Skip to main content
Veterinary Medicine and Science logoLink to Veterinary Medicine and Science
. 2022 Aug 29;8(6):2738–2772. doi: 10.1002/vms3.912

The anti‐Trypanosoma activities of medicinal plants: A systematic review of the literature

Shahin Nekoei 1, Faham Khamesipour 1,2,, Solomon Habtemariam 3, Wanderley de Souza 4,5, Pardis Mohammadi Pour 6, Seyed Reza Hosseini 1,
PMCID: PMC9677405  PMID: 36037401

Abstract

Background

The existing drug treatments for trypanosomiases are limited and suffer from shortcomings due to their toxicity and the emergence of resistant parasites. Developing anti‐trypanosomal compounds based on natural products is a promising way of fighting trypanosomiases.

Objectives

This study aims to identify through scientific review a large variety of medicinal plants (anti‐trypanosomal) used worldwide and scientifically shown to display anti‐trypanosomal effects.

Methods

To collect data, the anti‐trypanosomal activities of Africa, Asia, the Middle East, South America, North America, Europe and Oceania medicinal plants have been checked by considering the published paper.

Results

Based on collected data, 77 natural molecules were reported in the literature. Of which 59 were from the African region, 11 from Asia, 3 from Europe and 4 from Latin America. These active components belong to alkaloids, triterpenoids, lactone, quinoids, flavonoids, iridoids, lignans, steroids, lipids, oxygenated heterocycles, benzenoids, proteins, coumarins, phenylpropanoids and peptides. We also specified the prosperous plants with unique anti‐trypanosomal activities.

Conclusions

However, there is a need for further studies on the ability of the isolated compounds to ameliorate the trypanosome‐induced pathological alterations and also the elucidation of their modes of actions and activities against other trypanosome species.

Keywords: anti‐trypanosomal activity, medicinal plants, review

1. INTRODUCTION

Trypanosomiases are a widespread vector‐borne disease globally that affects humans and domestic and wild animals. The pathophysiology of these diseases may vary depending on the pathogenic species involved and the host. Its symptoms in humans include irregular fever and septicemia. At the same time, in animals, a decrease in the number of red blood cells and body mass can lead to unproductivity and death (Osório et al., 2008). Trypanosomiases have been considered a significant public health problem in animals and humans (Hassan et al., 2020).

The global prevalence of trypanosomiases, in general, is underreported (Wilkinson and Kelly, 2009). The two significant trypanosomiases in humans are the African Trypanosomiases (HAT, also known as sleeping sickness) and Chagas disease, caused by Trypanosoma brucei and Trypanosoma cruzi. According to the World Health Organization (PAHO, 2016) data, T. cruzi infects about 5–6 million people worldwide and causes approximately 10,000 deaths per year (WHO, 2015). For HAT, its incidence is now at a historic low, with fewer than 1000 cases reported in 2018 (WHO, 2018).

A small number of trypanocidal drugs have shown efficacy against the two species of parasites. These include two approved drugs that can treat Chagas Disease during its acute phase (Benznidazole and Nifurtimox) (Sepúlveda‐Robles et al., 2019). The recommended drugs to treat the HAT include suramin (EC: 205‐658‐4), pentamidine (EC: 205‐424‐1), melarsoprol (EC: 207‐793‐4) and Fexinidazole Winthrop (Dickie et al., 2020). Fexinidazole is a DNA synthesis inhibitor for the Neglected Diseases initiative (DNDi) for the oral treatment of HAT and Chagas’ disease, which shows activity against Trypanosoma brucei gambiense and T. b. rhodesiense as well as preceeds through Phase II clinical trial based on FDA definition (Deeks, 2019). The other drugs, including Nifurtimox, are in Phase III clinical trials, and Eflornithine (EC: 205‐658‐4) has not yet entered into clinical trial stages. However, the first three drugs have limitations, including poor efficacy, potential adverse effects and the development of resistance by the parasites (Wilkinson and Kelly, 2009). Oral fexinidazole is a valuable first‐line treatment option in the early stages of (stage 1 or early stage 2) African Trypanosoma brucei gambiense (Kande Betu Ku Mesu et al., 2021). Eflornithine is a standard treatment for second‐stage therapy, and nifurtimox‐eflornithine combination therapy is a proper combination for first‐line use in HAT control programs (Priotto et al., 2009). Additionally, DNDi has developed another oral therapy, acoziborole, suitable for the treatment of both stage 1 and stage 2 disease in a single dose (Dickie et al., 2020).

Also, the neglected disease status means a little economic benefit for developing novel drugs in this field (Dickie et al., 2020). There is little interest in developing drugs against these diseases because they are neglected. However, they are called ‘neglected diseases’ because pharmaceutical companies have little interest in investing in them, as fexinidazole has recently met that need for T. brucei gambiense (Kande Betu Ku Mesu et al., 2021). However, melarsoprol is very toxic and is still being used against T. brucei rhodesiense (Fairlamb and Horn, 2018), and resistance may still arise against fexinidazole, so new lead compounds for drugs against these parasites remain essential.  Thus, there has been a considerable need to find new trypanocidal agents with better efficacy and safety profiles.

Natural products are valuable sources for discovering and developing effective medicines against various diseases (Hashemi et al., 2021; Newman and Cragg, 2016; Nezaratizade et al., 2021; Tajbakhsh et al., 2021a; Tajbakhsh et al., 2021b). The WHO report highlighted that a quarter of currently useful drugs had been derived from traditional plants. For many parts of the world, especially where trypanosomiases are prevalent in Africa, India, China, the Middle East and South Asia, traditional medicines with local preparations are the predominant means of therapy (Ahmad Khan and Ahmad, 2019). These countries are also endowed with tremendous medicinal plant resources, some of which have shown efficacy under in vitro and/or in vivo conditions. At present, the available reviews in this field report anti‐trypanosomal activity for particular regions, such as the African region (Ibrahim et al., 2014; Lawal et al., 2015), Myanmar (Asia) (Bawm, 2010) and Saudi Arabia (Al‐Musayeib et al., 2012). These exciting but somehow dated but interesting publications reported a lot of medicinal plants and some isolated active compounds. Finally, the current, up‐to‐date review covers natural products isolated from plants used worldwide and active against trypanosomiases.

1.1. Ethnopharmacology of anti‐trypanosomal medicinal plants in Africa continent

Since the primitive period, herbs have been a valuable source of medication for both human and livestock diseases (Odhiambo et al., 2011). During these thousand years of observation, it has been found that different parts of herbs possess healing properties. With the advancement in pharmaceutical and medical sciences, phytoconstituents were subsequently confirmed to be accountable for the curative characteristics of plants. Nowadays, high‐tech methods have resulted in the isolation and elucidation of these phytoconstituents. Some of these phytoconstituents have served as lead compounds to develop chemotherapeutic drugs against diseases, whether infectious or non‐infectious (Kasilo et al., 2010).

On the one hand, some modern drugs have their ethnopharmacological sources. Nevertheless, despite technological advances, the discovery of new drugs faces a primary innovation deficit that unfavourably impacts the pharmaceutical industry. On the other hand, current studies demonstrate that entry barriers have decreased for introducing a new drug (DiMasi & Paquette, 2004; Patwardhan, 2005).  Seventy‐five per cent of the approved anti‐infectious disease drugs from 1981 to 2002 are natural origins (Newman et al., 2003), while 61% of all new chemical compounds presented as drugs during the same period could be considered natural products (Gupta et al., 2005).

Aside from this significant role of medicinal herbs in drug discovery, the use of local herbal products provides the only option for therapeutic purposes for African populations. The primary reason for this issue is the lack of a sound health care system in some parts of the continent, which causes the population's vulnerability to many infectious diseases (Elujoba et al., 2005). Eighty per cent of the African population depends almost entirely on herbal medicinal products for their primitive health care needs (Kasilo et al., 2010).

One of the significant infections that severely affect humans and animals in Africa is African trypanosomiasis, also called ‘sleeping sickness’ in humans or ‘Nagana’ in animals. (Atawodi 2005; Welburn et al., 2009). It is one of the most neglected parasitic diseases that affect human health and dramatically reduces Africa's livestock productivity (Atawodi 2005; Welburn et al., 2009). Preliminary estimates show that almost 70 million people distributed over 1.55 million km2 in Africa are at risk of this infectious disease (Simarro et al., 2012). In addition, animal trypanosomiases, or Nagana, are distributed over nearly 25 million km2 in Africa, where livestock productivity fell by 50%. The important species in this disease include Trypanosoma vivaxTrypanosoma congolense, Trypanosoma evansi  and  Trypanosoma brucei (Mbaya et al., 2009). Currently, the African trypanosomiases chemotherapy remains abandoned due to the available approved drugs with some concerns, including parasite resistance, toxicity, poor availability, high cost and parenteral root of administration (Ibrahim et al., 2014). Fortunately, the continent has vast resources of medicinal plants that are traditionally used to cure this disease. This is evident in the tendency to use ethnobotanical science to manage disease in different parts of Africa (Atawodi et al., 2002; Ntie‐Kang et al., 2013). It is important to note that studies have confirmed the impact of these African herbal remedies as anti‐trypanosomal agents under in vitro and/or in vivo models. Hence, a critical review of these studies (anti‐trypanosomal) African medicinal plants in the African continent and anti‐trypanosomal plants in other continents is required to provide a comprehensive record to specify gaps in knowledge about the basic strategies to address such gaps.

2. MATERIALS AND METHODS

2.1. Search strategy

Literature about medicinal plants (with anti‐trypanosomal activity) was collected online from published articles using the keywords: ‘Trypanosoma AND medicinal plant’, ‘Trypanosoma AND natural product’ from 1960 to May 2020. These keywords were entered into the primary scientific databases, such as PubMed, Science Direct, Scopus and Google scholar. The articles obtained were included based on the reliability of their source. Some articles were found by examining the bibliography of other publications or by directly accessing the webpage of the journal.

2.2. Inclusion and exclusion criteria

The documents used were selected based on several criteria: (a) they have published articles or doctoral theses, (b) research has been carried out on antiparasitic medicinal plants in general and anti‐trypanosomal plants in particular, (c) mention at least the minimum inhibitory concentration or the inhibition degree of the extract(s) or isolated compound(s) considering the anti‐trypanosomal activity, (d) in cases where different authors present results for the same plants, the most recent results are prioritised unless they present more minor details such as cytotoxicity tests, (e) due to the volume of data available for African region medicinal plants, only plants whose bioactive compound have been isolated were reported herein. The EC50 below 25 µM or µg for pure compounds was considered the search limit for the whole region. The author aimed to review the tested medicinal plant extracts, not just the isolated compounds from plants. Literature was not used when the results came from an ethnobotanical survey without scientific investigation.

2.3. Data extraction

The information such as the species and family of the plant, the type of extraction, the active compound(s) if isolated, the strain of Trypanosoma tested, the 50% effective concentration and cytotoxic concentration, country of study and the name of the author were extracted from relevant literature and presented in the form of a table according to geographical location.

2.4. Ethical approval statement

An ethics statement is not applicable because this study is based exclusively on published literature.

3. RESULTS AND DISCUSSION

3.1. Analysis of the included literature

A total of 70 articles have been selected based on the inclusion criteria. Twenty studies reported African anti‐trypanosomal plants, 11 reported Asian anti‐trypanosomal plants, three reported the Middle East anti‐trypanosomal plants and 15 reported Latin American anti‐trypanosomal plants. Two studies reported North American anti‐trypanosomal plants, and nine studies reported European anti‐trypanosomal plants. One study reported Oceania's anti‐trypanosomal plants (Figure 1). A total of 70 relevant kinds of literature have been selected based on the inclusion criteria. The PRISMA 2020 flow diagram shows 25, 16, 18, 1, 9 and 1, including database searches (Figure 2) (Page et al., 2021).

FIGURE 1.

FIGURE 1

PRISMA 2020 flow diagram for which included searches of databases

FIGURE 2.

Chemical structures of isolated compounds from Africa medicinal plants

graphic file with name VMS3-8-2738-g002.jpg

graphic file with name VMS3-8-2738-g004.jpg

graphic file with name VMS3-8-2738-g003.jpg

3.2. African region plants

Ethnobotanical resources for Africa demonstrated unusual plants with anti‐trypanosomal activity (Ibrahim et al., 2014; Lawal et al., 2015). We explained 264 and 215 plants, respectively, which were assessed for anti‐trypanosomal activity. Due to the high amount of data available for African region anti‐trypanosomal plants, only the plants with the minimum inhibitory concentration of the bioactive compound were scrutinised (Table 1 and Figure 3).

TABLE 1.

Plants assessed for anti‐trypanosomal activity and the EC50 of bioactive compounds isolated

Scientific name Family Part(s) used Solvent Bioactive compound(s) Model Sub species cytotoxic/ biological activity EC50 Country References
Abrus precatorius L. subsp. africanus Verdc Leguminosae Leaf Methanol Abruquinone K, L, A and D In vitro T. b. r 57.3, 7.5, 34.5 and 4.8 µM 0.1, 0.02, 0.02 and 0.01 µM South Africa (Hata et al., 2014)
Aframomum letestuanum Gagnep Zingiberaceae Seed DCM Letestuianin C and 5‐hydroxy‐1,7‐bis(4‐hydroxyphenyl)hepta‐4,6‐dien‐3‐one In vitro T.b. b 1.4 and 2.6 µg/ml Cameroon (Kamnaing et al., 2003)
Allexis cauliflora (Oliv.) Pierre Violaceae Leaf DCM 22‐Hydroxyclerosterol In vitro T.b. b 1.12 µM 1.56 µM inhibit the glycolytic enzyme PGI Cameroon (Nganso et al., 2011)
Ancistrocladus abbreviatus subsp. lateralis Gereau Ancistrocladaceae Leaves, stem bark and roots DCM Ancistrocladidine, Ancistrotanzanines B and C, Ancistrotectoriline A and O,N‐dimethylancistrocladidine In vitro

T.b.r

T.c

28.3, 8.1, 40.7, 6.5 and 42.9 µg/ml 0.17 to 12.41 µM Cameroon

(Simoben et al., 2018)

(Bringmann et al. 2003, Bringmann et al. 2004)

Solanecio angulatus

Crotalaria phillipsiae

Artemisia annua L.

