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Abstract

The reconstruction of genomes is a critical step in genome-resolved metagenomics and for multi-omic data integration from microbial
communities. Here, we present binny, a binning tool that produces high-quality metagenome-assembled genomes (MAG) from both
contiguous and highly fragmented genomes. Based on established metrics, binny outperforms or is highly competitive with commonly
used and state-of-the-art binning methods and finds unique genomes that could not be detected by other methods. binny uses k-
mer-composition and coverage by metagenomic reads for iterative, nonlinear dimension reduction of genomic signatures as well as
subsequent automated contig clustering with cluster assessment using lineage-specific marker gene sets. When compared with seven
widely used binning algorithms, binny provides substantial amounts of uniquely identified MAGs and almost always recovers the most
near-complete (> 95% pure, > 90% complete) and high-quality (> 90% pure, > 70% complete) genomes from simulated datasets from the
Critical Assessment of Metagenome Interpretation initiative, as well as substantially more high-quality draft genomes, as defined by the
Minimum Information about a Metagenome-Assembled Genome standard, from a real-world benchmark comprised of metagenomes
from various environments than any other tested method.
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Introduction
High-throughput shotgun sequencing has become the standard to
investigate metagenomes [1, 2]. Metagenome-assembled genomes
(MAGs) allow the linking of the genetic information at species or
strain level. In the absence of cultured isolates, MAGs form an
important point of reference. Thereby, study-specific MAGs have
led to the discovery of previously uncharacterized microbial taxa
[3] and deepened insights into microbial physiology and ecology
[4, 5]. In addition, large system-wide collections, which have been
assembled recently, e.g. for the human microbiome [6] and several
environmental systems [7], equip researchers with a common
resource for short-read annotation. These collections also repre-
sent an overview of the pangenomic potential of microbial taxa
of interest [8, 9]. In addition to facilitating the interpretation of
metagenomic data, genome resolution also provides an anchor for
the integration of functional omics [10, 11].

However, obtaining complete, un-contaminated MAGs is
still challenging [12]. Most approaches start from assembled

contigs, which are then binned by clustering, e.g. expectation-
maximization clustering [13, 14] or graph-based clustering [15],
of k-mer frequency or abundance profiles or both. Therefore,
issues with metagenomic assemblies, such as fragmentation of
the assembly because of insufficient sequencing depth, repeat
elements within genomes and unresolved ambiguities between
closely related genomes, are perpetuated to MAGs. In addition,
the features based on which contigs are binned are not generally
homogeneous over genomes: for example copy number, and
thereby metagenomic coverage, may vary over the replicating
genome; certain conserved genomic regions, and also newly
acquired genetic material, can deviate in their k-mer frequency
from the rest of the genome [12].

In the face of these challenges, the algorithms used to bin
assembled metagenomic contigs into congruent groups, which
form the basis for MAGs, can approximately be evaluated
according to a set of criteria [16]. Most importantly, MAGs should
be as complete as possible and contain as little contamination

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9959-8767
https://orcid.org/0000-0002-0831-4261
https://orcid.org/0000-0002-6478-2924
https://orcid.org/0000-0001-8698-3770
https://orcid.org/0000-0002-9780-1933


2 | Hickl et al.

as possible. In metagenomic datasets with defined compositions,
such as those provided by the Critical Assessment of Metagenome
Interpretation (CAMI) initiative [17–19], the evaluation can be
achieved by comparison with the reference genomes. For yet un-
sequenced genomes, completeness and contamination can be
assessed based on the presence and redundancy of genes that
are expected to be present as single copies in many [20] or all [21]
bacteria or archaea [22], or in specific lineages [23]. Contiguity and
GC-skew provide further measures for highly complete genomes
[12]. For reporting and storing MAGs in public repositories, the
Minimum Information about a Metagenome-Assembled Genome
(MIMAG) standard has been proposed [24]. In addition to com-
pleteness and contamination based on protein-coding genes, this
standard also takes into account the presence of tRNA and rRNA
genes. The latter present particular challenges for assembly and
binning methods alike [12]. Nevertheless, the recruitment of rRNA
genes to MAGs would improve the association with existing MAG
collections [6, 25] and rRNA-gene-based databases [26], which are
widely used for microbial ecology surveys. In addition to binning
tools, refiners have been developed that complement results
from multiple binning methods [27, 28]. These refiners generally
improve the overall yield and quality of MAGs [29]. Finally,
manual refinement of MAGs with the support of multiple tools
is still recommended [12, 30–33].

Here, we present binny, an automated binning method that
was developed based on a semi-supervised binning strategy
[10, 34]. binny is implemented as a reproducible Python-based
workflow using Snakemake [35]. binny is based on iterative
clustering of dimension-reduced k-mer and abundance profiles of
metagenomic contigs. It evaluates clusters based on the presence
of lineage-specific single copy marker genes [23]. We bench-
marked binny against six CAMI [17, 18] datasets and compared
the results with the most popular binning methods MetaBAT2 [15],
MaxBin2 [14], CONCOCT [13] and the recently developed VAMB
[36], SemiBin [37] and MetaDecoder [38]. We evaluated the contri-
bution of binny to automatic MAG refinement using MetaWRAP
[27] and DAS Tool [28]. Finally, we evaluated the MAGs returned
by all approaches from real-world metagenomic datasets from
a wide range of ecosystems. We report that binny outperforms
or is highly competitive with existing methods in terms of
completeness and purity and improves combined refinement
results. binny also returned most MIMAG-standard high-quality
draft genomes from both highly fragmented and more contiguous
metagenomes over a range of microbial ecosystems.

