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Abstract

Approximately 50% of Alzheimer’s disease (AD) patients will develop psychotic symptoms and these patients will experience severe
rapid cognitive decline compared with those without psychosis (AD-P). Currently, no medication has been approved by the Food and
Drug Administration for AD with psychosis (AD+P) specifically, although atypical antipsychotics are widely used in clinical practice.
These drugs have demonstrated modest efficacy in managing psychosis in individuals with AD, with an increased frequency of adverse
events, including excess mortality. We compared the differences between the genetic variations/genes associated with AD+P and
schizophrenia from existing Genome-Wide Association Study and differentially expressed genes (DEGs). We also constructed disease-
specific protein–protein interaction networks for AD+P and schizophrenia. Network efficiency was then calculated to characterize
the topological structures of these two networks. The efficiency of antipsychotics in these two networks was calculated. A weight
adjustment based on binding affinity to drug targets was later applied to refine our results, and 2013 and 2123 genes were identified
as related to AD+P and schizophrenia, respectively, with only 115 genes shared. Antipsychotics showed a significantly lower efficiency
in the AD+P network than in the schizophrenia network (P < 0.001) indicating that antipsychotics may have less impact in AD+P
than in schizophrenia. AD+P may be caused by mechanisms distinct from those in schizophrenia which result in a decreased efficacy
of antipsychotics in AD+P. In addition, the network analysis methods provided quantitative explanations of the lower efficacy of
antipsychotics in AD+P.
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Introduction
Alzheimer’s Disease (AD) is a chronic neurodegenerative disease
commonly seen in aging population. AD is also responsible for a
significant decrease in the quality of life [1]. The estimated annual
cost of AD is $604 billion worldwide and will triple by the year
2050 [2].

Psychosis is defined by the occurrence of delusions and/or
hallucinations. It is observed as a common complication of AD.
Approximately 50% of patients are likely to develop psychotic
symptoms after onset of AD (AD with psychosis, or AD+P). AD+P
patients have more severe cognitive impairments and a more
rapid cognitive decline than AD patients without psychosis (AD-P)

[3]. AD+P is also associated with higher rates of co-occurring agi-
tation, aggression, depression, mortality, functional impairment
and increased caregiver burden compared with AD-P [3].

Currently, there are no medications approved by the Food
and Drug Administration (FDA) for AD+P specifically. Second-
generation antipsychotics (SGAs), such as Aripiprazole, Olanza-
pine, Quetiapine and Risperidone, which were developed for the
treatment of schizophrenia (SCZ), have been widely used and rec-
ommended by geriatric experts in the management of psychosis
in AD [4–6]. Use of SGAs to treat AD+P is greatly limited by their
increased rates of adverse events [7, 8], prompting the FDA to
issue a ‘black-box’ warning in 2005 to highlight the increased
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mortality for patients with dementia who are treated with SGAs
[9]. Additionally, antipsychotics have demonstrated modest effi-
cacy in treating psychosis, aggression and agitation in individuals
with dementia [10–12]. Therefore, safer and more efficacious
medications for AD+P are needed for managing psychotic symp-
toms in AD.

Psychotic symptoms exist in many neurodegenerative disor-
ders (e.g., Lewy body dementia), as well as other psychiatric dis-
orders (bipolar with psychosis). However, the prototypic psychotic
disorder is schizophrenia, and the efficacy of most antipsychotic
medications for treating psychosis was established in treating this
disorder. Therefore, we are currently using medications indicated
for schizophrenia to treat AD+P [4–6].

Network biology has been widely used in studying the interac-
tions among genes, proteins and molecules. With the significant
increase in available data, network models can be built to describe
and simulate human interactome networks to provide a lot of
information and greatly aid drug discovery and development. As
a matter of fact, network analysis method has been put into
practice in multiple studies and publications [13–17]. In addition,
network efficiency is a computable quantity that can describe the
interactions between distant elements within complex networks
[18]. It measures how efficiently a node can exchange information
with other parts of the network [19], which has been widely used
in current drug discovery process [20]. The two major assumptions
of the use of network efficiency as a measure for drug efficiency
are: (i) a mechanism targeted by a drug can be represented as
a network and (ii) all elements of this network must interact
for appropriate functioning of the targeted mechanism [18]. In
our study, we fulfilled these two assumptions by combining the
genes associated with AD+P and drug targets with pharmaceu-
tical actions and connecting them with latest protein–protein
interaction data. Therefore, we believe that the network efficiency
in our study can be considered as strong predictors for drug
efficacy in real world.