Fabaceae

Asteraceae

Flower

Twigs

Leaf

DCM/

methanol

Artemisinin

In vitro T.b. b

>500

27.39

12.17e, 12.47e µg/ml and 0.127 µM

Tanzania (Nibret et al., 2009)
Azadirachta indica A.Juss. Meliaceae Leaf Chloroform 7,15‐dihydroxy‐7,15‐deoxo nimbin In vitro T.b. r 15.6 µg/ml Kenya (Githua and Hassanali, 2011)
Buchholzia coriacea Engl Capparaceae Seeds Methanol Beta‐sitosterol α–sulphur In vitro T.b. b No noticeable morphological changes 12.5 and 25 µg/ml Nigeria (Nweze, Anene and Asuzu, 2011)
Cassytha filiformis L. Lauraceae Leaf DCM Cassythine In vitro T.b. b 15.2 µM 6 µM Cameroon (Simoben et al., 2018)
Chrysanthemum cinerariifolium (Trevir.) Vis Asteraceae Flowers n‐hexane

Cinerin (II)

Pyrethrin (I,II)

Jasmolin (II)

In vitro T.b. r 28, 146.6, 95.1 and 31.5

12.2

6.9, 10.6

12 µg/ml

South Africa (Hata et al., 2011)
Cussonia zimmermannii Harms Araliaceae Root bark Petroleum ether extract Polyacetylenes (MS‐1, MS‐2 and MS‐4) In vitro

T.b.r/T.cr

54(17), 12(3.6) and 58(22) µM (µg/ml) 18 (5.4), 0.46 (0.14) and 1.1 (0.42)/ 26 (7.9), 0.65 (0.20) and 0.40 (0.15) µM (µg/ml) Tanzania (Senn et al., 2007)
Dioncophyllum thollonii Baill Dioncophyllaceae Roots DCM Dioncophylline E In vitro

T.b.r/T.cr

0.73 and 18.4 µg/ml Cameroon (Simoben et al., 2018)
Drypetes gerrardii Hutch. Putranjivaceae Stem

DCM/methanol

Putranoside A In vitro T.b. r 68.2 µM 18.0 µM South Africa (Hata et al., 2014)
Entada abyssinica A.Rich. Leguminosae Stem Ethanol Kolavenol In vitro T.b. r 2.5 mg/ml (8.6 mM) Tanzania (Freiburghaus et al., 1998)
Eucalyptus maculata Hook. Myrtaceae Leaf Hexane, ethyl acetate and methanol Triterpenoid (3β,13β‐dihydroxy‐urs‐11‐en‐28‐oic acid) In vitro

T. strains s427 WT, B48 and AQP2/3KO

1.58 µg/ml 1.58, 1.55 and 1.39 µg/ml Nigeria (Ebiloma et al., 2017)
Garcinia lucida Vesque Clusiacea Stem DCM Dihydrochelerythrine, 6‐acetonyldihydrochelerythrine, Lucidamine A In vitro T.b. b 35.4, 15.3 and 11.6 µM 0.8, 3.9 and 14.1 µM Cameroon (Fotie et al., 2007)

Keetia leucantha (K.Krause) Bridson

Rubiaceae Leaf DCM Oleanolic acid/ursolic acid/betulinic acid/β‐ionone In vitro T. b.b

7.3, 2.5, 19.1, 10.5 µg/ml

Nigeria (Bero et al., 2013)
Khaya anthotheca (Welw.) C.DC. Meliaceae Seeds Pet. ether Grandifolione In vitro

T.b.r/T.cr

44.7

10.66/20.9 µg/ml

Uganda (Oboh, Lawal and Malann, 2013)
Mitracarpus scaber Zucc. ex Schult. & Schult.f. Rubiaceae Leaf Methanol Azaanthra‐quinone In vitro/in vivo T.co in bloodstream of BalbC mice, 50 mg/kg/d ‐/Inhibit reduced coenzyme Q1‐dependent O2

50 µg/ml

Nigeria (Nok, 2002)
Morinda lucida Benth. Rubiaceae Leaves Methanol β‐sitosterol In vitro T.b. b 100

12.5 µg/ml

Nigeria (Nweze, 2012)
Ocimum gratissimum L. Lamilaceae Seed oil Oil Myrcen, Limonen and Citronellal In vitro T.b. b >50, >50 and >50 µg/ml 2.24, 4.24 and 2.76 µg/ml Benin (Kpadonou Kpoviessi et al., 2014)
Polyalthia longifolia (Sonn.) Thwaites Annonaceae Leaf Hexane, ethyl acetate and methanol Clerodane In vitro T.co 0.38 µg/ml Nigeria (Ebiloma et al., 2017)
Polyalthia suaveolens Engl. & Diels Annonaceae Leaf DCM Mixture of polysin and greenwayodendrin‐3‐one In vitro T.b.b 170 µM 18 µM Cameroon (Simoben et al., 2018)
Schkuhria pinnata (Lam.) Kuntze ex Thell. Asteraceae Whole plant

DCM/methanol

Schkuhrin I and II

In vitro

T.b. r/T.cr

5.26 and 9.03 µM

0.9 and 1.5 µM/16.4 and 26.9 µM

South Africa (Mokoka et al., 2013)
Strychnos spinosa Lam. Loganiaceae Leaf Ipophilic

Saringosterol, 24‐hydroperoxy‐24‐vinylcholesterol

In vitro T.b.b >233.3 and 16.4 µM

7.8 and 3.2 µM

Tanzania (Hoet et al., 2007)
Teclea trichocarpa (Engl.) Engl. Rutaceae Leaves Methanol

Melicopicine, skimmianine and α‐amyrin

In vitro T.b.r >90, 38.6 and >90 µg/ml

15.56, 15.78, 11.21 µg/ml

Kenya (Mwangi et al., 2010)
Terminalia actinophylla Mart. Combretaceae Leaf Water

Terchebulin and punicalagin

In vitro T.b. b ≥1500 and ≥1500 µg/ml

25 and 14 µM

Nigeria (Shuaibu et al., 2008)
Toona ciliata M.Roem. Meliaceae Root Methanol chloroform Cedrelone In vitro T.b. r 6.95Me, 3.2Ce and 7.85 Kenya (Githua and Hassanali, 2011)
Vernonia guineensis Benth. Asteraceae Stem bark Ethanol

Vernoguinosterol and vernoguinoside

In vitro T.b. r

3–5 µg/ml

Cameroon (Tchinda et al., 2002)
Vernonia mespilifolia Less. Asteraceae Leaf

DCM/methanol

Cynaropicrin In vitro

T.b. r/T.cr

1.29 µM 0.23 µM/5.14 µM South Africa (Mokoka et al., 2013)
Waltheria indica L. Malvaceae Root DCM Waltheriones L In vitro

T.cr/ T.b.b/T.b.r

0.74e, 20e, 17.4e µg/ml and 3.1 µM Cameroon (Simoben et al., 2018)
Warburgia ugandensis subsp. ugandensis Canellaceae Leaf DCM

Muzigadiolide muzigadial, 6α,9α‐dihydroxy‐4(13),7‐coloratadiene‐11,12‐dial and mukaadial and ugandensidial

In vitro T.b.r 0.64 to 6.4 µM Cameroon (Simoben et al., 2018)
Zapoteca portoricensis (Jacq.) H.M.Hern. Fabaceae Leaf DCM

Saropeptide or aurantiamide acetate

In vitro

T.b.r/T.c

92.05 µM

3.63 and 41.65 µM

Cameroon (Simoben et al., 2018)

Abbreviations: EC50, half maximal inhibitory concentration (µg/ml); T.b. b, Trypanosoma brucei brucei; T.e, Trypanosoma evansi; T. co, Trypanosoma congolense

eExtract.

MeMethanolic extract.

CeChloroform extract.

FIGURE 3.

FIGURE 3

Chemical structures of isolated compounds from Asia medicinal plants

More than 200 investigated plants (Ibrahim et al., 2014; Lawal et al., 2015) show potential trypanocidal activity; only 34 plants have their active compounds isolated in pure form. Only their compounds (flavonoid, saponins, alkaloid etc.) are reported for the other plants. This is due to the lack of resources in Africa to isolate the active molecules. Among these 34 plants, just six have been investigated in vivo. The anti‐trypanosomal activity of the extracts was most assessed on Trypanosoma brucei subspecies, which are responsible for African trypanosomiases (WHO, 2015). Considering the importance of trypanosomiases caused by this species in Africa, the development of anti‐trypanosomal medicine based on plants has been an exciting research topic.

Additionally, the medicinal plants of Africa provide a large variety of bioactive compounds. Of the 24 plants reported in Table 1, approximately 34 different bioactive compounds were isolated with trypanosomiases activity. Some plants, such as Chrysanthemum cinerariifolium, Keetia leucantha, Tecla trichocarpa and Terminalia avicenioides, provide at least three different potent bioactive compounds.

Concerning the criteria for choosing compounds with anti‐trypanosomal potential, EC50>20 µg/ml is considered ineffective (Pink et al., 2005). Thus, approximately 40 compounds seem to be effective (EC50<20 µg/ml) and have demonstrated promising anti‐trypanocidal activity (Figure 2). Given the minimum inhibitory concentration, only abruquinone (0.01 µg/ml) has a concentration closer to Melarsoprol reference (0.004 µg/ml) was active against Trypanosoma brucei and benznidazole (0.482 µg/ml) reference was active against Trypanosoma cruzi.

3.3. Asia plants

Asia plants assessed for anti‐trypanosomal activity with EC50 values for inhibition of parasites and cytotoxicity are shown in Table 2.

TABLE 2.

Plants assessed for anti‐trypanosomal activity in in vitro model

Scientific name Family Part (s) used Solvent Bioactive compound Sub species EC50 CC50 * Country References
Alnus japonica (Thunb.) Steud. Betulaceae Bark DCM

Oregonin

Hirsutanone

T.b 1.14 and 1.78 µM 50 µM Japan (Tung et al., 2014)
Aquilaria malaccensis Lam. Thymelaeaceae Leaves Ethanol T.e 128.63 µg/ml 259.78 µg/ml Malaysia (Dyary et al., 2014)
Andrographis paniculata (Burm.f.) Nees Acanthaceae

Leaves/stems

Methanol T.e 54.7 µg/ml 55.1 µg/ml Japan (Bawm, 2010)
Brucea javanica (L.) Merr. Simaroubaceae Fruit Methanol

T.e

T.b

27.2 µg/ml 309.15 µg/ml Japan (Bawm, 2010)
Combretum acuminatum Roxb. Combretaceae Rhizomes Methanol T.e 90.7 µg/ml 853.15 µg/ml Japan (Bawm, 2010)
Cordyline terminalis (L.) Kunth Liliaceae Leaves Water T.e 48.1 µg/ml Malaysia (Dyary et al., 2019)
Crateva religiosa G.Forst Capparidaceae

Leaves/stems

Methanol T.e

107.1 µg/ml

691 µg/ml Japan (Bawm, 2010)
Curcuma longa L. Zingiberaceae Leaves Oil Curlone T.b.b 1.38 µg/ml Vietnam (Le et al., 2019)
Curcuma zedoaria (Christm.) Roscoe Zingiberaceae Leaves Oil T.b.b 2.51 µg/ml Vietnam (Le et al., 2019)
Derris elliptica (Wall.) Benth. Fabaceae Leaves Ethanolic T.e 17.79 µg/ml 331.90 µg/ml Malaysia (Dyary et al., 2014)
Eucalyptus globulus Labill. Myrtaceae Leaf Methanol T.e 51.1 µg/ml 622.95 µg/ml Japan (Bawm, 2010)
Garcinia hombroniana Pierre Clusiaceae Leaves Ethanolic T.e 103.44 µg/ml 10.17 µg/ml Malaysia (Dyary et al., 2014)
Goniothalamus tapis Miq. Annonaceae Leaves Ethanolic T.e 7.61 µg/ml Malaysia (Dyary et al., 2019)
Goniothalamus umbrosus J.Sinclair Annonaceae Leaves Ethanolic T.e 2.30 µg/ml 29.10 µg/ml Malaysia (Dyary et al., 2014)
Iris domestica (L.) Goldblatt & Mabb. Iridaceae Leaves Petroleum ether Isoiridogermanal T.b.b 3.60 µg/ml 136.00 µg/ml China (Pathiranage et al., 2016)
Jatropha podagrica Hook. Euphorbiaceae Fruit Methanol T.e 52.3 µg/ml 652.7 µg/ml Japan (Bawm, 2010)
Litsea cubeba (Lour.) Pers. Lauraceae Leaves Oil T.b.b 1.12 nL/ml Vietnam (Le et al., 2019)
Murraya koenigii (L.) Spreng. Rutaceae Leaves Mahanimbine, murrayafoline and girinimbine T.e 3.13, 6.35 and 10.16 µg/ml 745.58 µg/ml Malaysia (Dyary et al., 2019)
Nigella sativa L. Ranunculaceae Seeds Ethanolic T.e 291.72 µg/ml 381.59 µg/ml Malaysia (Dyary et al., 2014)
Orthosiphon stamineus Benth. Labiatae Leaves Methanol T.e 144.7 µg/ml 628.9 µg/ml Japan (Bawm, 2010)
Phyllanthus simplex Retz. Euphorbiaceae

Leaves/stem

Methanol T.e 96.1 µg/ml 98.8 µg/ml Japan (Bawm, 2010)
Plumbago rosea L. Plumbaginaceae Flowers Methanol T.e

156.7 µg/ml

557.05 µg/ml Japan (Bawm, 2010)
Polygonum hydropiper L. Polygonaceae Leaves DCM

Vanicoside E, (+)‐ketopinoresinol, isorhamnetin and cardamomin

T.b 0.49–7.77 µg/ml China (Xiao et al., 2017)
Punica granatum L. Lythraceae Leaves Ethanol T.e 20 mg/ml India (Kumar et al., 2014)
Quercus borealis F.Michx. ‎Fagaceae Roots Methanol T.e 250 µg/ml India (Shaba et al., 2011)
Rhoeo discolor (L'Hér.) Hance Commelinaceae Leaves Methanol T.e 75.8 µg/ml 424.9 µg/ml Japan (Bawm, 2010)
Scutellaria baicalensis Georgi Lamiaceae Leaves

Water/chloroform

T.b

11.43 µg/ml

19.56 µg/ml

China (Floyd, 2013)
Strobilanthes abbreviata Y.F. Deng & J.R.I. Wood Acanthaceae Leaves Ethanolic T.e 52.54 µg/ml 355.21 µg/ml Malaysia (Dyary et al., 2014)
Vitex arborea Desf. Verbenaceae

Leaves/stem

Methanol T.e 48.6 µg/ml 735.15 µg/ml Japan (Bawm, 2010)
Vitis repens (Lam.) Wight & Arn. Vitaceae Root bark Methanol T.e 8.6 µg/ml 209.9 µg/ml Japan (Bawm, 2010)
Zingiber officinale Roscoe Zingiberaceae Leaves Oil T.b.b 3.10 nL/ml Vietnam (Le et al., 2019)

Note: The EC50 values for inhibition of parasites and the cytotoxicity are shown

*

The extract concentration that reduced the cell viability by 50% when compared to untreated controls.

