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Abstract

Motivation: Single-cell/nuclei RNA-sequencing (scRNA-seq) technologies can simultaneously quantify gene expression in thousands of
cells across the genome. However, the majority of the noncoding RNAs, such as microRNAs (miRNAs), cannot currently be profiled at
the same scale. MiRNAs are a class of small noncoding RNAs and play an important role in gene regulation. MiRNAs originate from the
processing of primary transcripts, known as primary-microRNAs (pri-miRNAs). The pri-miRNA transcripts, independent of their cognate
miRNAs, can also function as long noncoding RNAs, code for micropeptides or even interact with DNA, acting like enhancers. Therefore,
it is apparent that the significance of scRNA-seq pri-miRNA profiling expands beyond using pri-miRNA as proxies of mature miRNAs.
However, there are no computational methods that allow profiling and quantification of pri-miRNAs at the single-cell-type resolution.
Results: We have developed a simple yet effective computational framework to profile pri-MiRNAs from single-cell RNA-sequencing
datasets (PPMS). Based on user input, PPMS can profile pri-miRNAs at cell-type resolution. PPMS can be applied to both newly produced
and publicly available datasets obtained via single cell or single-nuclei RNA-seq. It allows users to (i) investigate the distribution of pri-
miRNAs across cell types and cell states and (ii) establish a relationship between the number of cells/reads sequenced and the detection
of pri-miRNAs. Here, to demonstrate its efficacy, we have applied PPMS to publicly available scRNA-seq data generated from (i) individual
chambers (ventricles and atria) of the human heart, (ii) human pluripotent stem cells during their differentiation into cardiomyocytes
(the heart beating cells) and (iii) hiPSCs-derived cardiomyocytes infected with severe acute respiratory syndrome coronavirus 2.

Introduction
MicroRNAs (miRNAs) are a class of short noncoding RNAs that
repress the translation of target genes via semi complimentary
base-pairing [1]. Cells use miRNAs to control the production of
proteins and regulate critical biological pathways in both parental
and non-parental cells alike to mediate cell-to-cell communica-
tions [1, 2]. Canonically, the biogenesis of miRNAs begins with the
transcription of primary miRNA (pri-miRNA) from the intronic
regions of protein-coding genes. However, a small minority of
miRNAs originate from the exons of protein-coding genes and
long noncoding RNAs [3]. While still in the nucleus, the pri-miRNA
transcript (>1000 nucleotides) is processed by the Microprocessor
complex, containing DROSHA, DGCR8 and other proteins, into
precursor miRNAs (pre-miRNAs), which can be exported to the

cytoplasm and further processed by DICER1 into mature single-
stranded (−3p and –5p) mature miRNAs (17–24 nucleotides; [4]).
Mature miRNAs can silence messenger RNAs (mRNAs) via base-
pairing with semi complementary sequences [5]. miRNAs also
play an important role in cell–cell communications and can be
shuttled from their parent cells to recipient cells, typically but not
exclusively via extracellular vesicles [6–8]. Both miRNA biogenesis
and cell-to-cell communication are altered by intra- and extracel-
lular environmental perturbations, contributing to disease devel-
opment [9]. Beyond their capacity to act as miRNA precursors,
pri-miRNAs can (i) act as long noncoding RNAs [10], (ii) encode
small peptides [11] and (iii) have enhancer-like DNA interac-
tions [10]. In bulk RNA-sequencing datasets, pri-miRNAs are less
abundant than mRNAs and are often filtered out from the data
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Figure 1. Panel (A) provides an overview of the framework. Prior to the sequencing, the RNAs in the single cells are barcoded to represent individual
cells. Single-cell transcriptomic data can be used to classify cells into respective cell types. Next, we use this information to collate cells to represent
cell types and then map reads to the miRNA transcripts in the genome to profile pri-miRNAs for respective cell types.

analysis due to the lack of necessary deep-sequencing cover-
age [12]. We conceptualize that dissecting pri-miRNA expression
across different cell types and states would expand the mechanis-
tic understanding of diseases, supporting the development of both
cell-type-personalized RNA therapeutics and clinical biomark-
ers. We have developed a computational framework to profile
pri-miRNAs using single-cell/nuclei RNA-sequencing (scRNA-seq)
datasets (PPMS, Figure 1). PPMS enables the user to detect, quan-
tify and analyze pri-miRNAs at a single-cell-type resolution.