Material and Methods
binny workflow
binny is implemented as a Snakemake [35] workflow (Figure 1).
At the centre of the workflow is the binning algorithm written
in Python, which uses iterative, nonlinear dimension reduction of
metagenomic read coverage depth and signatures of multiple k-
mer sizes with subsequent automated contig clustering and clus-
ter assessment by lineage-specific marker gene sets. Preparatory
processing steps include the calculation of the average depth of
coverage, gene calling using Prokka [39], masking of rRNA gene
and CRISPR regions on input contigs and identifying CheckM [23]
marker genes using Mantis [40].

Overview
binny operates in an iterative manner after processing of the
annotated marker gene sets. Each iteration consists of nonlinear
dimension reduction on the selected features (depths of coverage

Figure 1. binny workflow. Overview of the Snakemake pipeline and
of binny’s binning method. Preprocessing includes assembly annotation
using Prokka, CheckM marker gene detection using Mantis, and (optional)
average contig read coverage calculation. binny filters out contigs shorter
than the specified value, masks potentially disruptive contig regions
before calculating k-mer frequencies for the chosen k-mer size(s). In
its main routine, binny iteratively embeds the contig data into two-
dimensional space, forms clusters, assesses them with marker genes, and
iteratively extracts clusters of sufficient quality as MAGs.

and k-mer frequencies) of the so far unbinned contigs and cluster-
ing based on the resulting two-dimensional coordinates. Clusters
are selected if the contained marker gene sets indicate purity
and completeness above defined thresholds. A new iteration is
started on left-over un-binned contigs with dynamically adjusted
parameters. Finally, clusters above the thresholds are output as
MAGs.

Marker gene set processing
binny generates a directed graph database of the CheckM [23]
taxon-specific marker sets annotated per contig in NetworkX [41].
This allows for fast access to the hierarchical (lineage-based)
information. Some marker sets are omitted, as they are very small
and/or led to imprecise assessments in testing (Supplementary
Table 1).

Filtering of short sequences
By default, binny filters out all sequences shorter than 500 bp. For
its main routine, further filtering is done based on an Nx value
(default 90). For Nx filtering, the contigs are sorted by length in
descending order and the first contigs that together make up x%
of the assembly are retained. This size selection can be modified
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by setting minimum size values or ranges for contigs that do not
contain marker genes (default 2250 bp) and those that contain
them (default 2250 bp). This aims to maintain the maximum
amount of information from an assembly because only contigs
that have a low information content are omitted.

Masking of disruptive sequence regions
Certain regions on a sequence could skew the k-mer frequency
and, thus adversely affect the binning process. For example,
CRISPR regions contain foreign genetic elements, which have k-
mer frequencies that can deviate substantially from the rest of the
genome, whereas rRNA genes have highly conserved sequences
whose k-mer profiles do not resemble the rest of a given genome.
To avoid an impact on the k-mer frequency calculation and
still keep sequences intact, binny by default masks sequence
elements/regions such as rRNA genes and CRISPR regions, using
Prokka-provided annotations from barrnap [39] and minced [42],
respectively. The masked regions are ignored during the k-mer
frequency calculation.

Single contig genome recovery
Genomes represented by single contigs might not be distinguish-
able from noise during clustering or be clustered together with
highly similar contigs of other, fragmented genomes. Therefore,
contigs with at least 40 different markers are extracted first and,
if they are at least 90% pure and 92.5% complete, they are kept
as single-contig MAGs and by default do not enter the iterative
binning procedure.

Binning features
binny uses two contig features for dimensionality reduction
and clustering: the k-mer frequencies of multiple sizes (default
k = 2, 3 and 4) and the average read coverage (raw read counts
of one or more samples), both centered log-ratio transformed.
Coverage information can be included in form of bam files or
a file with tab-separated average contig coverage values per
sample.

Dimensionality reduction
To reduce the dimensionality of all features to two, the Fast
Fourier Transform-accelerated Interpolation-based t-distributed
Stochastic Neighbor Embedding implementation of openTSNE
[43] is used. To decrease the computation time of the dimension-
ality reduction, Principal Component Analysis is used beforehand
to lower the dimensionality of the initial feature matrix to either
as many dimensions needed to explain 75% of the variation or to
a maximum of 75 dimensions. To improve the embedding quality,
especially with large datasets, multiple strategies are used: (i) a
multi-scale kernel with perplexity ranges from 10 to 20 and 100
to 130 starting with 10 and 100, where each iteration the former is
increased by 2 and the latter by 5, are used instead of a Gaussian
model to balance out local and global structure, as described by
Kobak and Berens [44]. (ii) An early exaggeration of EX for the
number of unbinned contigs NUC:

EX = min{4, max{100, NUC × 2.5 × 10−4}}, (1)

with a learning rate LR_EX for the early exaggeration phase:

LR_EX = max
{

2,
NUC
EX

}
(2)

and a learning rate LR:

LR = max{200, min{64 × 103, NUC × 0.1}} (3)

for the main phase are used. These values were chosen to achieve
adequate embeddings of datasets of varying sizes [45, 46]. Addi-
tionally, the number of iterations to run early and main phase
optimizations are based on the difference in Kullback–Leibler
divergence (KLD) KLD_DIFF. The KLD is measured every 250 opti-
mization iterations. The optimization ends [46], if:

KLD_DIFF < KLD × 0.01. (4)

(iii) To avoid the impreciseness of Euclidean distance mea-
sures in high-dimensional space, Manhattan distance was chosen
instead [47]. Default values were kept for all other openTSNE
parameters.

Iterative clustering
binny uses hierarchical density-based spatial clustering of
applications with noise (HDBSCAN) [48] on the generated two-
dimensional embedding, in iterations. binny will run clustering of
the created embedding n times (default 3), each time extracting
MAGs meeting the quality thresholds and continuing with the
embedding containing only the leftover contigs. n is the number
of values for HDBSCAN’s min_samples parameter (default 1,5,10,
hence n=3).

