histolytica activity of medicinal plants published in the last 20 years. Parasitology, 148(6), 672–684. 10.1017/S0031182021000172 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nganso, Y. O. , Ngantchou, I. E. , Nkwenoua, E. , Nyasse, B. , Denier, C. , Hannert, V. , & Schneider, B. (2011). Antitrypanosomal and cytotoxic activities of 22‐Hydroxyclerosterol, a new sterol from Allexis cauliflora (Violaceae). Scientia Pharmaceutica, 79(1), 137–144. 10.3797/scipharm.1012-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nibret, E. , Sporer, F. , Asres, K. , & Wink, M. (2009). Antitrypanosomal and cytotoxic activities of pyrrolizidine alkaloid‐producing plants of Ethiopia. The Journal of Pharmacy and Pharmacology, 61(6), 801–808. 10.1211/jpp/61.06.0014 [DOI] [PubMed] [Google Scholar]
- Nok, A. J. (2002). Azaanthraquinone inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma congolense . Cell Biochemistry and Function, 20(3), 205–212. 10.1002/cbf.948 [DOI] [PubMed] [Google Scholar]
- Ntie‐Kang, F. , Lifongo, L. L. , Mbaze, L. M. , Ekwelle, N. , Owono Owono, L. C. , Megnassan, E. , Judson, P. N. , Sippl, W. , & Efange, S. M. (2013). Cameroonian medicinal plants: A bioactivity versus ethnobotanical survey and chemotaxonomic classification. BMC Complementary and Alternative Medicine, 13, 147. 10.1186/1472-6882-13-147 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nunes, F. O. , de Almeida, J. M. , Ferreira, A. , da Cruz, L. A. , Jacob, C. , Garcez, W. S. , & Garcez, F. R. (2020). Antitrypanosomal butanolides from Aiouea trinervis . EXCLI Journal, 19, 323–333. 10.17179/excli2020-1088 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nweze, N. E. (2012). In vitro anti‐trypanosomal activity of Morinda lucida leaves. African Journal of Biotechnology, 11(7), 1812–1817. 10.5897/AJB11.862 [DOI] [Google Scholar]
- Nweze, N. E. , Anene, B. M. , & Asuzu, I. U. (2011). Investigation of the antitrypanosomal activity of Buchholzia coriacea seed extract against a field strain of Trypanosoma congolense . African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 8(5 Suppl), 175–180. 10.4314/ajtcam.v8i5S.23 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obah, A. , Lawal, M. , & Malann, Y. (2013). Anti‐Trypanosoma activity of the ethanolic leaf extract of Senna occidentalis (Fabaceae) against T. brucei brucei infected mice. International Journal of Basic and Applied Sciences, 2(1), 32–37. [Google Scholar]
- Odhiambo, J. A. , Lukhoba, C. W. , & Dossaji, S. F. (2011). Evaluation of herbs as potential drugs/medicines. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 8(5 Suppl), 144–151. 10.4314/ajtcam.v8i5S.20 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliveira, M. , Sales Junior, P. A. , Rodrigues, M. J. , DellaGreca, M. , Barreira, L. , Murta, S. M. , Romanha, A. J. , & Custódio, L. (2016). Unlocking the in vitro anti‐Trypanosoma cruzi activity of halophyte plants from the southern Portugal. Asian Pacific Journal of Tropical Medicine, 9(8), 735–741. 10.1016/j.apjtm.2016.06.015 [DOI] [PubMed] [Google Scholar]
- Osório, A. L. , Madruga, C. R. , Desquesnes, M. , Soares, C. O. , Ribeiro, L. R. , & Costa, S. C. (2008). Trypanosoma (Duttonella) vivax: Its biology, epidemiology, pathogenesis, and introduction in the New World – A review. Memorias do Instituto Oswaldo Cruz, 103(1), 1–13. 10.1590/s0074-02762008000100001 [DOI] [PubMed] [Google Scholar]
- Page, M. J. , McKenzie, J. E. , Bossuyt, P. M. , Boutron, I. , Hoffmann, T. C. , Mulrow, C. D. , Shamseer, L. , Tetzlaff, J. M. , Akl, E. A. , Brennan, S. E. , Chou, R. , Glanville, J. , Grimshaw, J. M. , Hróbjartsson, A. , Lalu, M. M. , Li, T. , Loder, E. W. , Mayo‐Wilson, E. , McDonald, S. , … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.), 372, n71. 10.1136/bmj.n71 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pathiranage, A. L. , Stubblefield, J. M. , Zhou, X. , Miao, J. , Newsome, A. L. , & Dunlap, N. (2016). Antitrypanosomal activity of iridals from Iris domestica, Phytochemistry Letters, 18, 44–50. 10.1016/j.phytol.2016.08.025 [DOI] [Google Scholar]