A total of 31 plants with their minimum inhibitory concentration have been identified in the literature. Four plants (V. repens, P. simplex, V. arborea and A. brevipedunculata) already have bioactive compounds. These seven compounds include resveratrol (EC50 = 31.4), 11‐O‐acetyl‐bergenin (EC50 = 61.2), stigmas‐4‐ en‐3‐ one (EC50 = 62.8), lupeol (EC50 = 98.4), Ψ‐taraxasterone (EC50 = 115.4), hopenyl‐3β‐O‐palmitate (EC50 = 68.2) and β‐amyrin palmitate (EC50 = 60.8) (Bawm, 2010). The extracts were mostly evaluated on Trypanosoma evansi due to its prevalence in Asia (Dyary et al., 2014). Considering the potency criteria asserted by Pink et al. (2005), it was expressed that the isolated compounds with an EC50> 20 µg/ml were not considered effective drugs. Thus, the seven isolated compounds may not be considered lead drugs. There is a need to pursue investigations that isolate more effective compounds. On the other hand, as suggested by Pink et al. (2005), crude extracts with potent in vivo anti‐trypanosomal activity such as <100 mg/kg with no toxic effect below 800 mg/kg may be considered promising lead structures. None of the plants with in vitro data were evaluated in vivo. The minimum inhibitory concentration of the methanolic extract of Goniothalamus umbrosus (2.30 µg/ml) was the only extract with an activity profile closer to the diminazene aceturate (0.01140 µg/ml) reference against Trypanosoma evansi.

3.4. Middle East

Table 3 shows a list of plants in the Middle East with cytotoxicity values against trypanosome parasite activity. Al‐Musayeib et al. (2012) reported 41 medicinal plants used in Saudi Arabia that showed anti‐trypanosomal activity in vitro. All of their inhibitory activities are explained by the EC50 and CC50. However, no details have been given about their bioactive compounds except their secondary metabolite composition. Their activity profile in in vivo studies is unknown, so their therapeutic potential remains to be established.

TABLE 3.

Plants assessed for in vitro model of anti‐trypanosomal activity in Saudi Arabia which the EC50 and the cytotoxicity values are known

ScientificName Family Part (s) used Solvent Sub species EC50 CC50 References
Ajuga bracteosa Wall. ex Benth. Labiatae Leaves Methanol

T.c

T.b.b

28.8 μg/ml 31.2 μg/ml (Al‐Musayeib, Mothana, Matheeussen, et al., 2012)
Albizia lebbeck (L.) Benth. Leguminosae Stems Methanol

T.c

T.b.b

8.7 μg/ml

8.1 μg/ml

32.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Cadaba farinosa subsp. adenotricha (Gilg & Benedict) R.A.Graham Capparaceae Leaves/stems Methanol

T.c

T.b.b

28.6 μg/ml

10.6 μg/ml

32.9 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Cadaba glandulosa Forssk. Capparaceae Leaves/Stems Methanol

T.c

T.b.b

36.5 μg/ml

16.4 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Caralluma quadrangula (Forssk.) N.E.Br. Asclepiad‐aceae Leaves Methanol

T.c

T.b.b

>64.0 μg/ml

32.5 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Caralluma sinaica (Decne.) A.Berger Asclepiad‐aceae Leaves Methanol

T.c

T.b.b

7.3 μg/ml

7.7 μg/ml

20.5 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Celtis africana Burm.f. Cannabaceae Leaves/stems Methanol

T.c

T.b.b

29.4 μg/ml

>64.0 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Centaurea pseudosinaica Czerep. Asteraceae Leaves Methanol

T.c

T.b.b

31.0 μg/ml

9.1 μg/ml

16.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Chrozophora oblongifolia (Delile) A.Juss. ex Spreng. Euphorbiacea Leaves Methanol

T.c

T.b.b

32.0 μg/ml

10.8 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Conocarpus lancifolius Engl. Combretaceae Fruits Methanol

T.c

T.b.b

32.2 μg/ml

35.2 μg/ml

7.2 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Cordia sinensis Lam. Boragin‐aceae Leaves/stems Methanol

T.c

T.b.b

33.9 μg/ml

32.0 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)

Costus arabicus L.

Zingiberaceae Roots Methanol

T.c

T.b.b

13.8 μg/ml

30.0 μg/ml

38.5 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Cupressus sempervirens L. Cupressaceae Leaves Methanol

T.c

T.b.b

8.3 μg/ml

2.1 μg/ml

10.7 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Dorstenia barnimiana Schweinf. Moraceae Leaves Methanol

T.c

T.b.b

29.6 μg/ml

22.6 μg/ml

49.4 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Dodonaea viscosa (L.) Jacq. Sapindaceae Leaves Methanol

T.c

T.b.b

>64.0 μg/ml

11.1 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Enicostemma verticillare L. Gentianaceae Leaves Methanol

T.c

T.b.b

>64.0 μg/ml 9.9 ± 1.1 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Ficus cordata subsp. salicifolia (Vahl) C.C.Berg Moraceae Leaves Methanol

T.c

T.b.b

26.3 μg/ml 8.2 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Ficus ingens (Miq.) Miq. Moraceae Leaves Methanol

T.c

T.b.b

31.2 μg/ml

8.0 μg/ml

32.5 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Ficus palmata subsp. virgata Browicz Moraceae Leaves Methanol

T.c

T.b.b

22.6 μg/ml

8.1 μg/ml

37.7 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Grewia erythraea Schweinf. Tiliaceae Leaves Methanol

T.c

T.b.b

8.2 μg/ml

2.6 μg/ml

27.2 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Iris albicans var. madonna Dykes Iridaceae Leaves Methanol

T.c

T.b.b

>64.0 μg/ml

10.6 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Iris germanica L. Iridaceae Roots Methanol

T.c

T.b.b

24.6 μg/ml

8.2 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Kanahia laniflora (Forssk.) R.Br. Iridaceae Leaves Methanol

T.c

T.b.b

0.4 μg/ml

9.6 μg/ml

0.8 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Kniphofia sumarae Deflers Asclepiadaceae Leaves Methanol

T.c

T.b.b

31.4 μg/ml

5.9 μg/ml

7.4 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Lavandula dentata var. candicans Batt. Liliaceae Leaves Methanol

T.c

T.b.b

7.9 μg/ml

3.0 μg/ml

29.6 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Leucas inflata Benth. Labiatae Leaves Methanol

T.c

T.b.b

>64.0 μg/ml

8.4 μg/ml

29.5 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Nigella sativa var. hispidula Boiss. Ranuncul‐aceae Seeds Methanol

T.c

T.b.b

>64.0 μg/ml

>64.0 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Periploca aphylla Decne. Asclepiad‐aceae Leaves/stems Methanol

T.c

T.b.b

8.1 μg/ml

7.1 μg/ml

23.9 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Phoenix dactylifera L. Arecaceae Seeds Methanol

T.c

T.b.b

46.5 μg/ml

36.2 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Plectranthus barbatus var. grandis (L.H.Cramer) Lukhoba & A.J.Paton Labiatae Leaves Methanol

T.c

T.b.b

23.3 μg/ml

2.6 μg/ml

32.9 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Prosopis juliflora var. horrida (Kunth) Burkart Leguminosae Fruits Methanol

T.c

T.b.b

10.4 μg/ml

2.0 μg/ml

49.8 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Pulicaria inuloides (Poir.) DC. Labiatae Leaves Methanol

T.c

T.b.b

31.7 μg/ml

7.8 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Punica granatum L. Punicaceae Fruits Methanol

T.c

T.b.b

35.2 μg/ml

34.3 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Rhus retinorrhaea Steud. ex A.Rich. Anacardiaceae Leaves Methanol

T.c

T.b.b

30.5 μg/ml

34.0 μg/ml

53.2 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Ribes nigrum L. Grossulari‐aceae Fruits Methanol

T.c

T.b.b

>64.0 μg/ml

>64.0 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Salvadora persica var. persica Sallvador‐aceae Leaves/stems Methanol

T.c

T.b.b

30.1 μg/ml

32.0 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Tagetes minuta L. Asteraceae Leaves Methanol

T.c

T.b.b

9.2 μg/ml

2.2 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Tarconanthus camphoratus L. Asteraceae Leaves Methanol

T.c

T.b.b

>64.0 μg/ml

>64.0 μg/ml

>64.0 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Teucrium yemense Deflers Labiatae Leaves Methanol

T.c

T.b.b

30.5 μg/ml

7.1 μg/ml

27.2 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Vernonia leopoldi (Sch.Bip. ex Walp.) Vatke Asteraceae Leaves Methanol

T.c

T.b.b

9.2 μg/ml

8.0 μg/ml

30.1 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)
Zingiber officinale var. cholmondeleyi F.M.Bailey Zingiber‐aceae Roots Methanol

T.c

T.b.b

>64.0 μg/ml

39.4 μg/ml

34.3 μg/ml (Al‐Musayeib, Mothana, Al‐Massarani, et al., 2012)

3.5. European plants

A total of 27 plants studied in Europe have been extracted from the literature. Of these, only three plants have bioactive compounds. The milestone was the most efficient bioactive compound with a minimum inhibitory concentration of 0.5 µg/ml (Ślusarczyk et al., 2011). Trypanosoma brucei was the most studied parasite, and a large variety of ethnobotanical families were included (Table 4 and Figure 4).

TABLE 4.

Plants assessed for anti‐trypanosomal activity which the EC50 and the cytotoxicity values are known

Scientific name Family Part(s) used Solvent Bioactive compound Model Sub species EC50 CC50 Country References
Arctium nemorosum Lej. Asteraceae Leaf Methanol Onopordopicrin In vitro T.b.r 0.37 μM 3.06 μM Switzerland (Zimmermann et al., 2012)
Arnica montana L. ‎Asteraceae Leaf DCM In vitro T.b.r 1.12 μg/ml 12.1 μg/ml Germany (Llurba‐Montesino et al., 2015)
Callitris neocaledonica Dümmer Cupressaceae Wood Water In vitro T.b.b >50 μg/ml >50 μg/ml France (Desrivot et al., 2007)
Callitris sulcata (Parl.) Schltr. Cupressaceae Wood Water In vitro T.b.b >50 μg/ml >50 μg/ml France (Desrivot et al., 2007)
Citrus macroptera Montrouz. Rutaceae Leaves Water In vitro T.b.b >50 μg/ml France (Desrivot et al., 2007)
Crinum stuhlmannii subsp. delagoense (I.Verd.) Kwembeya & Nordal Amaryllidaceae Leaves Ethanol In vitro T.c 0.70 μM 21.87 μM Spain (Martinez‐Peinado et al., 2020)
Curcuma longa L. Zingiberaceae Leaves Water In vitro T.b.b >50 μg/ml France (Desrivot et al., 2007)
Dodonea viscosa L. Sapindaceae Leaves Ethanol In vitro T.b.b 61.4 μg/ml France (Desrivot et al., 2007)
Eugenia uniflora L Myrtaceae Bark Water In vitro T.b.b >50 μg/ml France (Desrivot et al., 2007)
Eugenia uniflora L. Moraceae Leaves Methanol In vitro T.b.b 46 μg/ml France (Desrivot et al., 2007)
Hernandia cordigera Vieill. Hernandiaceae Bark DCM In vitro T.b.b 48 μg/ml France (Desrivot et al., 2007)
Homalium deplanchei Warb. Flacourtiaceae Bark DCM In vitro T.b.b >50 μg/ml France (Desrivot et al., 2007)
Hyacinthoides non‐scripta (L.) Chouard ex Rothm. Asparagaceae Flowers Methanol In vitro T.b.b 11.1 μg/ml UK (Raheem et al., 2019)
Juncus acutus subsp. acutus Juncaceae Leaves DCM Juncunol In vitro T.c 4.1 μg/ml 6.0 μg/ml Portugal (Oliveira et al., 2016)
Manilkara dissecta (L.f.) Dubard Sapotaceae Leaves DCM In vitro T.b.b >50 μg/ml France (Desrivot et al., 2007)
Murraya crenulata (Turcz.) Oliv. Rutaceae Bark Hexane In vitro T.b.b 27.6 μg/ml France (Desrivot et al., 2007)
Myoporum crassifolium G.Forst. Myoporaceae Wood Water In vitro T.b.b 16 μg/ml France (Desrivot et al., 2007)
Myoporum tenuifolium G.Forst. Myoporaceae Leaves DCM In vitro T.b.b >50 μg/ml France (Desrivot et al., 2007)
Myristica fatua Houtt. Myristicacae Almonds DCM In vitro T.b.b 0.5 μg/ml France (Desrivot et al., 2007)
Narcissus broussonetii var. grandiflorus Batt. & Trab. Amaryllidaceae Leaves Ethanol In vitro T.c 0.495 μM 5.21 μM Espain (Martinez‐Peinado et al., 2020)
Premna serratifolia L. Lamiaceae Bark DCM In vitro T.b.b >50 μg/ml France (Desrivot et al., 2007)
Prumnopytis ferruginoides L. Podocarpaceae Leaves Water In vitro T.b.b >50 μg/ml France (Desrivot et al., 2007)
Salvia officinalis subsp. gallica (W.Lippert) Reales, D.Rivera & Obón ‎Lamiaceae Leaves DCM In vitro T.b.r 1.86 μg/ml 32.3 μg/ml Germany (Llurba‐Montesino et al., 2015)
Salvia miltiorrhiza var. charbonnelii (H.Lév.) C.Y.Wu Lamiaceae Roots DCM Miltirone In vitro T.b.r 0.5 μg/ml 1.3 μg/ml Switzerland (Ślusarczyk et al., 2011)
Scaevola balansae Guillaumin Goodneniaceae Bark DCM In vitro T.b.b 39 μg/ml France (Desrivot et al., 2007)
Valeriana officinalis subsp. collina (Wallr.) Nyman Caprifoliaceae Leaves Ethanol In vitro T.c

5.87 μg/ml

5.28 μg/ml Germany (Llurba‐Montesino et al., 2015)
Wollastonia biflora (L.) DC. Asteraceae Leaves DCM In vitro T.b.b >100 μg/ml France (Desrivot et al., 2007)

FIGURE 4.

FIGURE 4

Chemical structures of isolated compounds from Europe medicinal plants

3.6. Latin America

A total of 165 plants have been reported throughout the literature, and just four have their isolated known compound. Researchers from South America have contributed to the investigation of anti‐trypanosomal plants. This result corroborates the scientometric analysis of global trypanosomiases research from 1988 to 2017, showing that South America ranked second behind Europe for contributions to trypanosomiases research (Hassan et al., 2020). The crude extracts of Anthemis tinctoria (semi‐purified), Caseria sylvestris (hexane) and Ranunculus sceleratus (ethanol) showed inhibitory activity against Trypanosoma cruzi with a minimum inhibitory concentration of 0.2, 0.3 and 0.7 µg/ml, respectively. For many plants, parasite growth inhibition is generally reported; thus, the minimum inhibitory concentration remains unknown (Table 5 and Figure 5).

TABLE 5.