Approach
ScRNA-seq technologies have revolutionized molecular studies
of heterogeneous tissues by providing tools to identify biological
pathways and new cell types that underpin key developmental
processes [13]. The application of scRNA-seq technologies has
evolved from qualitative to quantitative (differential expression)
analyses, broadening their scope to facilitate investigation of
various scientific questions. Gene expression profiling of tissues
at single-cell (or nuclei) resolution requires isolation of single-
cells/nuclei, nucleic acid amplification and sequencing of indi-
vidual cells/nuclei. For example, fluorescence-activated cell sort-
ing can sort single cells/nuclei and isolate them in microtiter
plates to profile hundreds of cells. These numbers are however
insufficient to evaluate cellular heterogeneity and reliable gene
expression profiles of respective cell types. These limitations are
therefore solved by microfluidic droplet technologies that can
amplify single cells/nuclei in a droplet and capture thousands
of cells. Therefore, we demonstrated the efficacy of the PPMS
framework on scRNA-seq data obtained from microfluidic droplet
technologies.

To develop PPMS, we took advantage of the following: (i) the
majority of pri-miRNAs are polyadenylated [3, 14], (ii) high-
throughput droplet-based scRNA-seq techniques profile the −3′

end of RNA transcripts, which carry the poly-A tail [15] and (iii) in
a scRNA-seq dataset, transcriptional signatures help to classify an
individual cell/nucleus into their respective cell types or cellular
states [16].

Even if scRNA-seq data are sparse and expression of pri-
miRNAs is at low levels [17], our approach attained sufficient
read coverage to profile pri-miRNAs by aggregating classified cells
into the respective cell types to reduce sparsity. As a prerequisite,
PPMS requires the user to map and process scRNA-seq datasets
to annotate cells into respective cell types or cellular states.

PPMS extracts pri-miRNAs in two steps: (i) it classifies reads
to respective cell types or states, and (ii) cell types or states
specific reads are then assembled to pri-miRNA transcripts using
StringTie [18].

To show the practical usefulness of our approach, here, we
have applied PPMS to scRNA-seq datasets (see methods sec-
tion) generated by high-throughput droplet-microfluidics based
methods. More generally, PPMS can be applied to any single-
cell/nuclei/cell-type RNA-sequencing method, for example, the
low-throughput SMART-seq2 method, capable of profiling full-
length RNA-sequencing at single-cell resolution [19].

Methods
PPMS framework
To extract pri-miRNAs, PPMS requires to input: (i) mapped BAM
(Binary Alignment Map, i.e. the comprehensive raw data of
sequencing) as a standard alignment output file format and (ii)
cell-type annotation represented by individual cell barcodes. As
an output, PPMS provides: (i) cell-type classified BAM files, (ii)
normalized (counts per million, CPM) and raw read counts per cell
type, (iii) normalized (CPM) and raw pri-miRNAs transcript counts
per cell type estimated via UMI (unique molecular identifiers) and
(iv) differentially expressed pri-miRNAs (Supplementary Figures
1 and 2, see Supplementary Data available online). For further
details, see Supplementary Data available online. The output can
be easily exported as text files to enable additional analyses and
data mining of single-cell level pri-miRNAs.

Implementation of PPMS framework
PPMS framework has been implemented in R and is available on
GitHub (https://github.com/SrivastavaLab-ICL/PPMS). PPMS can
run in two stand-alone versions: (i) graphical version (Supplemen-
tary Figures 1 and 2, see Supplementary Data available online),
implemented in R using R shiny package, and run as a GUI in a
web browser and (ii) Command-line version implemented using
Python and shell scripting (Supplementary Figures 1 and 2, see
Supplementary Data available online).