Other default clustering parameters are: the minimum cluster
size is calculated with ln(n contigs), the cluster selection epsilon
to merge micro-clusters is changed each binny iteration, cycling
from 0.25 to 0.0 in 0.125 steps, and the distance metric used is
Manhattan.

For each cluster, completeness and purity are assessed (see
below). If a cluster passes the completeness threshold (by default
starting with 92.5% and then decreasing to a minimum of 72.5%)
and has a purity above 95%, if the completeness threshold is
90% or higher, otherwise it is set to 92.5%, it is kept as a MAG.
Otherwise, binny will attempt to split that contig cluster iter-
atively using HDBSCAN a defined maximum amount of times
(see above) but adding the raw depth(s) of coverage as additional
dimension(s). Within each of these clustering rounds, the clusters
below the quality threshold can be split again using HDBSCAN
until no new clusters are identified and/or the maximum num-
ber of iterations is reached (default 1, no further splitting). To
prevent the selection of low-purity clusters, the purity threshold
is increased continuously to a maximum of 95% at complete-
ness 70% or lower (99%, if the chosen marker set is Bacteria or
Archaea).

Cluster assessment using marker gene sets
Clusters are assessed by calculating the purity and completeness
based on the CheckM marker grouping approach, where marker
genes known to be co-located in genomes of a lineage are col-
lapsed into marker sets [23]. binny calculates MAG quality as in
Parks et al. equation 1 and 2, respectively [23], except that instead
of contamination purity is calculated. Let P be the purity for
a set of collocated marker sets MSS, MS a marker set in MSS,
g a single copy marker gene in MS and C the counts of g in
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a MAG:

PMSS =
∑

M∈MS

∑
g∈M

1
Cg

|M|
|MS| . (5)

The taxonomic level and identity of the marker set are chosen
dynamically. Assessment starts with completeness and purity of
the domain-level marker sets and traverses the lineage down
one taxonomic level at a time. At each level, completeness and
purity for each taxon of the lineage are calculated. To combine the
power of the domain level marker sets to give a general quality
assessment with the specificity of lower level marker sets, the
mean of purity and contamination for sub-domain level marker
sets and their respective domain level set is used. If the marker set
of the current taxon has an equal or higher completeness than the
previously best-fitting marker set, it is set as the new reference.
This choice is based on the assumption that the marker set with
the highest completeness is least likely to be matching by chance
and the larger the marker set size, the smaller the chance for miss-
annotation. The lowest level to evaluate can be set by the user
(default Class level).

Iterative binning
binny starts embedding and clustering the size-selected, un-
binned contigs. The minimum contig size limit is decreased by 500
bp if less than half of the iterative clustering steps returned MAGs,
until a minimum size of 500 bp is reached. In the next binning
iteration, the completeness threshold will be decreased by 10%
and the initial contig size threshold reset to the initial maximum
value after which the cycle starts again. This will continue until
the minimum completeness threshold is reached. At this point,
the purity threshold is decreased to 87.5% for clusters with
completeness ≥ 90% and the number of splitting attempts for
contaminated clusters is increased to 2. This is done to recover as
much information as possible in the final binning iteration. binny
has a separate routine for co-assemblies, i.e. runs with depth of
coverage information from more than one sample: here, binny
creates embeddings and clusters of the un-binned contigs ≥ 500
bp of and runs subsequent binning iterations, for as long as it finds
new MAGs that satisfy the purity and completeness thresholds.
The completeness threshold is decreased by 10% in every binning
iteration, down to the minimum completeness threshold (default
70% completeness). As with the single sample mode, the purity
threshold is decreased to 87.5% for clusters with completeness
≥ 90% and the number of splitting attempts for contaminated
clusters is increased to 2. Once no more MAGs are found at
the minimum completeness threshold, binny runs final rounds
with minimum contig sizes starting at 2000 bp, decreasing by 500
each round, until 500 bp or the minimum size set by the user is
reached.

Contig depth of coverage calculation
If not provided explicitly, the average depth of coverage calcula-
tion can be performed directly from given BAM files within the
Snakemake workflow using BEDTools [49] genomeCoverageBed and
an in-house Perl script.

Coding sequence, RNA gene and CRISPR prediction by
Prokka
A modified Prokka [39] executable is run with –metagenome, to
retrieve open reading frame (ORF) predictions from Prodigal [50],
rRNA and tRNA gene predictions from barrnap [39] and CRISPR

region predictions from minced [42]. The modification improves
speed by omitting the creation of a GenBank output and by
the parallelization of the Prodigal ORF prediction step. Addition-
ally, it allows the output of partial coding sequences without
start and/or stop codons, which are frequently encountered in
fragmented assemblies. No functional annotations of the called
coding sequences are performed. The GFF output of Prokka is used
in the subsequent steps.

Marker gene set annotation
Taxon-specific marker gene sets are acquired from CheckM
(https://data.ace.uq.edu.au/public/CheckM_databases/) [23] upon
installation of binny, hidden Markov profile models (HMM)
of marker genes not found in taxon_marker_sets.tsv are
removed, and checkm.hmm is split into PFAM [51] and TIGRFAM
[52] parts. Mantis [40] is used to annotate coding sequences using
the two HMM sets. Because both resources are of different scope
and quality, consensus generation weights of 1.0 and 0.5 are used
for PFAM and TIGRFAM models, respectively. Mantis’ heuristic
search algorithm is used for hit processing, the e-value threshold
is set to 1 × 10-3, and the –no_taxonomy flag is set.

Parameter customization
To optimize for their use case, a user can choose to change the
sizes and number of k-mers used, the Nx value and/or minimum
contig length to filter the assembly, as well as the minimum
completeness and purity thresholds for MAGs. The user may
choose not to mask potentially disruptive regions and can control
the clustering process by adjusting several HDBSCAN parameters.
Additionally, it is possible to choose between internal calculation
of the average contig read depth or supplying a depth value file.