Plants assessed for anti‐trypanosomal activity which the EC50 values are known

Scientific name Family Part(s) used Solvent Bioactive compound Model Sub species EC50 CC50 Country References
Abuta pahni (Mart.) Krukoff & Barneby Menisper maceae Stems petroleum ether, chloroform, ethyl acetate or 50% ethanol In vitro T.c 100 μg/ml Bolivia (Fournet et al., 1994)
Acnistus arborescens (L.) Schltdl. Solanaceae Leaf Ethanol In vitro T.c 4 μg/ml Panama (Calderón et al., 2010)
Aechmea distichantha var. glaziovii (Baker) L.B.Sm. Bromeliaceae Leaf Methanol In vitro T.c 48 μg/ml Panama (Calderón et al., 2010)
Aiouea trinervis Meisn. Lauraceae Leaf Ethanol Isoobtusi‐Lactone A In vitro T.c 2.75 μg/ml 156.45 μg/ml Brazil (Nunes et al., 2020)
Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. Apiaceae Root Ethanol In vitro T.c 14.5 μg/ml Argentina (Schinella et al., 2002)
Angelica pubescens f. biserrata R.H.Shan & C.Q.Yuan Apiaceae Root Ethanol In vitro T.c 14.9 μg/ml Argentina (Schinella et al., 2002)
Angelica sinensis (Oliv.) Diels Apiaceae Wood Ethanol In vitro T.c 19.4 μg/ml Argentina (Schinella et al., 2002)
Annona crassiflora Mart. Annonaceae Root bark Ethanol In vitro T.c 5.9 μg/ml Brazil (Mesquita et al., 2005)
Annona muricata L. Annonaceae Leaf Ethanol In vitro T.c 10 μg/ml Panama (Calderón et al., 2010)
Anomospermum chloranthum subsp. occidentale (Cuatrec.) Krukoff & Barneby Menisper maceae Leaf Alkaloid In vitro T.c 100 μg/ml Bolivia (Fournet et al., 1994)
Anthemis tinctoria subsp. australis R.Fern. ‎Asteraceae Flowers

Semi‐purified

In vitro T.c 0.2 μg/ml 7.0 μg/ml Brazil (Bittencourt et al., 2011)
Astragalus pehuenches Niederl. Fabaceae Bark Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Ardisia densiflora Krug & Urb. Myrsinaceae Leaf Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Argemone subfusiformis Ownbey Papaveraceae Fruit Methanol In vitro T.c 10 μg/ml Panama (Calderón et al., 2010)
Aristoloquia pilosa L. Aristolochiaceae Stem Hexane In vitro T.c 100% Peru (González‐Coloma et al., 2012)
Artemisia mexicana Willd. Asteraceae Aerial parts Methanol In vitro T.c 39.25 μg/ml Mexico (Molina‐Garza et al., 2014)
Atractyloides macrocephala L. Asteraceae Root Ethanol In vitro T.c 23.0 μg/ml Argentina (Schinella et al., 2002)
Astragalus membranaceus (Fisch.) Bunge Fabaceae Root Water In vitro T.c 13.5 μg/ml Argentina (Schinella et al., 2002)
Astronium fraxinifolium Schott Anacardiaceae Stems bark Hexane In vitro T.b.r 16.4 μg/ml >100 μg/ml Brazil (Charneau et al., 2016)
Baccharis notosergila Griseb. Asteracea Aerial parts Methanol In vitro T.c >50 μg/ml Panama (Calderón et al., 2010)
Baccharis trinervis var. cinerea (DC.) Baker Asteraceae Aerial parts Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Berberis conferta var. boliviana (Lechl.) C.K.Schneid. Berberidaceae Stems Alkaloid In vitro T.c 75 μg/ml Bolivia (Fournet et al., 1994)
Berberis microphylla G.Forst. Berberidaceae Aerial parts Methanol In vitro T.c 38.4 μg/ml Chile (Muñoz et al., 2013)
Blepharocalyx salicifolius (Kunth) O.Berg Myrtaceae Leaves Ethanol In vitro T.c 37.3 μg/ml 55.1 μg/ml Brazil (Charneau et al., 2016)
Bocconia integrifolia var. mexicana DC. Papaveraceae Leaf Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Bourreria huanita (Lex.) Hemsl. Boraginaceae Leaf Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Bourreria spathulata (Miers) Hemsl. Boraginaceae Leaf Methanol In vitro T.c 30 μg/ml Panama (Calderón et al., 2010)
Brunfelsia grandiflora D.Don Solanaceae Stem Hexane In vitro T.c 98% Peru (González‐Coloma et al., 2012)
Caesalpinia paraguariensis (Parodi) Burkart Fabaceae Leaf Ethanol In vitro T.c 10 μg/ml Panama (Calderón et al., 2010)
Calea jamaicensis var. jamaicensis Asteraceae Aerial parts Ethanol In vitro T.c 30 μg/ml Panama (Calderón et al., 2010)
Calea peruviana (Kunth) Benth. ex S.F.Blake Asteraceae Leaf Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Capraria biflora f. hirta Loes. Scrophulariaceae Aerial parts Ethanol In vitro T.c 46 μg/ml Panama (Calderón et al., 2010)
Capparis salicifolia Griseb. Capparaceae Leaf Ethanol In vitro T.c 39 μg/ml Panama (Calderón et al., 2010)
Cardiopetalum calophyllum Schltdl. Annonaceae Stem bark Hexane In vitro T.c 60.4 μg/ml Brazil (Mesquita et al., 2005)
Cardiopetalum calophyllum Schltdl. Annonaceae Leaves Alkaloidal In vitro T.c 100 μg/ml Bolivia (Fournet et al., 1994)
Casearia sylvestris var. lingua (Cambess.) Eichler Flacourtiaceae Root bark Hexane In vitro T.c 0.3 μg/ml Brazil (Mesquita et al., 2005)
Cedrela odorata var. xerogeiton Rizzini & Heringer Meliaceae Bark Hexane In vitro T.c 100% Peru (González‐Coloma et al., 2012)
Cestrum parqui (Lam.) L'Hér. Solanaceae Aerial parts Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Chamaecrista desvauxii (Collad.) Killip Caesalpiniaceae Leaves Ethanol In vitro T.c >80% Brazil (Charneau et al., 2016)
Chondodendron tomentosum L. Menispermaceae Bark Chloroform In vitro T.c 100% Peru (González‐Coloma et al., 2012)
Chromolaena leivensis (Hieron.) R.M.King & H.Rob. Asteraceae Aerial parts Ethanol In vitro T.c 8 μg/ml Panama (Calderón et al., 2010)
Cinchona pubescens var. heterophylla Pav. ex DC. Rubiaceae Leaf Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Cissampelos tropaeolifolia var. fluminensis (Eichler) Diels Menispermaceae Leaf Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Clarisia biflora Ruiz & Pav. Moraceae Aerial parts Ethanol In vitro T.c 25 μg/ml Panama (Calderón et al., 2010)
Clematis campestris var. mendocina (Phil.) Hauman & Irigoyen Ranunculaceae Flowers Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Combretum laxum var. epiphyticum (Pittier) Croat Combretaceae Aerial parts Methanol In vitro T.c 34 μg/ml Panama (Calderón et al., 2010)
Codonopsis pilosula var. glaberrima (Nannf.) P.C.Tsoong Campanulaceae Roots Water In vitro T.c 20.8 μg/ml Argentina (Schinella et al., 2002)
Connarus suberosus var. fulvus (Planch.) Forero Connaraceae Roots woods Hexane In vitro T.b.r 1.7 μg/ml 2.6 μg/ml Brazil (Charneau et al., 2016)
Cordia cylindrostachya (Ruiz & Pav.) Roem. & Schult. Boraginaceae Leaf Ethanol In vitro T.c 35 μg/ml Panama (Calderón et al., 2010)
Crataegus pubescens (C.Presl) C.Presl Rosaceae Fruit Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Critonia morifolia (Mill.) R.M.King & H.Rob. Asteraceae Fruit Ethanol In vitro T.c 29 μg/ml Panama (Calderón et al., 2010)
Curcuma aromatic L. Zingiberaceae Rhizome Water In vitro T.c 21.4 μg/ml Argentina (Schinella et al., 2002)
Cymbopogon citratus (DC.) Stapf Poaceae Aerial parts Methanol In vitro T.c 68.25 μg/ml Mexico (Molina‐Garza et al., 2014)
Dalbergia ecastaphyllum (L.) Taub. Fabaceae Plant resin Hydroethanol In vitro T.c 88.86 μg/ml 228.02 μg/ml Brazil (Regueira‐Neto et al., 2018)
Drimys winteri J.R.Forst. & G.Forst. Winteraceae Aerial parts DCM Drimenol In vitro T.c 25.1 μg/ml Chile (Muñoz et al., 2013)
Duguetia furfuracea (A.St.‐Hil.) Saff. Annonaceae Root bark Hexane In vitro T.c 6.6 μg/ml Brazil (Mesquita et al., 2005)
Egletes viscosa var. dissecta Shinners Asteraceae Whole plants Ethanol In vitro T.c 38 μg/ml Panama (Calderón et al., 2010)
Eirmocephala brachiata H.Rob. Asteraceae Leaf Ethanol In vitro T.c 33 μg/ml Panama (Calderón et al., 2010)
Eryngium heterophyllum Engelm. Apiaceae Aerial parts Methanol In vitro T.c 11.24 μg/ml Mexico (Molina‐Garza et al., 2014)
Euterpe precatoria var. longivaginata (Mart.) A.J.Hend. Arecaceae Root Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Forsythia suspensa (Thunb.) Vahl Oleaceae Fruit Methanol In vitro T.c 19.1 μg/ml Argentina (Schinella et al., 2002)
Fuchsia boliviana var. luxurians I.M.Johnst. Onagraceae Leaf Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Galium latoramosum Clos Rubiaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Gnaphalium gaudichaudianum var. gaudichaudianum Asteraceae Aerial parts Methanol In vitro T.c 36 μg/ml Panama (Calderón et al., 2010)
Gochnatia glutinosa (D.Don) D.Don ex Hook. & Arn. Asteraceae Aerial parts Methanol In vitro T.c 20 μg/ml Panama (Calderón et al., 2010)
Haematoxylum brasiletto H.Karst. Fabaceae Bark Methanol In vitro T.c 7.92 μg/ml Mexico (Molina‐Garza et al., 2014)
Haplophyllum hispanicum Spach Rutaceae Fruit Ethanol In vitro T.c 8.5 μg/ml 16.7 Argentina (Schinella et al., 2002)
Hauya lucida Donn.Sm. & Rose Onagraceae Aerial parts Methanol In vitro T.c 32 μg/ml Panama (Calderón et al., 2010)
Helichrysum italicum (Roth) G.Don Rutaceae Aerial parts Methanol In vitro T.c 23.0 μg/ml Argentina (Schinella et al., 2002)
Himatanthus obovatus (Müll.Arg.) Woodson Apocynaceae Root wood Ethanol In vitro T.c 15.7 μg/ml Brazil (Mesquita et al., 2005)
Ilex guayusa Loes. Aquifoliaceae Leaf Ethanol In vitro T.c 47 μg/ml Panama (Calderón et al., 2010)
Inula viscosa (L.) Aiton Asteraceae Aerial parts Ethanol In vitro T.c 27.5 μg/ml Argentina (Schinella et al., 2002)
Ipomoea carnea subsp. carnea Convolvulaceae Leaf Ethanol In vitro T.c 48 μg/ml Panama (Calderón et al., 2010)
Jacaranda mimosifolia D.Don Bignoniaceae Leaf Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Kageneckia oblonga Ruiz & Pav. Rosaceae Aerial parts Methanol In vitro T.c 35.7 μg/ml Chile (Muñoz et al., 2013)
Larrea cuneifolia Cav. Zygophyllaceae Aerial parts Methanol In vitro T.c 40 μg/ml Panama (Calderón et al., 2010)
Lippia graveolens Kunth Verbenaceae Leaf Ethanol In vitro T.c 13 μg/ml Panama (Calderón et al., 2010)
Lithrea caustica Hook. & Arn. Anacardiaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Lentinus edodes L. Marasmiaceae Sclerotium Water In vitro T.c 26.8 μg/ml Argentina (Schinella et al., 2002)
Lozania pittieri (S.F.Blake) L.B.Sm. Flacourtiaceae Leaf Methanol In vitro T.c 30 μg/ml Panama (Calderón et al., 2010)
Lycium cuneatum Dammer Solanaceae Aerial parts Ethanol In vitro T.c 29 μg/ml Panama (Calderón et al., 2010)
Maianthemum paludicola LaFrankie Convallariaceae Whole plants Methanol In vitro T.c 5 μg/ml Panama (Calderón et al., 2010)
Mandevilla antennacea (A.DC.) K.Schum. Apocynaceae Leaves stems Ethanol In vitro T.c 100 μg/ml Bolivia (Fournet et al., 1994)
Marrubium vulgare subsp. apulum (Ten.) H.Lindb. Lamiaceae Aerial parts Methanol In vitro T.c 22.66 μg/ml Mexico (Molina‐Garza et al., 2014)
Matayba guianensis Aubl. Sapindaceae Stems bark Hexane In vitro T.c 17.8 μg/ml Brazil (Mesquita et al., 2005)
Miconia buxifolia Naudin Melastomataceae Leaf Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Mikania periplocifolia Hook. & Arn. Asteraceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Munnozia maronii (André) H.Rob. Asteraceae Leaves Ethanol In vitro T.c 25 μg/ml Bolivia (Fournet et al., 1994)
Myrsine guianensis (Aubl.) Kuntze Myrsinaceae Leaves Hexane In vitro T.c 65.0 μg/ml 107.1 μg/ml Brazil (Charneau et al., 2016)
Myrcianthes rhopaloides (Kunth) McVaugh Myrtaceae Leaves Methanol In vitro T.c 24 μg/ml Panama (Calderón et al., 2010)
Nicotiana glauca var. angustifolia Comes Solanaceae Aerial parts Methanol In vitro T.c 38 μg/ml Panama (Calderón et al., 2010)
Paeonia lactiflora var. lactiflora Paeoniaceae Root Water In vitro T.c 27.9 μg/ml Argentina (Schinella et al., 2002)
Parthenium hysterophorus L. Asteraceae Leaves DCM Ambrosin In vitro T.b.b 67.1 μg/ml 11.46 μg/ml Mexico (Sepúlveda‐Robles et al., 2019)
Parietaria debilis var. ceratosantha Wedd. Urticaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Paullinia clavigera Schltdl. Sapindaceae Bark Chloroform In vitro T.c 100% Peru (González‐Coloma et al., 2012)
Persea americana var. americana Lauraceae Leaf Methanol In vitro T.c 65.51 μg/ml Mexico (Molina‐Garza et al., 2014)
Phellodendron amurense var. sachalinense F. Schmidt Rutaceae Root bark Methanol In vitro T.c 11.3 μg/ml Argentina (Schinella et al., 2002)
Phyla betulifolia (Kunth) Greene Verbenaceae Whole plant Methanol In vitro T.c 30 μg/ml Panama (Calderón et al., 2010)
Phytolacca bogotensis Kunth Phytolaccaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Phytolacca tetramera Hauman Phytolaccaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Piper acutifolium Ruiz & Pav. Piperaceae Leaf DCM In vitro T.c 39 μg/ml Panama (Calderón et al., 2010)
Piper aduncum var. brachyarthrum (Trel.) Yunck. Piperaceae Leaf DCM In vitro T.c 38 μg/ml Panama (Calderón et al., 2010)
Piper aeruginosibaccum Trel. Piperaceae Leaf Ethanol In vitro T.c 12 μg/ml Panama (Calderón et al., 2010)
Piper barbatum var. andicolum (Kunth) Trel. & Yunck. Piperaceae Leaf Ethanol In vitro T.c 10 μg/ml Panama (Calderón et al., 2010)
Piper dilatatum f. dilatatifolium (Trel. & Yunck.) Steyerm. Piperaceae Leaf DCM In vitro T.c 31 μg/ml Panama (Calderón et al., 2010)
Piper elongatum var. brachyarthrum Trel. Piperaceae Leaf DCM In vitro T.c 36 μg/ml Panama (Calderón et al., 2010)
Piper glabratum Kunth Piperaceae Leaf DCM In vitro T.c 25 μg/ml Panama (Calderón et al., 2010)
Piper hispidum var. gamboanum C. DC. Piperaceae Leaf DCM In vitro T.c 26 μg/ml Panama (Calderón et al., 2010)
Piper holtonii var. parvispicum Yunck. Piperaceae Root Ethanol In vitro T.c 10 μg/ml Panama (Calderón et al., 2010)
Piper longestylosum C. DC. Piperaceae Leaf DCM In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Piper abalienatum Trel. Piperaceae Leaf DCM In vitro T.c 35 μg/ml Panama (Calderón et al., 2010)
Piper rusbyi C. DC. Piperaceae Leaf DCM In vitro T.c 32 μg/ml Panama (Calderón et al., 2010)
Piper scabrum Willd. ex Kunth Piperaceae Leaf Ethanol In vitro T.c 32 μg/ml Panama (Calderón et al., 2010)
Piper umbellatum var. glabrum C. DC. Piperaceae Leaf Ethanol In vitro T.c 25 μg/ml Panama (Calderón et al., 2010)
Podanthus ovatifolius Lag. Asteraceae Aerial parts Methanol In vitro T.c 40.1 μg/ml Chile (Muñoz et al., 2013)
Polygonum acuminatum Kunth Polygonaceae Leaf Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Polygonum ferrugineum var. patagonicum (Speg.) Macloskie Polygonaceae Aerial parts Methanol In vitro T.c 37 μg/ml Panama (Calderón et al., 2010)
Poria cocos L. Polyporaceae Sclerotium Ethanol In vitro T.c 16.8 μg/ml Argentina (Schinella et al., 2002)
Pouteria gardneri (Mart. & Eichler ex Miq.) Baehni Sapindaceae Roots woods Hexane In vitro T.c 45.5 μg/ml Brazil (Mesquita et al., 2005)
Piscidia carthagenensis Jacq. Fabaceae Aerial parts Methanol In vitro T.c 28 μg/ml Panama (Calderón et al., 2010)
Psidium laruotteanum Cambess ‎Myrtaceae Leaves Hexane In vitro T.b.r 3.9 μg/ml >100 μg/ml Brazil (Charneau et al., 2016)
Psittacanthus cordatus (Hoffmanns. ex Schult. f.) Blume Loranthaceae Leaf Ethanol In vitro T.c 40 μg/ml Panama (Calderón et al., 2010)
Ranunculus sceleratus subsp. multifidus (Nutt.) Hultén Renonculaceae Aerial parts Ethanol In vitro T.c 0.7 μg/ml 18.7 μg/ml Argentina (Schinella et al., 2002)
Rauvolfia tetraphylla L. Apocynaceae Root Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Rehmania glutinosa L. Oronbanchaceae Root Ethanol In vitro T.c 24.5 μg/ml Argentina (Schinella et al., 2002)
Ruta chalepensis L. Rutaceae Leaf Methanol In vitro T.c 72.30 μg/ml Mexico (Molina‐Garza et al., 2014)
Salvertia convallariodora A. St.‐Hil. Vochysiaceae Leaves Hexane In vitro T.b.g 35.4 μg/ml >100 μg/ml Brazil (Charneau et al., 2016)
Schinus molle var. areira (L.) DC. Anarcadiaceae Leaves Methanol In vitro T.c 16.31 μg/ml Mexico (Molina‐Garza et al., 2014)
Scoparia dulcis L. Scrophulariaceae Whole plants Ethanol In vitro T.c 4 μg/ml Panama (Calderón et al., 2010)
Scrophularia auriculata L. Scrofulariaceaes Aerial parts Ethanol In vitro T.c 23.3 μg/ml Argentina (Schinella et al., 2002)
Scutellaria baicalensis f. albiflora H.W.Jen & Y.J.Chang Lamiaceae Root Methanol In vitro T.c 7.5 μg/ml 28.7 μg/ml Argentina (Schinella et al., 2002)
Sebastiania brasiliensis var. anisophylla Müll.Arg. Euphorbiaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Sebastiania commersoniana (Baill.) L.B.Sm. & Downs Euphorbiaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Solidago chilensis var. chilensis Asteraceae Leaves Methanol In vitro T.c 32 μg/ml Panama (Calderón et al., 2010)
Sapranthus viridiflorus G.E. Schatz Annonaceae Aerial parts Methanol In vitro T.c 25 μg/ml Panama (Calderón et al., 2010)
Sarcostemma gracile Decne. Asclepiadaceae Aerial parts Ethanol In vitro T.c 42 μg/ml Panama (Calderón et al., 2010)
Schinus molle var. areira (L.) DC. Anacardiaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Solanum actaeibotrys Rusby Solanaceae Leaves Ethanol In vitro T.c 100 μg/ml Bolivia (Fournet et al., 1994)
Solanum cornifolium Dunal Solanaceae Leaf Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Srevia yaconensis L. Asteraceae Woods Ethanol In vitro T.c 50 μg/ml Bolivia (Fournet et al., 1994)
Styrax conterminus Donn.Sm. Styracaceae Bark Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Tabebuia serratifolia (Vahl) G.Nicholson Bignoniaceae Bark Hexane In vitro T.c 100 μg/ml Peru (González‐Coloma et al., 2012)
Tagetes caracasana Humb. ex Willd. Asteraceae Leaves Oil In vitro T.c 4.56 μg/ml 25.73 μg/ml Brazil (Escobar et al., 2009)
Tagetes filifolia subsp. filifolia Asteraceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Tagetes heterocarpha Rydb. Asteraceae Leaves Oil In vitro T.c 12.84 μg/ml 43.03 μg/ml Brazil (Escobar et al., 2009)
Tagetes lucida f. florida (Sweet) Voss Asteraceae Leaves Oil In vitro T.c 18.94 μg/ml >300 μg/ml Brazil (Escobar et al., 2009)
Tagetes zypaquirensis Bonpl. Asteraceae Leaves Oil In vitro T.c 21.30 μg/ml 126.40 μg/ml Brazil (Escobar et al., 2009)
Terminalia triflora (Griseb.) Lillo Combretaceae Aerial parts Methanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Tradescantia zebrina var. flocculosa (G.Brückn.) D.R.Hunt Commelinaceae Aerial parts Hexane In vitro T.c 96% Peru (González‐Coloma et al., 2012)
Tynanthus guatemalensis Donn.Sm Bignoniaceae Stems Ethanol In vitro T.c > 50 μg/ml Panama (Calderón et al., 2010)
Vatairea macrocarpa var. cinerascens (Benth.) Ducke Fabaceae Roots woods Hexane In vitro T.c 32.6 μg/ml >100 μg/ml Brazil (Charneau et al., 2016)
Vernonia squamulosa Hook. & Arn. Asteraceae Leaves Petroleum In vitro T.c 100 μg/ml Bolivia (Fournet et al., 1994)
Xylopia aromatica (Lam.) Mart. Annonaceae Root woods Hexane In vitro T.c 21.6 μg/ml Brazil (Mesquita et al., 2005)
Zamia ulei subsp. lecointei (Ducke) Ducke Zamiaceae Underground tuberous stem Chloroform In vitro T.c 92.5% Peru (González‐Coloma et al., 2012)
Zanthoxylum chiloperone var. angustifolium Engl. Rutaceae Aerial parts Alkaloidal canthin‐6‐one In vivo T.c in Balb/c mice, 5 mg/kg/day 80–100% inhibition Paraguay (Ferreira et al., 2007)
Ziziphus mistol Griseb. Rhamnaceae Leaf Ethanol In vitro T.c 25 μg/ml Panama (Calderón et al., 2010)
Zuccagnia punctata Cav. Fabaceae Leaf Ethanol In vitro T.c 20 μg/ml Panama (Calderón et al., 2010)