- Pan American Health Organization (PAHO); World Health Organization. Epidemiological update: Neurological syndrome, congenital anomalies, and Zika virus infection. (2016). Jan 17 [cited 2018 Sep 19]. https://www.paho.org/hq/dmdocuments/2016/2016‐jan‐17‐cha‐epi‐update‐zika‐virus.pdf
- Patwardhan, B. (2005). Ethnopharmacology and drug discovery. Journal of Ethnopharmacology, 100(1–2), 50–52. 10.1016/j.jep.2005.06.006 [DOI] [PubMed] [Google Scholar]
- Pan American Health Organization (PAHO) ; World Health Organization. Epidemiological update: Neurological syndrome, congenital anomalies, and Zika virus infection. 2016. [cited 2018 Sep 19]. https://www.paho.org/hq/dmdocuments/2016/2016‐jan‐17‐cha‐epi‐update‐zika‐virus.pdf
- Pink, R. , Hudson, A. , Mouriès, M. A. , & Bendig, M. (2005). Opportunities and challenges in antiparasitic drug discovery. Nature Reviews. Drug Discovery, 4(9), 727–740. 10.1038/nrd1824 [DOI] [PubMed] [Google Scholar]
- Priotto, G. , Kasparian, S. , Mutombo, W. , Ngouama, D. , Ghorashian, S. , Arnold, U. , Ghabri, S. , Baudin, E. , Buard, V. , Kazadi‐Kyanza, S. , Ilunga, M. , Mutangala, W. , Pohlig, G. , Schmid, C. , Karunakara, U. , Torreele, E. , & Kande, V. (2009). Nifurtimox‐eflornithine combination therapy for second‐stage African Trypanosoma brucei gambiense trypanosomiasis: A multicentre, randomised, phase III, non‐inferiority trial. Lancet (London, England), 374(9683), 56–64. 10.1016/S0140-6736(09)61117-X [DOI] [PubMed] [Google Scholar]
- Raheem, D. J. , Tawfike, A. F. , Abdelmohsen, U. R. , Edrada‐Ebel, R. , & Fitzsimmons‐Thoss, V. (2019). Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non‐scripta). Scientific Reports, 9(1), 2547. 10.1038/s41598-019-38940-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regueira‐Neto, M. , Tintino, S. R. , Rolón, M. , Coronal, C. , Vega, M. C. , de Queiroz Balbino, V. , & de Melo Coutinho, H. D. (2018). Antitrypanosomal, antileishmanial and cytotoxic activities of Brazilian red propolis and plant resin of Dalbergia ecastaphyllum (L) Taub. Food and chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 119, 215–221. 10.1016/j.fct.2018.04.029 [DOI] [PubMed] [Google Scholar]
- Rocha, L. G. , Almeida, J. R. , Macêdo, R. O. , & Barbosa‐Filho, J. M. (2005). A review of natural products with antileishmanial activity. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 12(6‐7), 514–535. 10.1016/j.phymed.2003.10.006 [DOI] [PubMed] [Google Scholar]
- Schinella, G. R. , Tournier, H. A. , Prieto, J. M. , Ríos, J. L. , Buschiazzo, H. , & Zaidenberg, A. (2002). Inhibition of Trypanosoma cruzi growth by medical plant extracts. Fitoterapia, 73(7‐8), 569–575. 10.1016/s0367-326x(02)00246-0 [DOI] [PubMed] [Google Scholar]
- Senn, M. , Gunzenhauser, S. , Brun, R. , & Séquin, U. (2007). Antiprotozoal polyacetylenes from the Tanzanian medicinal plant Cussonia zimmermannii . Journal of Natural Products, 70(10), 1565–1569. 10.1021/np0702133 [DOI] [PubMed] [Google Scholar]
- Sepúlveda‐Robles, O. , Espinoza‐Gutiérrez, B. , Gomez‐Verjan, J. C. , Guzmán‐Gutiérrez, S. L. , De Ita, M. , Silva‐Miranda, M. , Espitia‐Pinzón, C. I. , Fernández‐Ramírez, F. , Herrera‐Salazar, A. , Mata‐Rocha, M. , Ortega‐Hernández, A. , & Reyes‐Chilpa, R. (2019). Trypanocidal and toxicological assessment in vitro and in silico of three sesquiterpene lactones from Asteraceae plant species. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 125, 55–61. 10.1016/j.fct.2018.12.023 [DOI] [PubMed] [Google Scholar]
- Shaba, P. O. , & Rao, J. R. (2011). In vitro trypanocidal activity of methanolic extracts of Quercus borealis leaves and Zingiber officinale roots against Trypanosoma evansi . Greener Journal of Agricultural Sciences, 1, 41–47. [Google Scholar]
- Shuaibu, M. N. , Wuyep, P. T. , Yanagi, T. , Hirayama, K. , Ichinose, A. , Tanaka, T. , & Kouno, I. (2008). Trypanocidal activity of extracts and compounds from the stem bark of Anogeissus leiocarpus and Terminalia avicennoides . Parasitology Research, 102(4), 697–703. 10.1007/s00436-007-0815-1 [DOI] [PubMed] [Google Scholar]