(a) Graphical version: the web browser interface option is for
users who are not well-versed in programming skills and
want to analyze single-cell RNA-seq datasets (Supplemen-
tary Figure 1, see Supplementary Data available online). The
graphical version of PPMS can profile pri-miRNAs either in
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a single sample mode (Supplementary Figure 2A, see Sup-
plementary Data available online) or multi-sample mode
(Supplementary Figure 2B, see Supplementary Data avail-
able online). Both modes require the user to input respective
BAM (binary alignment map) and cell annotation files. In
single sample mode, the user can select the experiment
type, i.e. single-cell or single-cell-type and simply press the
‘Run’ button. On the other hand, the multi-sample run mode
would require cell-type input to generate a normalized/raw
read/UMI count matrix for all the input sample files. The
PPMS framework will run in the background to generate cell-
type classified BAM files and normalized (counts per million,
CPM)/raw read/UMI counts per pri-miRNAs. Once the run is
complete, the user can save the results on the local computer
for further analysis. Next, the user can employ our interface
to perform differential gene expression analysis or use it
later with their favorite tools.

(b) Command-line version: in addition to the graphical user
interface version, we have also implemented a command-
line version for users who are more versed in computer
programming and would like to embed PPMS in their analysis
workflow. The command-line version is essentially a wrap-
per shell script, PPMS.sh. PPMS.sh shell script requires (1) full
path of the BAM file, (2) cell annotation file, (3) number of
processors to use and (4) out file prefix. An example of the
command:

sh PPMS.sh <BAM file> <annotation file> <number of processors>
<prefix for the out files> All the results will be saved in the same
directory, and PPMS will delete all its generated temporary files.

Application of PPMS on publicly available
scRNA-seq datasets
We implemented PPMS onto the following scRNA-seq datasets:
(i) Atlas of cells in the adult human heart [20], (ii) subsequent
stages of human cardiomyocyte maturation from differentiating
pluripotent stem cells profiled at a single-cell resolution (array
express accession number: E-MTAB-6268) [21] and (iii) hiPSCs-
derived cardiomyocytes infected with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV2) virus (gene expression
omnibus accession number: GSE156754; [22]). See Supplemen-
tary Data available online for the methods used to analyze
scRNA-seq and bulk RNA-seq (Supplementary text methods
section).

Application of PPMS to the cells in the adult
human heart
We aimed to demonstrate that PPMS can identify and characterize
pri-miRNAs at single-cell type level and detect their differen-
tial expression. We first applied PPMS on the publicly available
Human Cell Atlas (HCA) scRNA-seq dataset (array express acces-
sion number: ERP123138) generated by sequencing single-nucleus
transcriptomes from the four chambers (left and right atria and
left and right ventricles) of the human heart [20]. PPMS identified
329, 278, 477 and 444 pri-miRNAs in left and right atria and
left and right ventricles, respectively, with pri-miRNA expression
ranging from 1 to 8.5 counts (CPM).

Characteristics of pri-miRNA expression and power
considerations
We first explored the pri-miRNA profiles obtained from the
human heart to check if the pri-miRNA signal originates from

an independent transcript. We profiled the pri-miRNA signal
across the gene body (Figure 2A) and observed a higher signal
from the 3′ end of the transcript. This observation is consistent
with the single-cell workflow, which profiles signals from the
transcript’s polyadenylated (3′) end. We also investigated how pri-
miRNA expression varied across cardiac cell types and observed
that the number of pri-miRNAs was directly proportional to the
number of cells profiled (Figure 2B). This observation led us to
explore the relationship between the number of cells and the
pri-miRNAs detected. We down-sampled (10 bootstrap samples)
the most abundant cell-type (cardiomyocytes) and observed
that to obtain a stable pri-miRNA profile, we need data from
>3000 cells sequenced at an average coverage of 66 million
reads (Figure 2C, Supplementary text methods section). Next,
we plotted log2(FPKM) and observed a bimodal distribution that
shifts towards the right (higher expression) as low abundant
cells such as myeloid and neuronal cells are profiled (Figure 2D).
Noteworthy, we report a significant concordance of pri-miRNAs
expression between (i) single-cells and single-nuclei datasets from
the same hearts (Supplementary Figure 3A, see Supplementary
Data available online) and between (ii) bulk and single-nuclei
datasets from the left ventricles (Supplementary Figure 3B, see
Supplementary Data available online).