Requirements/dependencies
binny is implemented as a Snakemake pipeline and an installation
script is provided that takes care of the installation of all neces-
sary dependencies and required databases.

Benchmarking
Synthetic benchmark data
Binning performance was evaluated using datasets from the
CAMI initiative [17, 19], each containing several hundreds of
genomes at strain-level diversity. To benchmark against data of
varying complexity, five short-read datasets with a total of 49
samples were chosen from the 2nd CAMI Toy Human Microbiome
Project Dataset (https://data.cami-challenge.org/participate).
Additionally, to test against a very large dataset, the five sample
Toy Test Dataset High Complexity from the first CAMI challenge
(https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_
I_TOY_HIGH) was used.

To test the performance on co-assembled data, the pooled
assemblies of each of the six CAMI datasets and the respective
number of sample read files for each dataset, provided by the
CAMI challenges, were used. Contig read depth per sample was
calculated using binny and provided to all binning methods unless
stated otherwise. Read files were de-interleaved (https://gist.
github.com/nathanhaigh/3521724&#x2216;#file-deinterleave_
fastq-sh) and mapped against the contigs using bwa-mem [53].

Real-world benchmark data
To assess the binning performance in different real-world sce-
narios with a variety of metagenome sizes, complexities and
qualities, 105 metagenomes used in the MetaBAT2 publication
[15] for benchmarking were chosen based on the availability of
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preprocessed read data at the Joint Genome Institute (JGI). The
newest available assembly for the metagenomes and the respec-
tive preprocessed reads were retrieved from JGI (https://jgi.doe.
gov/). The read data were processed in the same way as the CAMI
data. For a full list with all sample information see Supplementary
Table 2.

Binning and refinement methods
The performance of binny was compared to six other state-of-the-
art binning methods, and to two binning refinement tools. binny
and the other methods were all run using the default settings,
unless specified otherwise:

MaxBin2 (2.2.7) [14] was run by providing the contig read depth
files using the -abund option and with the -verbose option.

MetaBAT2 (2.2.15) [15] was provided the contig read depth files
using the -a option and the options -cvExt, –saveCls as wel
l as -v.

CONCOCT (1.1.0) [13] was run following the ’Basic Usage’
section in the documentation (https://concoct.readthedocs.io/
en/latest/usage.html).

VAMB (3.0.2) [36] was run with the default parameters and
using the Snakemake pipeline as described in the documentation
(https://github.com/RasmussenLab/vamb/blob/master/README.
md). Because VAMB is designed to achieve optimal performance
through the combination of the data of multiple samples, the
samples from each of the six CAMI datasets were concatenated
and run together, as described by the authors (README sections
Recommended workflow and Snakemake workflow). For the
real-world metagenomes, samples sharing a JGI GOLD Study ID
were run together. As VAMB could not be successfully run on
some of the real-world samples using default values, or when
trying with lower values of -m and –minfasta, the number of
MAGs recovered was counted as zero for these samples. For a list
of these samples see Supplementary Table 3.

SemiBin (1.0.2) [37] was run using the single_easy_bin mode
with –random-seed 0 and default parameters otherwise. For
the single sample binning the global model was used, except
for the CAMI 2 Gastrointestinal (GI) tract samples, for which –
environment human_gutwas used and the CAMI 2 Oral samples,
for which –environment human_oral was used. For the real-
world benchmark the respective models matching wastewater,
ocean and soil samples were employed.

MetaDecoder (1.0.9) [38] was run using the default parame-
ters, following the developers instructions, calling consecutively
coverage, seed and cluster. To use coverage, the assemblies’
respective bam files were converted to sam format using sam-
tools.

DAS Tool (1.1.2) [28] was run using Diamond [54] as a search
engine on the unfiltered binning method outputs.

MetaWRAP (1.2.2) [27] was set to output only contigs with
less than 10% contamination and at least 70% completeness
and was also provided the unfiltered binning method outputs.
Both refinement tools, DAS Tool and MetaWRAP, were run: (i) per
sample using the data of binny, MetaDecoder, and SemiBin and (ii)
the two binning methods except binny, to asses how many MAGs
binny contributes in an ensemble approach.

MAG quality standards
To match real-world workflows, all binning outputs were assessed
using CheckM (1.0.12) [23] and filtered to contain only MAGs with
a purity > 90% and a completeness > 70%. The latter threshold
was set in accordance with the CheckM publication, which sug-
gests that CheckM results are reliable at completeness equal or

larger than 70%. MAGs above these thresholds are subsequently
called ‘HQ’ MAGs. MAGs with a purity > 95% and a completeness
> 90% are called ‘near-complete’ (NC) MAGs, as defined by Bowers
et al. [24].

Additionally, the MIMAG definition of high-quality draft
genomes was employed, requiring at least 18 unique tRNAs and
three unique rRNAs to be present in the MAG in addition to a
purity of >95% and a completeness of >90% [24].

Besides the recall in terms of bps of the assembly recovered,
the read recruitment of MAGs was assessed. All reads mapping as
primary mappings to contigs of a MAG were counted per sample
and divided by the total read count (forward + reverse) using
pysam (https://github.com/pysam-developers/pysam).

Assessment of benchmark results
Results for the CAMI benchmark were processed using AMBER
(2.0.3) [55], a genome reconstruction evaluation tool, with
the following parameters, -x ‘50,70,90’ and -k ‘circular

element’.
To evaluate a MAG, AMBER selects the gold standard genome

with the highest share of bps in that MAG as the reference. In
contrast to CheckM, where purity and completeness refer to the
amount of marker genes present or duplicated, within AMBER
and using an available gold standard, purity and completeness
refer to the amount of bp of the reference genome recovered
for completeness, and the share of bp of a given MAG with a
given reference genome, respectively. Additionally, to assess one
or multiple datasets taken together, AMBER defines overall com-
pleteness as ‘Sum of base pairs coming from the most abundant genome
in each predicted genome bin divided by the sum of base pairs in all
predicted bins....’ and overall purity as ‘Sum of base pairs coming from
the most abundant genome in each predicted genome MAG divided by the
sum of base pairs in all predicted bins....’.