FIGURE 5.

FIGURE 5

Chemical structures of isolated compounds from Latin America medicinal plants

3.7. North America

A total of 29 plants have been identified in the literature. Interestingly, the lack of testing against T. cruzi, which is prevalent in the southern part of North America, was observed in this study. The plants showed excellent anti‐trypanosomal activity with a minimum inhibitory concentration of fewer than 10 µg/ml. The crude extracts of Nuphar luteum (0.42 µg/ml), Hoita macrostachya (0.48 µg/ml) and Rhus integrifolia (0.50 µg/ml) showed the highest activity against Trypanosoma brucei (Table 6).

TABLE 6.

Plants assessed for anti‐trypanosomal application for which the EC50 values are known

Scientific name Family Part(s) used Solvent Bioactive compound Model Sub species EC50 CC50 Country References
Acer rubrum subsp. carolinianum (Walter) W.Stone Sapindaceae Leaf Ethanol In vitro T.b.b 2.88 μg/ml USA (Jain et al., 2016)
Alnus rubra f. pinnatisecta (Starker) Rehder Betulaceae Bark Ethanol In vitro T.b.b 0.94 μg/ml USA (Jain et al., 2016)
Anogeissus leiocarpus (DC.) Guill. & Perr. Combretaceae Root bark Methanol In vitro T.b.b 0.82 μg/ml USA (Kenguele, 2009)
Arctostaphylos viscida subsp. mariposa (Dudley) P.V.Wells Ericaceae Leaf Ethanol In vitro T.b.b 2.88 μg/ml USA (Jain et al., 2016)
Boykinia major var. intermedia (A.Heller) Piper Saxifragaceae Root Ethanol In vitro T.b.b 2.82 μg/ml USA (Jain et al., 2016)
Chrysolepis chrysophylla (Douglas ex Hook.) Hjelmq. Fagaceae Flowers Ethanol In vitro T.b.b 2.89 μg/ml USA (Jain et al., 2016)
Coccoloba pubescens L. Polygonaceae Stems Ethanol In vitro T.b.b 0.83 μg/ml USA (Jain et al., 2016)
Eriogonum fasciculatum var. polifolium (Benth.) Torr. & A.Gray Polygonaceae Leaf Ethanol In vitro T.b.b 2.68 μg/ml USA (Jain et al., 2016)
Eriogonum umbellatum subsp. dumosum (Greene) S.Stokes Polygonaceae Leaf stems Ethanol In vitro T.b.b 2.79 μg/ml USA (Jain et al., 2016)
Eucalyptus citriodora Hook. Myrtaceae Leaf Ethanol In vitro T.b.b 2.91 μg/ml USA (Jain et al., 2016)
Fagara zanthoxyloides Lam. Rutaceae Bark Methanol In vitro T.b.b 6.42 μg/ml USA (Kenguele, 2009)
Hamamelis virginiana f. parvifolia (Nutt.) Fernald Hamamelidaceae Stem Ethanol In vitro T.b.b 2.54 μg/ml USA (Jain et al., 2016)
Hoita macrostachya (DC.) Rydb. Fabaceae Leaf Ethanol In vitro T.b.b 0.48 μg/ml USA (Jain et al., 2016)
Juniperus communis subsp. alpina (Schoop, Büechi et al.) Celak. Cupressaceae Leaf stem Ethanol In vitro T.b.b 2.40 μg/ml USA (Jain et al., 2016)
Leea rubra Blume ex Spreng. Vitaceae Stem Ethanol In vitro T.b.b 1.62 μg/ml USA (Jain et al., 2016)
Lepechinia calycina var. glabella (A.Gray) Epling ex Munz Lamiaceae Leaf Ethanol In vitro T.b.b 2.50 μg/ml USA (Jain et al., 2016)
Ligustrum sinense var. myrianthum (Diels) Hoefker Oleaceae Leaf fruit Ethanol In vitro T.b.b 2.77 μg/ml USA (Jain et al., 2016)
Lyonia fruticosa (Michx.) G.S. Torr. Ericaceae Stems Ethanol In vitro T.b.b 2.54 μg/ml USA (Jain et al., 2016)
Medinilla magnifica Lindl. Melastomataceae Flowers fruit Ethanol In vitro T.b.b 2.25 μg/ml USA (Jain et al., 2016)
Nuphar lutea subsp. advena Kartesz & Gandhi Nymphaeaceae Fruit Ethanol In vitro T.b.b 0.42 μg/ml USA (Jain et al., 2016)
Quercus alba f. latiloba (Sarg.) E.J.Palmer & Steyerm. Fagaceae Bark Ethanol In vitro T.b.b 1.92 μg/ml USA (Jain et al., 2016)
Pseudocedrela kotschyi (Schweinf.) Harms Meliaceae Root Methanol In vitro T.b.b 8.94 μg/ml USA (Kenguele, 2009)
Rhododendron occidentale (Torr. & A. Gray) A. Gray Ericaceae Leaf Ethanol In vitro T.b.b 2.87 μg/ml USA (Jain et al., 2016)
Rhus integrifolia (Nutt.) Benth. & Hook. f. ex Rothr. Anacardiaceae Leaf Ethanol In vitro T.b.b 0.50 μg/ml USA (Jain et al., 2016)
Ribes montigenum McClatchie Grossulariaceae Stems Ethanol In vitro T.b.b 1.94 μg/ml USA (Jain et al., 2016)
Ribes speciosum Pursh Grossulariaceae Leaf stems flowers Ethanol In vitro T.b.b 2.95 μg/ml USA (Jain et al., 2016)
Sabal minor (Jacq.) Pers. Arecaceae Flowers Ethanol In vitro T.b.b 1.06 μg/ml USA (Jain et al., 2016)
Salvia spathacea Greene Lamiaceae Stems Ethanol In vitro T.b.b 1.13 μg/ml USA (Jain et al., 2016)
Terminalia glaucescens Planch. ex Benth. Combretaceae Root Methanol In vitro T.b.b 9.04 μg/ml USA (Kenguele, 2009)

3.8. Oceania plants

Few studies have been found in the literature about the medicinal plants from Oceania with anti‐trypanosomal activity. This corroborates with the scientometric analysis of global trypanosomiases research from 1988 to 2017 which shows that Oceania researchers have contributed less than the others to trypanosomiases research in this region (Hassan et al., 2020). Only seven plants have been identified in the literature, of which just Corydalis crispa (4.63 µg/ml) showed activity against Trypanosoma brucei (Table 7).