In a recent study, Dr Robert Sweet and his group conducted
a genome-wide association study (GWAS) to identify risk loci
for AD+P compared with AD-P patients [21]. In this paper, the
researchers compared the genetic correlations of AD + P with
select phenotypes AD, amyotrophic lateral sclerosis, Parkinson’s
disease, intelligence, schizophrenia, depressive symptoms and
bipolar disorder. AD+P showed significantly genetically correla-
tion with depressive symptoms, and in contrast, AD + P was not
significantly genetically correlated with AD and schizophrenia.

Studies of familial aggregation of AD+P have established that
the risk for AD+P is, in part, genetically mediated [22]. How-
ever, despite some symptomatic overlap, AD+P is not geneti-
cally correlated with schizophrenia risk [21, 23]. Therefore, iden-
tifying the similarities and differences between their associated
genetic mechanisms may provide a mechanism for understand-
ing the reduced benefit of antipsychotics in AD+P. In this study,
we applied network analytic approaches incorporating transcrip-
tomic and genomic data from AD+P and schizophrenia subjects
to accomplish this goal.

Material and methods
Dataset collection
Thanks to the great improvement of gene sequencing technolo-
gies, we now have access to a batch of high-quality, large-scale
genetic studies about schizophrenia (e.g. biological insights from
108 schizophrenia-associated genetic loci by Ripke S.) [24] that can
provide reliable genetic insights for schizophrenia. Differentially

expressed genes (DEGs) and GWAS data for AD+P were used
to construct the protein–protein interaction (PPI) networks [21].
GWAS data for schizophrenia was collected from GWAS Catalog
(https://www.ebi.ac.uk/GWAS/home), and DEGs were collected
from the CommondMind Consortium [25] and the psychENCODE
cohorts [26]. Genes from GWAS and DEGs are pooled together
to create an inclusive gene set that will represent the genetic
characteristics of the disease as accurate as possible and these
genes were used to construct the networks, respectively. These
gene names were then converted to protein names by batch
search function in the UniProt database [27].

Information about antipsychotics and their targets was
extracted from DrugBank (Supplementary ST1) (https://www.
drugbank.ca/) [28]. The pharmacological action label of a drug
provides information about whether binding to a target con-
tributes to the pharmacological effects. For example, Olanzapine
can bind to multiple neuronal receptors, including the dopamine
receptors D1, D2, D3 and D4, the serotonin receptors 5HT2A,
5HT2C, 5HT3 and 5HT6, the alpha-1 adrenergic receptor, the
histamine receptor H1 and multiple muscarinic receptors.
However, Olanzapine’s antagonistic effect toward the DRD2
receptor in the mesolimbic pathway and serotonin receptor
5HT2A in the frontal cortex are considered key in achieving its
pharmacological effects [29]. Thus, DRD2 receptor and 5HT2A
are labeled with known pharmacological action while other
receptors are labeled as unknown pharmacological action.
Genes extracted from the databases were first examined if
they have corresponding coded proteins for PPI data extraction.
We constructed the networks with all the drug targets (known
and unknown pharmacological actions) and only targets with
known drug targets. We found that the networks showed similar
characteristics in network structures and metrics (Supplementary
ST2). We also conducted network efficiency analysis with the
networks built with all drug targets and the results showed similar
patterns and trends (Supplementary ST3 and ST4). Therefore,
only targets with known pharmacological actions were included
in the following study. For further network analysis, the largest
connected network was defined as the main network which
included the majority of disease proteins and drug targets.
Proteins that are not connected with the main network were
removed from the network. Antipsychotics are evaluated as two
sub-groups: first-generation antipsychotics (FGAs) and second-
generation antipsychotics (SGAs). FGAs are D2 antagonists and
SGAs are 5HT2A/D2 antagonists [30].