Purity and completeness values are reported as the per dataset
average, unless specified otherwise. For the real-world bench-
marks, the average proportion of bp recovered or the number of
MAGs recovered is reported together with the standard error of the
mean (SEM). Another metric used is the adjusted Rand index (ARI),
which is a commonly used metric to measure how similar two
datasets are. Trying to make the comparisons between different
binning methods as realistic, fair and transparent as possible,
we report all metrics derived from the CheckM-filtered binning
results, unless specified otherwise.

To assess the intersections of MAGs formed by the different bin-
ning methods on multi-sample datasets, genomes were counted
separately for each sample. To this end, the gold standard genome
name was concatenated with the sample id to yield unique iden-
tifiers for each genome in each sample. All other figures were
created using the Python libraries matplotlib [56] and Seaborn [57],
as well as UpSetPlot [58], setting the minimum intersection size
to be shown to ten, for the UpSet plots. The remaining data
analyses were performed and table outputs created using the
Python NumPy and pandas libraries.

To evaluate if the binning methods could recover NC and
HQ MAGs from organisms with closely related or highly similar
genomes in the same sample, for each of the 54 samples of
the six CAMI datasets all versus all Average Nucleotide Identity
(ANI) calculations were performed using FastANI (1.33) [59]. Each
genome was assigned the highest ANI to another genome in the
same sample. The numbers of NC and HQ MAGs recovered per
binning method with ANIs higher than 90.0–99.9% in 0.1 steps
were counted.

https://jgi.doe.gov/
https://jgi.doe.gov/
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac431#supplementary-data
https://github.com/pysam-developers/pysam
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Results
Performance on synthetic datasets
To assess binny’s performance, six datasets from the CAMI
initiative were chosen: the high complexity toy dataset of the
first CAMI iteration to investigate how binny performs on very
large datasets and the five toy human microbiome datasets
of the second CAMI iteration to evaluate the performance on
a wide range of microbiome sizes and complexities. Generally,
a binning tool performs best, if it recovers the most complete
MAGs with the highest purity, which corresponds to the highest
ARI.

Over all six datasets (54 samples), binny with default settings
recovered 35.5% (SEM 2.8%) of the reference genome lengths in
the samples as NC MAGs (n = 1564) and 42.7% (SEM 3.0%) as HQ
MAGs (n = 2021), with median recall values of 26.3% and 36.3%,
respectively (Figure 2, Supplementary Table 4). In total, 45.1%
of the reference genomes where recovered at a purity of 98.4%
with an ARI of 0.977 (Supplementary Figure 1, Supplementary
Table 5).

For the high complexity dataset, binny recovered 30.0%
of the total reference genomes with a purity of 97.8% and
an ARI of 0.970 (Supplementary Figure 2, Supplementary
Table 6).

The lowest recall was observed for the CAMI 2 Airways dataset
with 25.9%, a purity of 98.1%, and an ARI of 0.973 (Supplementary
Figure 3), whereas the highest recall of 66.3%, with a purity of
98.6% and an ARI of 0.978 was reached with the CAMI 2 GI dataset
(Supplementary Figure 4). For the other three datasets, binny
achieved the following respective recall, purity and ARI numbers:
60.9%, 98.0% and 0.969 (CAMI 2 Urogenital); 48.0%, 98.9% and
0.983 (CAMI 2 Skin); and 33.2%, 98.6% and 0.982 (CAMI 2 Oral)
(Supplementary Figures 5–7, Supplementary Table 6; for detailed
metrics for MAGs and samples see Supplementary Tables 7 and 8,
respectively).

The average read recruitment from the CAMI data of the binny
output was 72.4%. The highest recruitment was achieved for the
GI dataset sample 5 with 99.4%, whereas the lowest was observed
for the skin dataset sample 19 (40.7%). Notably, a substantial
proportion of the reads recruited were mapped to single contig
MAGs for the CAMI 2 datasets (on average 60.7%), whereas for
the CAMI 1 datasets, only about a fifth of the reads recruited by
binned contigs, were mapped to single contig MAGs (Supplemen-
tary Tables 9 and 10).

Running binny with multiple depth files
When assessing the performance on co-assembled datasets with
depth information from multiple samples, binny had a recall of
54.3% over the CAMI datasets with a purity of 98.4%. In total
1055 NC MAGs were produced, 413 of which contained more than
five contigs (Supplementary Figures 8–10). The highest recall was
achieved for the CAMI 2 GI co-assembly with 75.9% and a purity
of 99.0%, whereas the worst performance was observed for the
CAMI 2 Airways dataset with a recall of 32.6% and purity of 97.4%
(Supplementary Tables 11–13).

To test to which degree binny makes use of the information
from the multiple read depth files per co-assembly, binny was
additionally run with only one depth file per co-assembly. binny
using all available depth files had a 20.4% higher recall at a
slightly higher purity, leading to a recovery of 25.0% more NC
MAGs (211) in total and 102.5% more NC MAGs (209) of contig sizes
larger than 5 (Supplementary Figures 8–10, Supplementary Tables
11–13).

Effect of masking potentially disruptive sequence
regions
To test the effect of masking potentially disruptive sequences,
we also ran binny on the 54 CAMI samples without the masking
procedure. The unmasked run did not differ substantially from
the one with the default settings regarding assembly recall and
purity (Supplementary Table 14). In total, 29 fewer NC MAGs were
recovered without the default masking (Supplementary Table 15).
The amount of MAGs recovered matching the MIMAG standard
was reduced by 5% from 1167 to 1112 (Supplementary Table 16).