Differential transcription of pri-miRNAs across the human
heart chambers
Differential expression (DE) analysis of pri-miRNAs between
the cardiomyocytes obtained from the ventricles and atria was
possible. It resulted in 11 differential pri-miRNAs (false discovery
rate (FDR) < 0.05, Supplementary Table 1, Supplementary Figure
4A, B, see Supplementary Data available online and Figure 3A).
Consistent with a previous report where bulk RNA-seq analyzed
miRNA expression, PPMS identified higher expression of pri-miR-
208b in the cardiomyocytes resident in the ventricle versus atria
[23].

To evaluate the cardiac relevance of the pri-miRNAs emerging
from the analyses of the human heart, we predicted the targets
of differentially expressed pri-miRNAs (see methods section of
supplementary text for detail on target prediction). The targets
of miRNAs are overrepresented for gene ontology terms related to
ion transport, regulation of heart development and cell adhesion
(Supplementary Figure 4C and Supplementary Tables 2 and 3, see
Supplementary Data available online).

Expression of pri-miRNAs during cardiomyocyte
differentiation
As an additional application of PPMS, we analyzed scRNA-seq
data from human induced pluripotent stem cells (iPSC)-derived
cardiomyocytes (iPSC-CM) at different cellular states of differen-
tiation (Days 5, 15 and 30; [21]). See Supplementary Data avail-
able online for details on the processing and identification of
cardiomyocytes. PPMS identified 293, 193 and 228 pri-miRNAs
on Days 5, 15 and 30 of cardiomyocyte differentiation, respec-
tively, with pri-miRNA expression ranging from 1 to 81 CPM. DE
analysis in cardiomyocytes on Days 15 and 30 with respect to
cardiomyocytes on Day 5 resulted in 12 differential pri-miRNAs.
The DE pri-miRNAs were relevant to cardiomyocyte differentia-
tion (FDR < 0.05, Supplementary Table 4, Figure 3B, Supplemen-
tary Figure 5A and B, see Supplementary Data available online).
For example, miR-133a is highly expressed in cardiomyocytes,
where it regulates hypertrophic response, whereas the miRNAs
in the Let-7 family are essential for maturation and adult-like
metabolism in stem cell-derived cardiomyocytes [24, 25]. The
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Figure 2. Panels (A–D) summarize various features of the profiled pri-miRNAs (see text for details).

targets of DE pri-miRNAs were overrepresented for pathways
linked to cardiovascular terms such as cardiac arrhythmias and
hypertrophy (Supplementary Figure 5A and B, see Supplementary
Data available online). To explore this further, we observed that
the targets of DE pri-miRNAs demonstrated different expression
patterns across the three-time points (Figure 3B). We clustered the
DE pri-miRNAs in four broad groups (Figure 3B). The target genes
of miRNAs in all other clusters are overrepresented for terms
linked to cardiac biology (Figure 3B). For example, the target genes
of miRNAs in clusters 3 and 4 were overrepresented for muscle
cell differentiation and heart contraction, respectively (Figure 3B,
Supplementary Tables 5 and 6, see Supplementary Data available
online).