TABLE 7.

Plants assessed for anti‐trypanosomal activity

Scientific Name Family Part (s) used Solvent Bioactive compound Model Sub species EC50 CC50 Country References
Aconitum laciniatum (Brühl) Stapf Ranunculaceae Leaf Methanol In vitro T.b.b >25 μg/ml >25 μg/ml Australia (Wangchuk, 2014)
Ajania nubigena (Wall.) C.Shih Compositae Leaf Methanol In vitro T.b.b >10 μg/ml >10 μg/ml Australia (Wangchuk, 2014)
Codonopsis bhutanica Ludlow Campanulaceae Leaf Methanol In vitro T.b.b >5 μg/ml >5 μg/ml Australia (Wangchuk, 2014)
Corydalis crispa var. laeviangula C.Y.Wu & H.Chuang Fumariaceae Leaf Methanol In vitro T.b.b 4.63 μg/ml 12.5 μg/ml Australia (Wangchuk, 2014)
Corydalis dubia Prain Fumariaceae Leaf Methanol In vitro T.b.b >10 μg/ml >10 μg/ml Australia (Wangchuk, 2014)
Meconopsis simplicifolia (D. Don) Walp. Papaveraceae Leaf Methanol In vitro T.b.b >10 μg/ml >10 μg/ml Australia (Wangchuk, 2014)
Pleurospermum amabile W. G. Craib & W.W. Sm. Umbellifereae Leaf DCM In vitro T.b.b 14.83 μg/ml >25 μg/ml Australia (Wangchuk, 2014)

Note: Their EC50 values are known.

Many plants worldwide serve as a potential source of bioactive compounds against trypanosomiases. We encountered 77 chemically defined natural molecules reported in the literature, which have been evaluated for anti‐trypanosomal activity. Fifty‐nine were from Africa, 11 from Asia, 3 from Europe and 4 from Latin America. The active compounds, isolated and identified, belong to the classes of alkaloids, triterpenoids, lactones (Kohno, et al., 2010), quinoids, flavonoids, steroids, lipids, iridoids, oxygen heterocycles, benzenoids, lignans, proteids, coumarins, phenylpropanoids and peptides. The most active compounds with EC50 of <20 µg/ml are abruquinones, letestuianin, 22‐hydroxyclerosterol, 7,15‐dihydroxy‐7,15‐deoxo nimbin, cassythine, polyacetylenes (MS‐1, MS‐2 and MS‐4), Putranoside A, kolavenol, triterpenoid (3β,13β‐dihydroxy‐urs‐11‐en‐28‐oic acid), lucidamine, oleanolic acid, phytol, betulinic acid, β‐sitosterol, citronellal, clerodane, saringosterol, 24‐hydroperoxy‐24‐vinylcholesterol, melicopicine, skimmianine, α‐amyrin, punicalagin, cedrelone, vernogui‐nosterol and diacetylvernoguinosterol, cynaropicrin, Schkuhrin I and II, saropeptide, oregonin, hirsutanone, curlone, isoiridogermanal, mahanimbine, murrayafoline, girinimbine, vanicoside E, (+)‐ketopinoresinol, isorhamnetin, cardamomin, onopordopicrin, juncunol, miltirone, isoobtusi‐lactone A, canthin‐6‐one, thus, are promising leads for drug development. Abruquinone K, L, A and D, artemisinin, MS‐2, MS‐4, dioncophylline E, dihydrochelerythrine, clerodane, Schkuhrin I, cynaropicrin, waltheriones L and vanicoside E showed inhibitory activity below 1 µg/ml or 1 µM.

According to the standards of the National Cancer Institute (NCI), a crude extract can be considered active for an EC50 ≤ 20 µg/ml (Cordell et al., 1993). Hence, most plant extracts (more than 50%) showed activity below 20 µg/ml. We highlighted the plant extracts that have the most activity below 1 µg/ml, which include Kanahia laniflora, Arctium nemorosum, Crinum stuhlmannii subsp. Delagoense, Myristica fatua, Narcissus broussonetii var. grandiflorus, Salvia miltiorrhiza var. charbonnelii, Anthemis tinctoria subsp. australis, Casearia sylvestris var. lingua, Ranunculus sceleratus subsp. Multifidus, Alnus rubra f. pinnatisecta, Anogeissus leiocarpus, Coccoloba pubescens, Hoita macrostachya, Nuphar lutea subsp. Advena, Rhus integrifolia. All active extracts belong to different families and are from different parts of the plant. Hence, it was impossible to mention the particular plant parts or specific family.

Artemisinin is an endoperoxide sesquiterpene lactone isolated from Artemisia annua, one of the well‐known antiparasitic and anti‐tumoural chemotherapeutic agents (Rocha et al., 2005). The impacts of Artemisinin and its derivatives on Trypanosoma parasites have been investigated in in vitro and animal models. These compounds effectively inhibit the metabolism of parasites, while exhibiting limited side effects on the host (Loo et al., 2017). A large number of in vitro and in vivo studies on amastigotes, epimastigotes and trypomastigotes of Trypanosoma have displayed that artemisinin and its derivatives have pharmacological activities in controlling the parasites and have shown significant impact against protozoans such as T. brucei rhodesiense, T. brucei brucei and T. cruzi (Loo et al., 2017).

3.9. Critical assessment of the literature information embodied in the present study

Africa, Asia and the Middle East flore provide many promising plants, but further in vivo studies are required to confirm their application as anti‐trypanosomal agents. It is worth noting that before in vivo studies, the in vitro biological activity should be accompanied by cytotoxicity studies against mammalian cells, followed by pharmacokinetic studies. On the other hand, some literature was not entered into this systematic review based on mesh terms. In West Africa and South America, Trypanosoma vivax is at the helm of the majority of trypanosome infections in cattle and other ruminants. This pathogen is not well established in laboratory animals, and investigation into pathogenic isolates has been restricted by the difficulty of its in vitro establishment. In this study, very few compounds were screened against Trypanosoma vivax (Isoun and Isoun, 1974' Cortez et al., 2006).

4. CONCLUSIONS

Many plants worldwide serve as a potential source of bioactive compounds against trypanosomiases. Africa, Asia and the Middle East flore provide many promising plants, but further in vivo studies are required to confirm their application as anti‐trypanosomal agents. At the same time, the isolation of the bioactive compounds in their pure form should be pursued. Further vital investigations, including clarification of their mode of action, assessment of the efficacy of several bioactive compounds and their toxicity profile, need to be carried out.

AUTHOR CONTRIBUTIONS

Shahin Nekoui: Methodology; writing – review & editing. Faham Khamesipour: Investigation; supervision; validation; writing – original draft; writing – review & editing. Pardis Mohammadi Pour: Methodology; writing – review & editing.

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

FUNDING

No funding was received.

ETHICS STATEMENT

An ethics statement is not applicable because this study is based exclusively on published literature.

PEER REVIEW

I would not like my name to appear with my report on Publons https://publons.com/publon/10.1002/vms3.912

ACKNOWLEDGEMENTS

The authors would like to thank the editor and reviewers for all of their care, constructive and insightful comments concerning this work.

Nekoei, S. , Khamesipour, F. , Habtemariam, S. , de Souza, W. , Mohammadi Pour, P. , & Hosseini, S. R. (2022). The anti‐Trypanosoma activities of medicinal plants: A systematic review of the literature. Veterinary Medicine and Science, 8, 2738–2772. 10.1002/vms3.912

Contributor Information

Faham Khamesipour, Email: faham.khamesipour@yahoo.com.

Seyed Reza Hosseini, Email: dr.s.reza@gmail.com.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analysed in this study.