Effect of lineage-specific marker gene sets
To evaluate the utility of using lower taxonomic level marker gene
sets, we compared the difference in NC and HQ MAGs recovered
between the default setting of a maximum depth at class-level
to only using kingdom-level markers with the unfiltered output
from the 54 CAMI samples. With the class-level marker sets and
8.5% more NC and 21.0% more HQ MAGs with a size of more than
five contigs could be recovered, demonstrating the effectiveness
of the lower level marker gene information with binny. Overall,
with class-level markers the recall was 5.7% higher, whereas the
purity was 1.2% and the ARI 1.8% lower (Supplementary Tables 17
and 18).

Run time
For all experiments, binny was run on compute nodes equipped
with AMD Epyc ROME 7H12 CPUs, and for the run-time bench-
mark 32 cores and 56 GB of RAM were used. For the CAMI samples,
the complete binny pipeline took on average 112 minutes to run,
with a max of 413 minutes for sample five of the CAMI 1 high
complexity dataset. The Prokka annotations took on average 28%,
the Mantis annotations on average 15% and binny on average 57%
of the total run time (Supplementary Table 19).

binny generally outperformed state-of-the-art
binning methods on synthetic datasets
Over all six CAMI datasets binny recovered per sample the highest
portion of the assembly (bps) as HQ (42.7%) or NC (35.5%) MAGs,
followed by MetaDecoder (38.6%, 30.9%) and SemiBin (35.8%,
30.5%). Additionally, binny showed the highest median MAG
counts with 23.8%, 36.8% more NC and 14.8%, 29.2% more HQ
MAGs than MetaDecoder and SemiBin, respectively (Figure 2,
Supplementary Table 4).

binny was the only binning method that resulted in high purity
(97.3%) and high ARI (0.962) output over all datasets without
additional CheckM filtering. Using CheckM filtering, binny’s purity
and ARI were increased by 1.1% and 0.015, respectively, whereas
the assembly recall was decreased by 3.0% (Supplementary Figure
1B, C, Supplementary Table 5). The binning method with the
second highest NC MAG recall, MetaDecoder, had a purity of 84.6%
natively and an ARI of 0.813. After CheckM filtering, the purity
and ARI of VAMB was the highest among binning methods (99.5%
purity and an ARI of 0.994, respectively), but at the same time the
recall was reduced from 56.7% to 28.5% (Supplementary Figure
1B, C, Supplementary Table 5). For detailed metrics on the MAGs
and samples see Supplementary Tables 7 and 8, respectively.

binny also outperformed the other binning methods on each of
the individual datasets, except for the CAMI 1 High complexity
dataset, where SemiBin produced 2.4% more NC MAGs (Figure 2,
Supplementary Figures 2–7, Supplementary Table 7).

Many of the CAMI samples contain larger amounts of single-
contig or almost contiguous genomes than are commonly
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Figure 2. Performance of binning methods on CAMI datasets. Recall of bp assembled sequences as HQ and NC MAGs per binning method per sample,
for the six CAMI datasets. The average recall is shown with the SEM.

observed in real-world samples. To evaluate binny’s performance
without those, we considered the subset of genomes that
consisted of more than five contigs. Here, binny also produced
substantially more NC (13.1%) and HQ (25.3%) MAGs than the
second best performing method, SemiBin (Supplementary Figure
11). binny recovered the largest amount of NC MAGs for the CAMI
2 GI, AW and Skin datasets, tied with SemiBin for the UG dataset
and came second for the Oral dataset after VAMB (5.6% less) and
the CAMI 1 High complexity dataset after SemiBin (0.4% less),
respectively (Supplementary Figure 12, Supplementary Table 7).

Looking at the assembly recall as NC and HQ MAGs, binny
showed the best performance for all datasets (Supplementary
Figure 13).

Additionally, binny recovered the most NC and HQ MAGs on
co-assembly versions of the six datasets. It recovered 9.2% more
NC and 13.9% more HQ MAGs than the second best method,
MetaDecoder, and 7.6% more NC and 25.1% more HQ MAGs of
genomes consisting of more than five contigs than the second
best performer, SemiBin (Supplementary Figures 9, 10, 14, 15,
Supplementary Tables 11–13).
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Figure 3. Intersections of recovered CAMI NC MAGs and reference genome fragmentation grade. Intersections of NC MAGs of seven CheckM-filtered
binning methods for 54 samples from six CAMI datasets. Upper panel: Reference genome fragmentation in number of contigs. Middle panel: Intersection
size in number of NC MAGs with proportions of MAGs stemming from the six CAMI datasets. Lower panel: Number of MAGs per binning method on the
left, intersections > 9 in the centre.

Lastly, we assessed the amount of MAGs meeting the MIMAG
draft standard. binny recovered the most MAGs of that quality
for each CAMI dataset, recovering in total 20.3% more, with 1167,
than the second best method, MetaDecoder, which produced 971
MIMAG drafts over all 54 samples from the six CAMI datasets
(Table 1 and Supplementary Table 16).

binny recovered unique MAGs
To evaluate the performance of different binning tools, it is also
of interest to see how much unique information is recovered by
each individual binning method. binny yielded 42.5% more unique
NC MAGs (114) than the next best, VAMB for the CAMI datasets.
Additionally, the two largest sets of MAGs shared by two binning
methods are both binny sharing MAGs with MetaDecoder (140) or
SemiBin (57), respectively (Figure 3). For the HQ genomes, similar
results were observed: binny recovered the second most unique
MAGs after VAMB (5.8% less) and was present in all of the intersec-
tions with the largest numbers of genomes (Supplementary Figure
16, Supplementary Table 7). On the co-assemblies, binny recovered
31.3% more unique NC and 67.4% more unique HQ MAGs, than
the method with the second most unique MAGs, MetaDecoder
(Supplementary Figures 9 and 14).