PPMS also provided an opportunity to compare pri-miRNAs
during cardiomyocyte differentiation with fetal and adult human
hearts (Supplementary Figure 5C, see Supplementary Data avail-
able online for detailed cell-type annotation of fetal hearts and
analysis). We finally observed that pri-miRNAs of iPSC-CM were
highly correlated (Spearman’s correlation > 0.6) with adult and
fetal human hearts (Supplementary Figure 5C and D, see Supple-
mentary Data available online).

Expression of pri-miRNAs in hiPSCs-derived
cardiomyocytes infected with SARS-CoV2 virus
To demonstrate the efficacy of the PPMS framework in a dis-
ease setting, we explored the impact of the SARS-CoV2 virus
on cultured cardiomyocytes. Heart injury is common in patients

hospitalized for coronavirus disease of 2019 (COVID-19), but the
underlining role played by microRNAs is primarily unknown [26].
To this aim, we analyzed human iPSC-CM infected with three
concentrations of SARS-CoV2 [22]. By mapping sequencing data
to the SARS-CoV2 genome, the virus was detected in the SARS-
CoV2-infected cardiomyocytes only (Supplementary Figure 6, see
Supplementary Data available online). PPMS identified 151 pri-
miRNAs differentially expressed between infected versus non-
infected cells (Figure 3C, Supplementary Table 7 and text for
details). Similar to the iPSC-CMs maturation dataset, the DE pri-
miRNAs were clustered into five groups. The targets of miRNAs in
respective groups were overrepresented for gene ontology terms
linked to cardiac function, such as myofibril assembly and muscle
contraction (FDR < 0.05, Figure 3C, Supplementary Tables 8 and
9, see Supplementary Data available online). Next, we checked
if the DE pri-miRNAs could act as cardiometabolic biomarkers
that rise with COVID-19 severity. Therefore, we overlapped our
DE pri-miRNAs with circulating miRNAs published in Gutmann
et al., 2022 [27]. Interestingly, four of our DE pri-miRNAs (MIR199B,
MIR1290, MIR125A and MIR32) overlap with higher levels of miR-
NAs in the plasma of patients infected with SARS-CoV2 virus.

Limitations
In addition to intrinsic data limitations such as the low
sequencing coverage, PPMS cannot profile pri-miRNAs that are
not polyadenylated (including 16 long noncoding RNAs hosting
miRNAs) [3]. The PPMS framework can detect pri-miRNAs forming

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac419#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac419#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac419#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac419#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac419#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac419#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac419#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac419#supplementary-data


Profiling pri-miRNAs at single cell type resolution | 5

Figure 3. (A) Heatmap summarizes pri-miRNAs differentially expressed between atria and ventricles in the human heart. (B) This panel summarizes
the pri-miRNAs that are differentially expressed across various stages of differentiating cardiomyocytes. (C) The heatmap summarizes differential pri-
miRNA in post-SARS-CoV2 infected cardiomyocytes. The right panel shows overrepresented gene ontology terms of miRNA target genes. The functional
enrichment analysis was performed using WebGestalt R package [31].

single transcriptional units (Supplementary Figure 7A and B,
see Supplementary Data available online). However, in the
cases where individual pri-miRNAs are co-transcribed from a

cluster like the miR-17-92 cluster [3], PPMS might not be able to
differentiate the individual pri-miRNAs (Supplementary Figure
7C, see Supplementary Data available online).
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Key Points

• We developed a framework to profile pri-miRNAs in
single cells to enable researchers to explore the role of
microRNA at single-cell types/cell state levels.

• Our framework, PPMS, has a user-friendly graphical
interface for researchers who are not well versed in
programming.

• PPMS provides users with the power and experimen-
tal design considerations by establishing a relationship
between the number of cells/reads sequenced and the
detection of pri-miRNAs.

• The application of PPMS to the human hearts profiled
at single-cell resolution led to the identification of the
cardiac chamber and cell-type-specific regulation of
microRNAs.

• Profiling of pri-miRNAs identified dysregulation of car-
diac protective microRNAs in cardiomyocytes infected
with the SARS-CoV2 virus.
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