REFERENCES

  1. Ahmad Khan, M. S. , & Ahmad, I. (2019). Chapter 1 – Herbal medicine: Current trends and future prospects. In Ahmad Khan M. S., I. Ahmad, & D. Chattopadhyay (Eds.), New look to phytomedicine (pp. 3–13). Academic Press. 10.1016/B978-0-12-814619-4.00001-X [DOI] [Google Scholar]
  2. Al‐Musayeib, N. M. , Mothana, R. A. , Matheeussen, A. , Cos, P. , & Maes, L. (2012). In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. BMC Complementary and Alternative Medicine, 12, 49. 10.1186/1472-6882-12-49 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Al‐Musayeib, N. M. , Mothana, R. A. , Al‐Massarani, S. , Matheeussen, A. , Cos, P. , & Maes, L. (2012). Study of the in vitro antiplasmodial, antileishmanial and antitrypanosomal activities of medicinal plants from Saudi Arabia. Molecules (Basel, Switzerland), 17(10), 11379–11390. 10.3390/molecules171011379 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Atawodi, S. E. , Ameh, D. A. , Ibrahim, S. , Andrew, J. N. , Nzelibe, H. C. , Onyike, E. O. , Anigo, K. M. , Abu, E. A. , James, D. B. , Njoku, G. C. , & Sallau, A. B. (2002). Indigenous knowledge system for treatment of trypanosomiasis in Kaduna state of Nigeria. Journal of Ethnopharmacology, 79(2), 279–282. 10.1016/s0378-8741(01)00351-8 [DOI] [PubMed] [Google Scholar]
  5. Atawodi, S. E. (2005). Comparative in vitro trypanocidal activities of petroleum ether, chloroform, methanol and aqueous extracts of some Nigerian savannah plants. African Journal of Biotechnology, 4(2), 177–182. [Google Scholar]
  6. Bawm, S. (2010). Studies on antitrypanosomal activity of medicinal plants (p. 98). Japan: Hokkaido University.
  7. Bero, J. , Beaufay, C. , Hannaert, V. , Hérent, M. F. , Michels, P. A. , & Quetin‐Leclercq, J. (2013). Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde‐3‐phosphate dehydrogenase. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 20(3–4), 270–274. 10.1016/j.phymed.2012.10.010 [DOI] [PubMed] [Google Scholar]
  8. de Bittencourt, N. L. R. , Ueda‐Nakamura, T. , Filho, B. P. D. , & Nakamura, C. V. (2011). Antitrypanosomal activity of a semi‐purified subfraction rich in Labdane Sesquiterpenes, obtained from flowers of Anthemis tinctoria , against Trypanosoma cruzi. Pharmacology & Pharmacy, 02(02), 47. 10.4236/pp.2011.22006 [DOI] [Google Scholar]
  9. Bringmann, G. , Dreyer, M. , Faber, J. H. , Dalsgaard, P. W. , Staerk, D. , Jaroszewski, J. W. , Ndangalasi, H. , Mbago, F. , Brun, R. , & Christensen, S. B. (2004). Ancistrotanzanine C and related 5,1'‐ and 7,3'‐coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis . Journal of Natural Products, 67(5), 743–748. 10.1021/np0340549 [DOI] [PubMed] [Google Scholar]
  10. Bringmann, G. , Dreyer, M. , Faber, J. H. , Dalsgaard, P. W. , Staerk, D. , Jaroszewski, J. W. , Ndangalasi, H. , Mbago, F. , Brun, R. , Reichert, M. , Maksimenka, K. , & Christensen, S. B. (2003). Ancistrotanzanine A, the first 5,3'‐coupled naphthylisoquinoline alkaloid, and two further, 5,8'‐linked related compounds from the newly described species Ancistrocladus tanzaniensis . Journal of Natural Products, 66(9), 1159–1165. 10.1021/np030077b [DOI] [PubMed] [Google Scholar]
  11. Calderón, A. I. , Romero, L. I. , Ortega‐Barría, E. , Solís, P. N. , Zacchino, S. , Gimenez, A. , Pinzón, R. , Cáceres, A. , Tamayo, G. , Guerra, C. , Espinosa, A. , Correa, M. , & Gupta, M. P. (2010). Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Pharmaceutical Biology, 48(5), 545–553. 10.3109/13880200903193344 [DOI] [PubMed] [Google Scholar]
  12. Charneau, S. , de Mesquita, M. L. , Bastos, I. M. , Santana, J. M. , de Paula, J. E. , Grellier, P. , & Espindola, L. S. (2016). In vitro investigation of Brazilian Cerrado plant extract activity against Plasmodium falciparum, Trypanosoma cruzi and T. brucei gambiense . Natural Product Research, 30(11), 1320–1326. 10.1080/14786419.2015.1055264 [DOI] [PubMed] [Google Scholar]
  13. Cordell, G. A. , Kinghorn, A. D. , & Pezzuto, J. M. (1993). Separation, structure elucidation and bioassay of cytotoxic natural products. In: Colegate S. M., Molyneux R. J. (Eds.), Bioactive natural products: Detection, isolation, and structure determination (pp. 198–201). Florida: CRC Press. [Google Scholar]
  14. Cortez, A. P. , Ventura, R. M. , Rodrigues, A. C. , Batista, J. S. , Paiva, F. , Añez, N. , Machado, R. Z. , Gibson, W. C. , & Teixeira, M. M. (2006). The taxonomic and phylogenetic relationships of Trypanosoma vivax from South America and Africa. Parasitology, 133(Pt 2), 159–169. 10.1017/S0031182006000254 [DOI] [PubMed] [Google Scholar]
  15. Desrivot, J. , Waikedre, J. , Cabalion, P. , Herrenknecht, C. , Bories, C. , Hocquemiller, R. , & Fournet, A. (2007). Antiparasitic activity of some New Caledonian medicinal plants. Journal of Ethnopharmacology, 112(1), 7–12. 10.1016/j.jep.2007.01.026 [DOI] [PubMed] [Google Scholar]
  16. Deeks, E. D. (2019). Fexinidazole: First global approval. Drugs, 79(2), 215–220. 10.1007/s40265-019-1051-6 [DOI] [PubMed] [Google Scholar]
  17. Dickie, E. A. , Giordani, F. , Gould, M. K. , Mäser, P. , Burri, C. , Mottram, J. C. , Rao, S. , & Barrett, M. P. (2020). New drugs for human African trypanosomiasis: A twenty first century success story. Tropical Medicine and Infectious Disease, 5(1), 29. 10.3390/tropicalmed5010029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. DiMasi, J. A. , & Paquette, C. (2004). The economics of follow‐on drug research and development: Trends in entry rates and the timing of development. PharmacoEconomics, 22(2 Suppl 2), 1–14. 10.2165/00019053-200422002-00002 [DOI] [PubMed] [Google Scholar]
  19. Dyary, H. O. , Arifah, A. K. , Sharma, R. S. , Rasedee, A. , Mohd‐Aspollah, M. S. , Zakaria, Z. A. , Zuraini, A. , & Somchit, M. N. (2014). Antitrypanosomal screening and cytotoxic effects of selected medicinal plants. Tropical Biomedicine, 31(1), 89–96. [PubMed] [Google Scholar]
  20. Dyary, H. O. , Arifah, A. K. , Sukari, M. A. , & Sharma, R. (2019). Antitrypanosomal and cytotoxic activities of botanical extracts from Murraya koenigii (L.) and Alpinia mutica Roxb. Tropical Biomedicine, 36(1), 94–102. [PubMed] [Google Scholar]
  21. Ebiloma, G. U. , Igoli, J. O. , Katsoulis, E. , Donachie, A. M. , Eze, A. , Gray, A. I. , & de Koning, H. P. (2017). Bioassay‐guided isolation of active principles from Nigerian medicinal plants identifies new trypanocides with low toxicity and no cross‐resistance to diamidines and arsenicals. Journal of Ethnopharmacology, 202, 256–264. 10.1016/j.jep.2017.03.028 [DOI] [PubMed] [Google Scholar]
  22. Elujoba, A. A. , Odeleye, O. , & Ogunyemi, C. (2005). Traditional medicine development for medical and dental primary health care delivery system in Africa. African Journal of Traditional, Complementary and Alternative Medicines, 2(1), 46–61. [Google Scholar]
  23. Escobar, P. , Herrera, L. , Viviana, L. , Sandra, M. , Duran, C. , & Stashenko, E. (2009). Composición química y actividad anti‐tripanosomal de aceites esenciales obtenidos de Tagetes (Fam. Asteraceae), recolectados en Colombia. Revista de la Universidad Industrial de Santander. Salud, 41(3), 280–286. [Google Scholar]
  24. Fairlamb, A. H. , & Horn, D. (2018). Melarsoprol resistance in African trypanosomiasis. Trends in Parasitology, 34(6), 481–492. 10.1016/j.pt.2018.04.002 [DOI] [PubMed] [Google Scholar]
  25. Ferreira, M. E. , Nakayama, H. , de Arias, A. R. , Schinini, A. , de Bilbao, N. V. , Serna, E. , Lagoutte, D. , Soriano‐Agatón, F. , Poupon, E. , Hocquemiller, R. , & Fournet, A. (2007). Effects of canthin‐6‐one alkaloids from Zanthoxylum chiloperone on Trypanosoma cruzi‐infected mice. Journal of Ethnopharmacology, 109(2), 258–263. 10.1016/j.jep.2006.07.028 [DOI] [PubMed] [Google Scholar]
  26. Floyd, M. R. (2013). High throughput screening of extracts from plants used in traditional Chinese medicine against Trypanosoma brucei brucei 427. PhD Thesis, Middle Tennessee State University. [Google Scholar]
  27. Fotie, J. , Bohle, D. S. , Olivier, M. , Adelaida Gomez, M. , & Nzimiro, S. (2007). Trypanocidal and antileishmanial dihydrochelerythrine derivatives from Garcinia lucida . Journal of Natural Products, 70(10), 1650–1653. 10.1021/np0702281 [DOI] [PubMed] [Google Scholar]
  28. Fournet, A. , Barrios, A. A. , & Muñoz, V. (1994). Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. Journal of Ethnopharmacology, 41(1‐2), 19–37. 10.1016/0378-8741(94)90054-x [DOI] [PubMed] [Google Scholar]
  29. Freiburghaus, F. , Steck, A. , Pfander, H. , & Brun, R. (1998). Bioassay‐guided isolation of a diastereoisomer of kolavenol from Entada abyssinica active on Trypanosoma brucei rhodesiense . Journal of Ethnopharmacology, 61(3), 179–183. 10.1016/s0378-8741(98)00035-x [DOI] [PubMed] [Google Scholar]
  30. Githua, M. , & Hassanali, A. (2011). Antitrypanosomal Tetranotriterpenoids from Toona ciliata roots, Agriculture and Biology Journal of North America, 2(7), 1042–1047. 10.5251/abjna.2011.2.7.1042.1047 [DOI] [Google Scholar]
  31. González‐Coloma, A. , Reina, M. , Sáenz, C. , Lacret, R. , Ruiz‐Mesia, L. , Arán, V. J. , Sanz, J. , & Martínez‐Díaz, R. A. (2012). Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitology Research, 110(4), 1381–1392. 10.1007/s00436-011-2638-3 [DOI] [PubMed] [Google Scholar]
  32. Gupta, R. , Gabrielsen, B. , & Ferguson, S. M. (2005). Nature's medicines: Traditional knowledge and intellectual property management. Case studies from the National Institutes of Health (NIH), USA. Current Drug Discovery Technologies, 2(4), 203–219. 10.2174/157016305775202937 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hashemi, N. , Ommi, D. , Kheyri, P. , Khamesipour, F. , Setzer, W. N. , & Benchimol, M. (2021). A review study on the anti‐trichomonas activities of medicinal plants. International Journal for Parasitology. Drugs and Drug Resistance, 15, 92–104. 10.1016/j.ijpddr.2021.01.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hassan, M. D. , Castanha, R. , & Wolfram, D. (2020). Scientometric analysis of global trypanosomiasis research: 1988–2017. Journal of Infection and Public Health, 13(4), 514–520. 10.1016/j.jiph.2019.10.006 [DOI] [PubMed] [Google Scholar]
  35. Hata, Y. , Ebrahimi, S. N. , De Mieri, M. , Zimmermann, S. , Mokoka, T. , Naidoo, D. , Fouche, G. , Maharaj, V. , Kaiser, M. , Brun, R. , Potterat, O. , & Hamburger, M. (2014). Antitrypanosomal isoflavan quinones from Abrus precatorius . Fitoterapia, 93, 81–87. 10.1016/j.fitote.2013.12.015 [DOI] [PubMed] [Google Scholar]
  36. Hata, Y. , Zimmermann, S. , Quitschau, M. , Kaiser, M. , Hamburger, M. , & Adams, M. (2011). Antiplasmodial and antitrypanosomal activity ofpyrethrins and pyrethroids. Journal of Agricultural and Food Chemistry, 59(17), 9172–9176. 10.1021/jf201776z [DOI] [PubMed] [Google Scholar]
  37. Hoet, S. , Pieters, L. , Muccioli, G. G. , Habib‐Jiwan, J. L. , Opperdoes, F. R. , & Quetin‐Leclercq, J. (2007). Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. Journal of Natural Products, 70(8), 1360–1363. 10.1021/np070038q [DOI] [PubMed] [Google Scholar]
  38. Ibrahim, M. A. , Mohammed, A. , Isah, M. B. , & Aliyu, A. B. (2014). Anti‐trypanosomal activity of African medicinal plants: A review update. Journal of Ethnopharmacology, 154(1), 26–54. 10.1016/j.jep.2014.04.012 [DOI] [PubMed] [Google Scholar]
  39. Isoun, T. T. , & Isoun, M. J. (1974). In vitro cultivation of Trypanosoma vivax isolated from cattle. Nature, 251(5475), 513–514. 10.1038/251513a0 [DOI] [PubMed] [Google Scholar]
  40. Jain, S. , Jacob, M. , Walker, L. , & Tekwani, B. (2016). Screening North American plant extracts in vitro against Trypanosoma brucei for discovery of new antitrypanosomal drug leads. BMC Complementary and Alternative Medicine, 16, 131. 10.1186/s12906-016-1122-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kamnaing, P. , Tsopmo, A. , Tanifum, E. A. , Tchuendem, M. H. , Tane, P. , Ayafor, J. F. , Sterner, O. , Rattendi, D. , Iwu, M. M. , Schuster, B. , & Bacchi, C. (2003). Trypanocidal diarylheptanoids from Aframomum letestuianum . Journal of Natural Products, 66(3), 364–367. 10.1021/np020362f [DOI] [PubMed] [Google Scholar]
  42. Kande Betu Ku Mesu, V. , Mutombo Kalonji, W. , Bardonneau, C. , Valverde Mordt, O. , Ngolo Tete, D. , Blesson, S. , Simon, F. , Delhomme, S. , Bernhard, S. , Mahenzi Mbembo, H. , Mpia Moke, C. , Lumeya Vuvu, S. , Mudji E'kitiak, J. , Akwaso Masa, F. , Mukendi Ilunga, M. , Mpoyi Muamba Nzambi, D. , Mayala Malu, T. , Kapongo Tshilumbwa, S. , Botalema Bolengi, F. , … Tarral, A. (2021). Oral fexinidazole for stage 1 or early stage 2 African Trypanosoma brucei gambiense trypanosomiasis: A prospective, multicentre, open‐label, cohort study. The Lancet Global Health, 9(7), e999–e1008. 10.1016/S2214-109X(21)00208-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kenguele, H. M. (2009). Biological evaluation of four selected African medicinal plants for their trypanocidal properties, mode of action, and chemical compounds. PhD Thesis, Howard University. [Google Scholar]
  44. Kasilo, O. M. , Lusamba‐Dikassa, P. S. , Mwikisa Ngenda, C. , & Trapsida, J.‐M. (2010). An overview of the traditional medicine situation in the African region. The African Health Monitor, Online, 7–15. [Google Scholar]
  45. Kpadonou Kpoviessi, B. G. , Kpoviessi, S. D. , Yayi Ladekan, E. , Gbaguidi, F. , Frédérich, M. , Moudachirou, M. , Quetin‐Leclercq, J. , Accrombessi, G. C. , & Bero, J. (2014). In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. Journal of Ethnopharmacology, 155(3), 1417–1423. 10.1016/j.jep.2014.07.014 [DOI] [PubMed] [Google Scholar]
  46. Kohno, S. , Kida, H. , Mizuguchi, M. , Shimada, J. , & S‐021812 Clinical Study Group . (2010). Efficacy and safety of intravenous peramivir for treatment of seasonal influenza virus infection. Antimicrobial Agents and Chemotherapy, 54(11), 4568–4574. 10.1128/AAC.00474-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kumar, R. , Badarinath, K. , & Ravishankar, H. (2014). Evaluation of selected medicinal plants for their in vitro activity against trypanosomiasis. Evaluation, 9(9), 35–42. [Google Scholar]
  48. Lawal, B. , Shittu, O. K. , Kabiru, A. Y. , Jigam, A. A. , Umar, M. B. , Berinyuy, E. B. , & Alozieuwa, B. U. (2015). Potential antimalarials from African natural products: A reviw. Journal of Intercultural Ethnopharmacology, 4(4), 318–343. 10.5455/jice.20150928102856 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Le, T. B. , Beaufay, C. , Nghiem, D. T. , Pham, T. A. , Mingeot‐Leclercq, M. P. , & Quetin‐Leclercq, J. (2019). Evaluation of the anti‐trypanosomal activity of vietnamese essential oils, with emphasis on Curcuma longa L. and its components. Molecules (Basel, Switzerland), 24(6), 1158. 10.3390/molecules24061158 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Llurba Montesino, N. , Kaiser, M. , Brun, R. , & Schmidt, T. J. (2015). Search for antiprotozoal activity in herbal medicinal preparations; new natural leads against neglected tropical diseases. Molecules (Basel, Switzerland), 20(8), 14118–14138. 10.3390/molecules200814118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Loo, C. S. , Lam, N. S. , Yu, D. , Su, X. Z. , & Lu, F. (2017). Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacological Research, 117, 192–217. 10.1016/j.phrs.2016.11.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Martinez‐Peinado, N. , Cortes‐Serra, N. , Torras‐Claveria, L. , Pinazo, M.‐J. , Gascon, J. , Bastida, J. , & Alonso‐Padilla, J. (2020). Amaryllidaceae alkaloids with anti‐Trypanosoma cruzi activity. Parasites Vectors, 13, 299. 10.1186/s13071-020-04171-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Mbaya, A. W. , Aliyu, M. M. , & Ibrahim, U. I. (2009). The clinico‐pathology and mechanisms of trypanosomosis in captive and free‐living wild animals: A review. Veterinary Research Communications, 33(7), 793–809. [DOI] [PubMed] [Google Scholar]