PPI data were collected from STRING (https://string-db.org/)
[31]. The PPI networks were constructed and analyzed with python
package networkx (https://networkx.github.io/) [32]. The inter-
action network was shown in the molecular action view with
a medium confidence level (>0.4) which is commonly used in
other literature [33]. AD+P-related proteins and schizophrenia-
related proteins were joined with targets of antipsychotics to
construct two disease-targets networks, i.e. AD+P-targets PPI net-
work (AD + P network) and schizophrenia-targets PPI network
(SCZ network). Lists of removed genes from the AD+P network
and the SCZ network can be found in supplementary materials
(Supplementary ST5). We also included the proteins which served
to bridge between disease module proteins and target module
proteins in our disease-targets networks, even if these bridging
proteins were not included in the disease or target protein sets
originally. Networks were constructed based on GWAS and DEGs
data separately and combined to test which method can best
reflect the associations among drug targets and diseases (Supple-
mentary ST6 and ST7).

https://www.ebi.ac.uk/GWAS/home
https://www.drugbank.ca/
https://www.drugbank.ca/
https://string-db.org/
https://networkx.github.io/
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In addition, pathway enrichment analysis was conducted
through the ingenuity pathway analysis (IPA, QIAGEN Inc., https://
www.qiagenbioinformatics.com/products/ingenuitypathway-
analysis).

Network analysis
Network analysis approaches are incorporated to explain the
modest efficacy of antipsychotics in AD+P. We hypothesized that
the structure differences between protein–protein interaction
(PPI) networks of AD+P and schizophrenia might result in
different signaling transduction initiated by the antipsychotics
and thus affect the drug efficacy. Network approaches have been
used in predicting and identifying the disease genes in multiple
studies and some of the results have been verified [34, 35]. While
the drug actions depend on the complex signaling transduction
networks of cells or the complicated profile of drug potency and
selectivity, the effect of a drug can be evaluated by the impact of
the drug’s targets toward a PPI network representing a disease [36].
Therefore, we built two PPI networks for AD+P and schizophrenia,
respectively, with targets of antipsychotics added to evaluate the
effects of antipsychotics in these two diseases in a quantitative
manner.

The efficiency of nodes in the network was calculated based
on the built-in algorithm of networkx [19, 32]. Efficiency is a
measurement of how efficiently a node can exchange information
with other parts of the network [19], which has been widely
used in neurological research. We calculated several graph-based
metrics to characterize their topological organization at different
levels, including global small-world network efficiency (global
efficiency, local efficiency) and nodal efficiency. The definition
and calculation methods are briefly introduced below in the
context of an undirected network G with N nodes and K edges.

Small-world efficiency
Efficiency is a biologically relevant metric to describe biological
signaling networks from the perspective of parallel information
propagation and exchange [37]. It can be calculated at both global
and local levels. Mathematically, global efficiency is defined as

Eglob(G) = 1
N (N − 1)

∑

i �=j∈G

1
dij

, (1)

where N is the total node number of the connected network
G, dij is the shortest path length from node i to node j in the
network. Global efficiency mainly measures the ability of parallel
information transmission over the network [19].

The local efficiency of G is defined as

Eloc(G) = 1
N

∑

i∈G

Eglob (Gi) , (2)

where N is the total node number of the connected network G,
Eglob(Gi) is the global efficiency of Gi, the subgraph contained
all the neighbors of node i (i.e. nodes linked directly to node i).
The result of local efficiency measures the fault tolerance of the
network, indicating the capability of information exchange for
each subgraph when the index node is eliminated [19].

A small-world network is a type of mathematical graph in
which most nodes are not neighbors of one another, but the
neighbors of any given node are likely to be neighbors of each
other and most nodes can be reached from every other node by
a small number of hops or steps [38]. Small-world coefficient

(sigma) is proposed to be used to accurately distinguish small-
world network (sigma >1) [39–41]. The calculation of sigma is
defined as follows [42]:

C = 1
N

∑

i∈G

Ci (3)

σ = C
Cr

/
L
Lr

, (4)

where N is the total node number of the connected network G, C
and L are, respectively, the average clustering coefficient and aver-
age shortest path length of G, and Cr and Lr are, respectively, the
average clustering coefficient and average shortest path length of
an equivalent random graph.