binny produced complete and pure MAGs from
contiguous as well as highly fragmented genomes
Next, we assessed the ability of different binning methods
to recover genomes of different fragmentation grades. binny

recovered substantially more highly fragmented genomes
(defined here as genomes with more than 500 contigs) than
almost all methods (50 NC MAGs). Only CONCOCT recovered
more highly fragmented genomes than binny (54), whereas both
methods shared the recovery of a large portion of these frag-
mented genomes. VAMB produced the third most with 27 highly
fragmented NC MAGs (Supplementary Figure 17A, Supplementary
Table 7). When looking at the number of fragmented HQ MAGs
recovered, binny substantially outperformed all other methods,
recovering 26.6% more than the second best method, CONCOCT,
with 282 MAGs (Supplementary Figure 17B, Supplementary Table
7). For the co-assemblies, binny recovered 133.3% more NC and
101.2% more HQ MAGs than the second best method SemiBin
(Supplementary Figure 18, Supplementary Table 13).

binny recovers MAGs from genomes with highly
similar relatives
When assessing a binning methods’ performance, it is also of
interest to evaluate how well it is able to separate closely related
organisms, as this would e.g. allow for the study of strain variation
within a sample. Over all CAMI samples, binny recovered the
largest amount of NC and HQ MAGs from genomes with highly
similar relatives in the same sample over an ANI range from 90%
to 99.9%. At an ANI of 90.0% binny recovered 730 NC and 840 HQ
MAGs. The second and third highest performing methods were
MetaDecoder (35.4% less NC, 20.2% less HQ MAGs) and SemiBin
(52.1% less NC, 45.6% less HQ MAGs). When taking only into
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Figure 4. Performance of binning methods on recovering MAGs with close relatives. Number of (A) HQ and (B) NC MAGs with a minimum ANI to
the most similar genome in the same CAMI sample of at least 90.0% up to 99.9% in 0.1% steps for seven CheckM-filtered binning methods. Includes
genomes consisting of at least six contigs.

Table 1. MAGs matching the MIMAG standard. Rows represent values per binning method for the six CAMI datasets and the number
for the real-world benchmark data. Bold values show the highest count per dataset, underlined values the second highest count.

High AW GI Oral Skin UG IMG

binny 164 192 202 243 215 152 629
CONCOCT 17 10 19 37 18 6 142
MaxBin2 85 5 79 20 26 16 422
MetaBAT2 144 81 100 134 85 111 417
MetaDecoder 140 147 166 193 181 144 533
SemiBin 148 113 168 184 156 143 553
VAMB 107 121 138 197 123 113 406

AW: Airways, UG: Urogen, IMG: real-world data.

account genomes consisting of six or more contigs, binny still
outperformed all other methods, followed by SemiBin (21.7% less
NC, 19.8% less HQ MAGs) and VAMB (60.0% less NC, 25.5% less
HQ MAGs). At an ANI cut-off of 95% binny recovered 36.8% and
22.6% more NC MAGs than the second highest performing method
from genomes consisting of any number or at least six contigs,
respectively. Finally, at an ANI of 99.0% binny was able to generate
41.8% and 61.1% more NC MAGs from genomes consisting of
any number or at least six contigs, respectively, than the method
placing second (Figure 4 and Supplementary Figure 19).

binny recovered the largest number of MIMAG drafts
for real-world assemblies from different
environments.
When benchmarking binning tools with real-world data from
a wide variety of environments, binny recovered on average
the second largest amount of the assembly (bp) as NC (19.8%)
bins, after MetaDecoder (20.2%), and the largest amount of HQ
(28.8%) MAGs. MetaDecoder in total recovered the most NC MAGs
(1647), followed by binny (1523) and SemiBin (1513). Notably, there
was a substantial gap in performance to the next best method,
MetaBAT2, with 1223 NC MAGs recovered (23.7% less than
SemiBin). binny recovered the largest amount of HQ MAGs (3013),
followed by MetaDecoder (2969) and SemiBin (2747). As in the
CAMI benchmarks, CONCOCT showed the lowest recall for both
NC and HQ MAGs, whereas MaxBin2 performed comparatively
better with these data than in the CAMI benchmark (Figure 5 and

Supplementary Tables 20, 21). When counting the recovered
MAGS matching the MIMAG standard, binny produced 629 MAGs,
13.7% more than the second best-performing method, SemiBin
(553), with MetaDecoder ranking third with 533 (Table 1 and
Supplementary Table 22).

binny improved ensemble binning/refinement
approaches
To test if binny is able to improve refinements in combination with
other binning methods, we ran the two most popular automatic
refinement tools, DAS Tool and MetaWRAP, on the 54 samples
of the six CAMI datasets, combining MetaDecoder and SemiBin
either with or without binny.

When binny was excluded, a 1.9% and 2.9% lower recall was
observed for DAS Tool (48.4%) and MetaWRAP (45.0%), respec-
tively, whereas binny had marginally lower recall than DAS Tool
with 48.1% (Supplementary Figure 20B, C, Supplementary Table
23). binny on its own, unfiltered, recovered 7.0% more NC MAGs
than DAS Tool and 2.4% less than MetaWrap without the binny
MAGs. When including binny, MetaWRAP was able to recover
8.8% more NC MAGs (1705) than binny on its own, whereas DAS
Tool produced 2.4% more NC MAGs (1605) (Supplementary Figure
20A, Supplementary Figure 21, Supplementary Table 24). Only
MetaWrap with binny input produced more HQ MAGs than binny
alone with 2174 (6.0% more) (Supplementary Figure 22, Supple-
mentary Table 24). Including only MAGs with more than five
contigs, the DAS Tool and MetaWRAP without binny performed
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Figure 5. Performance of binning methods on real-world datasets from various environments. Assembly recovery as HQ and NC MAGs per binning
method per sample from 105 real-world samples. The average recall (% bp) is shown with the SEM.

worse than binny alone (10.8% and 5.5% fewer NC MAGs, respec-
tively). The runs including all three binning methods showed
the highest performance overall, with MetaWRAP recovering the
most MAGs (Figure 6). Evaluating the HQ MAG recovery the results
were similar, but now only MetaWrap with all three binning
methods outperformed binny (Supplementary Figure 23). While
MetaWRAP produced almost no heavily contaminated MAGs, DAS
Tool returned large numbers of MAGs with very low purity, despite

showing over the entire CAMI benchmark data high purity (Sup-
plementary Figure 20D, Supplementary Table 23).