  54. Mesquita, M. L. D. , Desrivot, J. , Fournet, A. , Paula, J. E. D. , Grellier, P. , & Espindola, L. S. (2005). Antileishmanial and trypanocidal activity of Brazilian Cerrado plants. Memórias do Instituto Oswaldo Cruz, 100(7), 783–787. 10.1590/S0074-02762005000700019 [DOI] [PubMed] [Google Scholar]
  55. Mokoka, T. A. , Xolani, P. K. , Zimmermann, S. , Hata, Y. , Adams, M. , Kaiser, M. , Moodley, N. , Maharaj, V. , Koorbanally, N. A. , Hamburger, M. , Brun, R. , & Fouche, G. (2013). Antiprotozoal screening of 60 South African plants, and the identification of the antitrypanosomal germacranolides schkuhrin I and II. Planta Medica, 79(14), 1380–1384. 10.1055/s-0033-1350691 [DOI] [PubMed] [Google Scholar]
  56. Molina‐Garza, Z. J. , Bazaldúa‐Rodríguez, A. F. , Quintanilla‐Licea, R. , & Galaviz‐Silva, L. (2014). Anti‐Trypanosoma cruzi activity of 10 medicinal plants used in northeast Mexico. Acta Tropica, 136, 14–18. 10.1016/j.actatropica.2014.04.006 [DOI] [PubMed] [Google Scholar]
  57. Muñoz, O. M. , Maya, J. D. , Ferreira, J. , Christen, P. , San Martin, J. , López‐Muñoz, R. , Morello, A. , & Kemmerling, U. (2013). Medicinal plants of Chile: Evaluation of their anti‐Trypanosoma cruzi activity. Zeitschrift fur Naturforschung C, 68(5–6), 198–202. [PubMed] [Google Scholar]
  58. Mwangi, E. S. K. , Keriko, J. M. , Machocho, A. K. , Wanyonyi, A. W. , Malebo, H. M. , Chhabra, S. C. , Mwangi, E. S. , Keriko, J. M. , Machocho, A. K. , Wanyonyi, A. W. , Malebo, H. M. , Chhabra, S. C. , Mwangi, E. S. K. , & Tarus, P. K. (2010). Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa . Journal of Medicinal Plants Research, 4(9), 726–731. [Google Scholar]
  59. Newman, D. J. , & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. 10.1021/acs.jnatprod.5b01055 [DOI] [PubMed] [Google Scholar]
  60. Newman, D. J. , Cragg, G. M. , & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981–2002. Journal of Natural Products, 66(7), 1022–1037. 10.1021/np030096l [DOI] [PubMed] [Google Scholar]
  61. Nezaratizade, S. , Hashemi, N. , Ommi, D. , Orhan, I. E. , & Khamesipour, F. (2021). A systematic review of anti‐Entamoeba histolytica activity of medicinal plants published in the last 20 years. Parasitology, 148(6), 672–684. 10.1017/S0031182021000172 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Nganso, Y. O. , Ngantchou, I. E. , Nkwenoua, E. , Nyasse, B. , Denier, C. , Hannert, V. , & Schneider, B. (2011). Antitrypanosomal and cytotoxic activities of 22‐Hydroxyclerosterol, a new sterol from Allexis cauliflora (Violaceae). Scientia Pharmaceutica, 79(1), 137–144. 10.3797/scipharm.1012-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Nibret, E. , Sporer, F. , Asres, K. , & Wink, M. (2009). Antitrypanosomal and cytotoxic activities of pyrrolizidine alkaloid‐producing plants of Ethiopia. The Journal of Pharmacy and Pharmacology, 61(6), 801–808. 10.1211/jpp/61.06.0014 [DOI] [PubMed] [Google Scholar]
  64. Nok, A. J. (2002). Azaanthraquinone inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma congolense . Cell Biochemistry and Function, 20(3), 205–212. 10.1002/cbf.948 [DOI] [PubMed] [Google Scholar]
  65. Ntie‐Kang, F. , Lifongo, L. L. , Mbaze, L. M. , Ekwelle, N. , Owono Owono, L. C. , Megnassan, E. , Judson, P. N. , Sippl, W. , & Efange, S. M. (2013). Cameroonian medicinal plants: A bioactivity versus ethnobotanical survey and chemotaxonomic classification. BMC Complementary and Alternative Medicine, 13, 147. 10.1186/1472-6882-13-147 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Nunes, F. O. , de Almeida, J. M. , Ferreira, A. , da Cruz, L. A. , Jacob, C. , Garcez, W. S. , & Garcez, F. R. (2020). Antitrypanosomal butanolides from Aiouea trinervis . EXCLI Journal, 19, 323–333. 10.17179/excli2020-1088 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Nweze, N. E. (2012). In vitro anti‐trypanosomal activity of Morinda lucida leaves. African Journal of Biotechnology, 11(7), 1812–1817. 10.5897/AJB11.862 [DOI] [Google Scholar]
  68. Nweze, N. E. , Anene, B. M. , & Asuzu, I. U. (2011). Investigation of the antitrypanosomal activity of Buchholzia coriacea seed extract against a field strain of Trypanosoma congolense . African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 8(5 Suppl), 175–180. 10.4314/ajtcam.v8i5S.23 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Obah, A. , Lawal, M. , & Malann, Y. (2013). Anti‐Trypanosoma activity of the ethanolic leaf extract of Senna occidentalis (Fabaceae) against T. brucei brucei infected mice. International Journal of Basic and Applied Sciences, 2(1), 32–37. [Google Scholar]
  70. Odhiambo, J. A. , Lukhoba, C. W. , & Dossaji, S. F. (2011). Evaluation of herbs as potential drugs/medicines. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 8(5 Suppl), 144–151. 10.4314/ajtcam.v8i5S.20 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Oliveira, M. , Sales Junior, P. A. , Rodrigues, M. J. , DellaGreca, M. , Barreira, L. , Murta, S. M. , Romanha, A. J. , & Custódio, L. (2016). Unlocking the in vitro anti‐Trypanosoma cruzi activity of halophyte plants from the southern Portugal. Asian Pacific Journal of Tropical Medicine, 9(8), 735–741. 10.1016/j.apjtm.2016.06.015 [DOI] [PubMed] [Google Scholar]
  72. Osório, A. L. , Madruga, C. R. , Desquesnes, M. , Soares, C. O. , Ribeiro, L. R. , & Costa, S. C. (2008). Trypanosoma (Duttonella) vivax: Its biology, epidemiology, pathogenesis, and introduction in the New World – A review. Memorias do Instituto Oswaldo Cruz, 103(1), 1–13. 10.1590/s0074-02762008000100001 [DOI] [PubMed] [Google Scholar]
  73. Page, M. J. , McKenzie, J. E. , Bossuyt, P. M. , Boutron, I. , Hoffmann, T. C. , Mulrow, C. D. , Shamseer, L. , Tetzlaff, J. M. , Akl, E. A. , Brennan, S. E. , Chou, R. , Glanville, J. , Grimshaw, J. M. , Hróbjartsson, A. , Lalu, M. M. , Li, T. , Loder, E. W. , Mayo‐Wilson, E. , McDonald, S. , … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.), 372, n71. 10.1136/bmj.n71 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Pathiranage, A. L. , Stubblefield, J. M. , Zhou, X. , Miao, J. , Newsome, A. L. , & Dunlap, N. (2016). Antitrypanosomal activity of iridals from Iris domestica, Phytochemistry Letters, 18, 44–50. 10.1016/j.phytol.2016.08.025 [DOI] [Google Scholar]
  75. Pan American Health Organization (PAHO); World Health Organization. Epidemiological update: Neurological syndrome, congenital anomalies, and Zika virus infection. (2016). Jan 17 [cited 2018 Sep 19]. https://www.paho.org/hq/dmdocuments/2016/2016‐jan‐17‐cha‐epi‐update‐zika‐virus.pdf
  76. Patwardhan, B. (2005). Ethnopharmacology and drug discovery. Journal of Ethnopharmacology, 100(1–2), 50–52. 10.1016/j.jep.2005.06.006 [DOI] [PubMed] [Google Scholar]
  77. Pan American Health Organization (PAHO) ; World Health Organization. Epidemiological update: Neurological syndrome, congenital anomalies, and Zika virus infection. 2016. [cited 2018 Sep 19]. https://www.paho.org/hq/dmdocuments/2016/2016‐jan‐17‐cha‐epi‐update‐zika‐virus.pdf
  78. Pink, R. , Hudson, A. , Mouriès, M. A. , & Bendig, M. (2005). Opportunities and challenges in antiparasitic drug discovery. Nature Reviews. Drug Discovery, 4(9), 727–740. 10.1038/nrd1824 [DOI] [PubMed] [Google Scholar]
  79. Priotto, G. , Kasparian, S. , Mutombo, W. , Ngouama, D. , Ghorashian, S. , Arnold, U. , Ghabri, S. , Baudin, E. , Buard, V. , Kazadi‐Kyanza, S. , Ilunga, M. , Mutangala, W. , Pohlig, G. , Schmid, C. , Karunakara, U. , Torreele, E. , & Kande, V. (2009). Nifurtimox‐eflornithine combination therapy for second‐stage African Trypanosoma brucei gambiense trypanosomiasis: A multicentre, randomised, phase III, non‐inferiority trial. Lancet (London, England), 374(9683), 56–64. 10.1016/S0140-6736(09)61117-X [DOI] [PubMed] [Google Scholar]
  80. Raheem, D. J. , Tawfike, A. F. , Abdelmohsen, U. R. , Edrada‐Ebel, R. , & Fitzsimmons‐Thoss, V. (2019). Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non‐scripta). Scientific Reports, 9(1), 2547. 10.1038/s41598-019-38940-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Regueira‐Neto, M. , Tintino, S. R. , Rolón, M. , Coronal, C. , Vega, M. C. , de Queiroz Balbino, V. , & de Melo Coutinho, H. D. (2018). Antitrypanosomal, antileishmanial and cytotoxic activities of Brazilian red propolis and plant resin of Dalbergia ecastaphyllum (L) Taub. Food and chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 119, 215–221. 10.1016/j.fct.2018.04.029 [DOI] [PubMed] [Google Scholar]
  82. Rocha, L. G. , Almeida, J. R. , Macêdo, R. O. , & Barbosa‐Filho, J. M. (2005). A review of natural products with antileishmanial activity. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 12(6‐7), 514–535. 10.1016/j.phymed.2003.10.006 [DOI] [PubMed] [Google Scholar]
  83. Schinella, G. R. , Tournier, H. A. , Prieto, J. M. , Ríos, J. L. , Buschiazzo, H. , & Zaidenberg, A. (2002). Inhibition of Trypanosoma cruzi growth by medical plant extracts. Fitoterapia, 73(7‐8), 569–575. 10.1016/s0367-326x(02)00246-0 [DOI] [PubMed] [Google Scholar]
  84. Senn, M. , Gunzenhauser, S. , Brun, R. , & Séquin, U. (2007). Antiprotozoal polyacetylenes from the Tanzanian medicinal plant Cussonia zimmermannii . Journal of Natural Products, 70(10), 1565–1569. 10.1021/np0702133 [DOI] [PubMed] [Google Scholar]
  85. Sepúlveda‐Robles, O. , Espinoza‐Gutiérrez, B. , Gomez‐Verjan, J. C. , Guzmán‐Gutiérrez, S. L. , De Ita, M. , Silva‐Miranda, M. , Espitia‐Pinzón, C. I. , Fernández‐Ramírez, F. , Herrera‐Salazar, A. , Mata‐Rocha, M. , Ortega‐Hernández, A. , & Reyes‐Chilpa, R. (2019). Trypanocidal and toxicological assessment in vitro and in silico of three sesquiterpene lactones from Asteraceae plant species. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 125, 55–61. 10.1016/j.fct.2018.12.023 [DOI] [PubMed] [Google Scholar]
  86. Shaba, P. O. , & Rao, J. R. (2011). In vitro trypanocidal activity of methanolic extracts of Quercus borealis leaves and Zingiber officinale roots against Trypanosoma evansi . Greener Journal of Agricultural Sciences, 1, 41–47. [Google Scholar]
  87. Shuaibu, M. N. , Wuyep, P. T. , Yanagi, T. , Hirayama, K. , Ichinose, A. , Tanaka, T. , & Kouno, I. (2008). Trypanocidal activity of extracts and compounds from the stem bark of Anogeissus leiocarpus and Terminalia avicennoides . Parasitology Research, 102(4), 697–703. 10.1007/s00436-007-0815-1 [DOI] [PubMed] [Google Scholar]
  88. Simarro, P. P. , Cecchi, G. , Franco, J. R. , Paone, M. , Diarra, A. , Ruiz‐Postigo, J. A. , Fèvre, E. M. , Mattioli, R. C. , & Jannin, J. G. (2012). Estimating and mapping the population at risk of sleeping sickness. PLoS Neglected Tropical Diseases, 6(10), e1859. 10.1371/journal.pntd.0001859 [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Simoben, C. V. , Ntie‐Kang, F. , Akone, S. H. , & Sippl, W. (2018). Compounds from african medicinal plants with activities against selected parasitic diseases: Schistosomiasis, trypanosomiasis and leishmaniasis. Natural Products and Bioprospecting, 8(3), 151–169. 10.1007/s13659-018-0165-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Slusarczyk, S. , Zimmermann, S. , Kaiser, M. , Matkowski, A. , Hamburger, M. , & Adams, M. (2011). Antiplasmodial and antitrypanosomal activity of tanshinone‐type diterpenoids from Salvia miltiorrhiza . Planta Medica, 77(14), 1594–1596. 10.1055/s-0030-1270933 [DOI] [PubMed] [Google Scholar]
  91. Tajbakhsh, E. , Khamesipour, A. , Hosseini, S. R. , Kosari, N. , Shantiae, S. , & Khamesipour, F. (2021a). The effects of medicinal herbs and marine natural products on wound healing of cutaneous leishmaniasis: A systematic review. Microbial Pathogenesis, 161(Pt A), 105235. 10.1016/j.micpath.2021.105235 [DOI] [PubMed] [Google Scholar]
  92. Tajbakhsh, E. , Kwenti, T. E. , Kheyri, P. , Nezaratizade, S. , Lindsay, D. S. , & Khamesipour, F. (2021b). Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: A systematic review of literature. Malaria Journal, 20, 349 10.1186/s12936-021-03866-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Tchinda, A. T. , Tsopmo, A. , Tane, P. , Ayafor, J. F. , Connolly, J. D. , & Sterner, O. (2002). Vernoguinosterol and vernoguinoside, trypanocidal stigmastane derivatives from Vernonia guineensis (Asteraceae). Phytochemistry, 59(4), 371–374. 10.1016/s0031-9422(01)00448-4 [DOI] [PubMed] [Google Scholar]
  94. Tung, N. H. , Suzuki, M. , Uto, T. , Morinaga, O. , Kwofie, K. D. , Ammah, N. , Koram, K. A. , Aboagye, F. , Edoh, D. , Yamashita, T. , Yamaguchi, Y. , Setsu, T. , Yamaoka, S. , Ohta, N. , & Shoyama, Y. (2014). Anti‐trypanosomal activity of diarylheptanoids isolated from the bark of Alnus japonica . The American Journal of Chinese Medicine, 42(5), 1245–1260. 10.1142/S0192415X14500785 [DOI] [PubMed] [Google Scholar]
  95. Wangchuk, P. (2014). Phytochemical analysis, bioassays and the identification of drug lead compounds from seven Bhutanese medicinal plants. Australia: University of Wollongong. [Google Scholar]
  96. Welburn, S. C. , Maudlin, I. , & Simarro, P. P. (2009). Controlling sleeping sickness – A review. Parasitology, 136(14), 1943–1949. 10.1017/S0031182009006416 [DOI] [PubMed] [Google Scholar]
  97. W. H. O. (2015) Chagas disease (American trypanosomiasis) 340. Available at: https://www.who.int/news‐room/fact‐sheets/detail/chagas‐disease‐(american‐trypanosomiasis) (Accessed: 13 August 2020)
  98. W. H. O. (2018) Human African trypanosomiasis (sleeping sickness). Available at: https://www.who.int/health‐topics/human‐african‐trypanosomiasis#tab=tab_1 (Accessed: 13 August 2020)
  99. Wilkinson, S. R. , & Kelly, J. M. (2009). Trypanocidal drugs: Mechanisms, resistance and new targets. Expert Reviews in Molecular Medicine, 11, e31. 10.1017/S1462399409001252 [DOI] [PubMed] [Google Scholar]
  100. Xiao, H. , Rao Ravu, R. , Tekwani, B. L. , Li, W. , Liu, W. B. , Jacob, M. R. , Khan, S. I. , Cai, X. , Peng, C. Y. , Khan, I. A. , Li, X. C. , & Wang, W. (2017). Biological evaluation of phytoconstituents from Polygonum hydropiper. Natural Product Research, 31(17), 2053–2057. 10.1080/14786419.2016.1269094 [DOI] [PubMed] [Google Scholar]
  101. Zimmermann, S. , Thomi, S. , Kaiser, M. , Hamburger, M. , & Adams, M. (2012). Screening and HPLC‐based activity profiling for new antiprotozoal leads from European plants. Scientia Pharmaceutica, 80(1), 205–213. 10.3797/scipharm.1111-13 [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analysed in this study.


Articles from Veterinary Medicine and Science are provided here courtesy of Wiley

RESOURCES