Nodal efficiency
To measure the efficiency of a certain node, two major factors
should be taken into consideration: (i) the number of nodes that
can be connected to this node through edges in the network
(N); (ii) the path lengths between other connected nodes and the
node of interest (dij). Therefore, nodal efficiency of a node (i) is
calculated as follows:

E
(
i
) = 1

N − 1

∑
i �=j∈G

1
dij

, (5)

where N is the total node number of the connected network G, dij

is the shortest path length from node i to node j in the network.
Nodal efficiency measures the ability of information propagation
between a node and the remaining nodes in the network. A node
with high nodal efficiency indicates high capability of information
transmission with other nodes and can therefore be categorized
as a hub.

Method validation
Before we apply network analysis methods to antipsychotics in
AD+P and SCZ networks, we want to validate its ability to detect
the efficiency differences of drugs in diseases. To accomplish
that, we use FGAs, SGAs and benzodiazepines as examples to test
their efficacy differences in schizophrenia. Abundant studies have
shown that in schizophrenia, SGAs have slightly higher efficacy
than FGAs [43], and both FGAs and SGAs are significantly more
efficacious than benzodiazepines [44]. Therefore, SGAs and FGAs
will serve as positive examples and benzodiazepines will serve as
negative examples.

We use these three categories of medications to evaluate six
network metrics: Degree centrality [45], Closeness centrality [45],
Betweenness centrality [45], Clustering coefficient [46] and Inte-
grated Value of Influence (IVI) [47]. Networks were processed and
analyzed with python package networkx [32].

Statistical analysis
Nodal efficiency values are calculated as described above for
antipsychotics’ targets in AD+P network and SCZ network,
respectively. Therefore, the efficiency of targets in two networks
can be compared in pairs to evaluate the difference of drug
effects in two diseases. After testing, the distribution of efficiency
values does not follow normal distribution, as such Wilcoxon
signed-rank test [48] is used to determine whether two dependent
samples were selected from populations having the same
distribution.

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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Figure 1. The distribution of network metrics values among three categories of medications in three networks with random network.

Binding affinity-based weight calculation
Binding affinity values, including Ki, EC50, IC50 and AC50, for
drugs against their targets were extracted from ChEMBL (https://
www.ebi.ac.uk/chembl/) [49] with provided web service (Supple-
mentary ST8 and ST9). Those values were used as the measure-
ment for the strength of drug-target interactions.

To align the effect of different binding affinity measurements,
a relative strength (RS) for each target is calculated for different
measurements as follows:

RS = Bindingreference/Bindingdrug−target, (6)

where Bindingreference is the minimum binding value achieved by
any antipsychotics with a certain target and Bindingdrug–target is
the binding value for a certain antipsychotics and target pair.

Standard protocol approvals, registrations and
patient consents
The genetic data used in this study is contributed by Dr Robert
Sweet’s lab [21] and the collection of clinical data and genetic
samples was approved by each source programs’ local Institu-
tional Review Board or Medical Ethics Committee, as appropriate.

Results
Network analysis method validation
To validate the network analysis methods, an SCZ network
with FGAs’ targets and an SCZ network with SGAs’ targets
were constructed. In addition, to account for psychoactive
effects not specifically targeting psychosis, an SCZ network with
benzodiazepines’ targets was constructed. To present a baseline
for the network metrics, we constructed a random network
with same node number with the largest networks among the
three networks (1462 nodes). The network metrics for drug
targets in these three networks were calculated by implemented
methods in networkx [21]. The efficiency value of each medication
was considered equal to the sum of all its targets’ efficiency
values. Kruskal–Wallis H-test was performed to test if there

Table 1. Results of statistical tests for six network metrics

Network metrics H P value

Degree centrality 51.5 1.36 × 10−09

Closeness centrality 55.1 2.90 × 10−10

Betweenness centrality 49.3 1.38 × 10−09

Clustering coefficient 50.4 2.37 × 10−09

IVI 45.6 3.64 × 10−08

Efficiency 55.1 2.90 × 10−10

H: Test statistic for Kruskal–Wallis H-test [50].

are statistical differences among the three categories in three
networks because the distributions of calculated metrics do not
follow normal distribution [50]. As shown in Table 1, all metrics
showed significance among the three groups and the distributions
are shown in the box plot (Figure ).