Discussion
binny is a fully automated binning method, recovering unique
information in form of complete, pure MAGs. It combines k-mer
composition, read coverage and lineage-specific marker gene sets
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Figure 6. Intersections of recovered CAMI NC MAGs from bin refinement methods. Intersections of NC MAGs from genomes consisting of more than
five contigs by binny, DAS Tool and MetaWrap for 54 samples from six CAMI datasets. Binning method output used by the refinement methods: binny,
MetaDecoder and SemiBin or the latter two, but without binny (_wo_bi) Upper panel: Reference genome fragmentation in number of contigs. Middle
panel: Intersection size in number of NC MAGs with proportions of MAGs stemming from the six CAMI datasets. Lower panel: Number of MAGs per
binning method on the left, intersections > 9 in the centre.

for iterative, nonlinear dimension reduction of genomic signa-
tures and subsequent automated contig clustering with cluster
assessment. The low-dimensional embedding strategy to reduce
large amounts of features has been used before for binning to
aid the clustering of contigs [34, 60]. Clustering algorithms per-
form better in fewer dimensions, because distance information
becomes increasingly imprecise at higher dimensions and the
chance of random correlation between features rises [61].

While there are already binning methods available that make
use of marker genes [14, 38, 62] and also lower dimensional
embedding of contig features [62], binny uses a new and unique
iterative embedding and clustering strategy. Importantly, it
assesses clusters of contigs during its iterations, recognizing
when further splitting of clusters is necessary. Of note, this
lowers the complexity of each clustering task enabling binny to
recover genomes that might not be separable with only a single
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embedding or clustering attempt. This seems to work particularly
well for large, complex communities as shown with different
CAMI datasets.

In combination with the ability (enabled by the marker gene
approach) to incorporate also short informative contigs, which
would be discarded by most other binning methods due to their
applied contig length thresholds, binny is able to deal with highly
fragmented genomes as shown for the CAMI samples. Of the
tested binning methods, only CONCOCT was also able to deal
with highly fragmented genomes. Although for the CAMI datasets,
contigs below 1000 bp rarely made up >5% of the recovered
MAGs size, binny assigned those usually with high precision
(Supplementary Table 25). Additionally, binny performed also
particularly well at recovering highly contiguous CAMI genomes.
This can again be attributed to the ability to assess purity and
completeness using the marker gene approach, here in particular
for single-contig genomes.

binny also outperformed all other tested binning methods on
the CAMI co-assemblies, where the added information provided
by the coverage data from multiple samples substantially
increased the overall performance. This is in line with previous
studies observing additional discriminatory power of differential
coverage depth compared with only sequence-based features
[13, 15]. Here again, binny’s iterative, supervised strategy seems
well suited to the complexity of assemblies that contain highly
fragmented genomes.

We also evaluated the effect of masking potentially disruptive
sequence regions for the calculation of k-mer profiles. While
the difference in performance with and without masking was
not substantial, we believe that it reduces noise in the k-mer
distributions of contigs from the same genome. One key reason
for the small impact in the current setting might be the strong
effect of the read coverage depth on the embedding and clustering
procedure, which could outweigh the impact of the masked k-
mer profile. Masking reads mapping to the disruptive regions, also
modifying the depth information, might increase its effectiveness
and could be implemented in future versions.

It is generally advised [18, 63] to make use of refinement
methods, such as DAS tool and MetaWRAP here, which employ
ensemble approaches to recover more pure and complete MAGs
than the single binning methods alone. binny was shown to be
an excellent addition to such approaches, because of its ability
to recover large amounts of unique pure and complete MAGs
(Figures 3 and 5).

Finally, the results of the 105 metagenome benchmark show
that binny’s performance translates to real-world scenarios, com-
peting well with the latest methods on the recovery of NC and HQ
MAGs, while massively outperforming all other methods on the
number of MIMAG-standard MAGs recovered. Still, there are also
many samples where all binning methods were unable to recover
a sizeable proportion of the assemblies as MAGs of sufficient
quality. This might hint at the still limited capabilities of binning
methods or could be caused by low quality of these assemblies.

Conclusion
In conclusion, we demonstrate that binny outperforms or is highly
competitive with currently available, state-of-the-art and/or pop-
ular binning methods based on established evaluation metrics,
recovering unique, complete, and pure MAGs from simple and
complex samples alike, while being able to handle contiguous,
as well as fragmented genomes. Moreover, we could show that
binny adds new MAGs when used in combination with other

binning methods and binning refinement approaches, enabling
researchers to further improve the recovery of genomes from their
metagenomes.

Key Points

• binny outperforms or is highly competitive with com-
monly used and recently developed genome reconstruc-
tion tools.

• binny is benchmarked using community-standard simu-
lations and a wide range of real-world metagenomes.

• binny efficiently and iteratively learns using lineage-
specific markers and selected genomic features.

Data availability
The latest version of binny can be found at https://github.com/a-
h-b/binny. Scripts used in this study and related data are available
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