- Simarro, P. P. , Cecchi, G. , Franco, J. R. , Paone, M. , Diarra, A. , Ruiz‐Postigo, J. A. , Fèvre, E. M. , Mattioli, R. C. , & Jannin, J. G. (2012). Estimating and mapping the population at risk of sleeping sickness. PLoS Neglected Tropical Diseases, 6(10), e1859. 10.1371/journal.pntd.0001859 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simoben, C. V. , Ntie‐Kang, F. , Akone, S. H. , & Sippl, W. (2018). Compounds from african medicinal plants with activities against selected parasitic diseases: Schistosomiasis, trypanosomiasis and leishmaniasis. Natural Products and Bioprospecting, 8(3), 151–169. 10.1007/s13659-018-0165-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slusarczyk, S. , Zimmermann, S. , Kaiser, M. , Matkowski, A. , Hamburger, M. , & Adams, M. (2011). Antiplasmodial and antitrypanosomal activity of tanshinone‐type diterpenoids from Salvia miltiorrhiza . Planta Medica, 77(14), 1594–1596. 10.1055/s-0030-1270933 [DOI] [PubMed] [Google Scholar]
- Tajbakhsh, E. , Khamesipour, A. , Hosseini, S. R. , Kosari, N. , Shantiae, S. , & Khamesipour, F. (2021a). The effects of medicinal herbs and marine natural products on wound healing of cutaneous leishmaniasis: A systematic review. Microbial Pathogenesis, 161(Pt A), 105235. 10.1016/j.micpath.2021.105235 [DOI] [PubMed] [Google Scholar]
- Tajbakhsh, E. , Kwenti, T. E. , Kheyri, P. , Nezaratizade, S. , Lindsay, D. S. , & Khamesipour, F. (2021b). Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: A systematic review of literature. Malaria Journal, 20, 349 10.1186/s12936-021-03866-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tchinda, A. T. , Tsopmo, A. , Tane, P. , Ayafor, J. F. , Connolly, J. D. , & Sterner, O. (2002). Vernoguinosterol and vernoguinoside, trypanocidal stigmastane derivatives from Vernonia guineensis (Asteraceae). Phytochemistry, 59(4), 371–374. 10.1016/s0031-9422(01)00448-4 [DOI] [PubMed] [Google Scholar]
- Tung, N. H. , Suzuki, M. , Uto, T. , Morinaga, O. , Kwofie, K. D. , Ammah, N. , Koram, K. A. , Aboagye, F. , Edoh, D. , Yamashita, T. , Yamaguchi, Y. , Setsu, T. , Yamaoka, S. , Ohta, N. , & Shoyama, Y. (2014). Anti‐trypanosomal activity of diarylheptanoids isolated from the bark of Alnus japonica . The American Journal of Chinese Medicine, 42(5), 1245–1260. 10.1142/S0192415X14500785 [DOI] [PubMed] [Google Scholar]
- Wangchuk, P. (2014). Phytochemical analysis, bioassays and the identification of drug lead compounds from seven Bhutanese medicinal plants. Australia: University of Wollongong. [Google Scholar]
- Welburn, S. C. , Maudlin, I. , & Simarro, P. P. (2009). Controlling sleeping sickness – A review. Parasitology, 136(14), 1943–1949. 10.1017/S0031182009006416 [DOI] [PubMed] [Google Scholar]
- W. H. O. (2015) Chagas disease (American trypanosomiasis) 340. Available at: https://www.who.int/news‐room/fact‐sheets/detail/chagas‐disease‐(american‐trypanosomiasis) (Accessed: 13 August 2020)
- W. H. O. (2018) Human African trypanosomiasis (sleeping sickness). Available at: https://www.who.int/health‐topics/human‐african‐trypanosomiasis#tab=tab_1 (Accessed: 13 August 2020)
- Wilkinson, S. R. , & Kelly, J. M. (2009). Trypanocidal drugs: Mechanisms, resistance and new targets. Expert Reviews in Molecular Medicine, 11, e31. 10.1017/S1462399409001252 [DOI] [PubMed] [Google Scholar]
- Xiao, H. , Rao Ravu, R. , Tekwani, B. L. , Li, W. , Liu, W. B. , Jacob, M. R. , Khan, S. I. , Cai, X. , Peng, C. Y. , Khan, I. A. , Li, X. C. , & Wang, W. (2017). Biological evaluation of phytoconstituents from Polygonum hydropiper. Natural Product Research, 31(17), 2053–2057. 10.1080/14786419.2016.1269094 [DOI] [PubMed] [Google Scholar]
- Zimmermann, S. , Thomi, S. , Kaiser, M. , Hamburger, M. , & Adams, M. (2012). Screening and HPLC‐based activity profiling for new antiprotozoal leads from European plants. Scientia Pharmaceutica, 80(1), 205–213. 10.3797/scipharm.1111-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analysed in this study.