As shown in the box plot (Figure ), FGAs and SGAs showed
comparable values in three networks while SGAs are slightly
higher than FGAs. On the other hand, benzodiazepine’s network
metrics values are close to 0 indicating they may not possess any
potential beneficial effect against schizophrenia, in accordance
with the conclusion drawn by extensive evidence-based research
[44]. The random network showed close to 0 topological features
compared with FGAs and SGAs while benzodiazepines showed
similar metrics with random networks.

Based on the results discussed above, the network analysis
method is not only capable of distinguishing effective and non-
effective treatments (antipsychotics and benzodiazepines) but is
also able to differentiate the minor difference between sub-class
of medications (FGAs and SGAs).

Overview of genetic variations associated with
AD+P and schizophrenia
From the sources mentioned above, 975 genome-wide associated
variations and 1077 DEGs were identified for AD+P relative to
AD-P, and 1668 genome-wide associated variations and 464 DEGs
were identified for schizophrenia based on their significance. In
total, 1607 and 2123 unique genes were identified as associated

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
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Figure 2. The Venn diagram of AD+P and schizophrenia-related genes and antipsychotics’ targets genes.

Figure 3. DRD2 and HTR2A share some common target genes but there is a significant portion of their downstream genes that do not overlap with
each other. Taken together, the pathways represented by these different genes can be the keys to answer why SGAs are less efficient in AD+P than in
schizophrenia. Comparison of first and second neighbors of DRD2 and HTR2A in AD+P network and SCZ network.

with AD+P and schizophrenia, respectively. Meanwhile, 75 targets
were collected from DrugBank for 21 antipsychotics that are
commonly used in clinical settings, including 10 FGAs and 11
SGAs (full list of drugs and targets in Supplementary ST1).

Consistent with prior observations that AD+P and schizophre-
nia have limited shared genetic risk, only 148 genes overlapped
between these disorders. Antipsychotics’ pharmacological targets
are also jointly presented in Figure 2, 17 antipsychotics target
genes overlap with AD+P and 9 overlap with schizophrenia.

Parameter descriptions of AD+P network and
SCZ network
Target-disease networks for AD+P and schizophrenia are
constructed based on the previously identified genes and target

proteins for antipsychotics. Only genes having interactions
with other genes within the network are included. The basic
information for the two networks can be found in Table 2.
Both networks are confirmed as small-world networks, with
small-world coefficient (sigma) > 1 as we described in section
Small-world efficiency. The AD+P network showed higher global
and local efficiency reflecting its larger network size.

Decreased drug efficacy in AD+P compared to
schizophrenia
Decreased efficacy for major antipsychotics’ targets in
AD+P compared with schizophrenia
Nodal efficiency values were calculated for antipsychotics’ targets
to evaluate for differences between AD+P and schizophrenia.



6 | Fan et al.

Table 2. General network parameters for AD+P and SCZ networks

Node number Global efficiency Local efficiency Small-world coefficient
(sigma)

AD+P network 1512 0.289 0.262 5.825
SCZ network 1249 0.297 0.270 7.518

SCZ network: protein–protein interaction network with schizophrenia-related genes and targets of antipsychotics. aAD + P network: protein–protein
interaction network with AD+P-related genes and targets of antipsychotics.

Table 3. Efficiency of major targets of antipsychotics in AD+P
network and SCZ network

Targets Efficiency in AD+P
network

Efficiency in SCZ
network

DRD2 0.363 0.381
HTR2A 0.337 0.371
DRD1 0.332 0.347
ADRA1A 0.29 0.319
DRD3 0.315 0.33
HRH1 0.309 0.311
HTR1A 0.304 0.355
DRD4 0.307 0.337
Paired Wilcoxon Test W = 36, P = 0.0039

aDRD2: Dopamine Receptor D2; DRD3: Dopamine Receptor D3; DRD4:
Dopamine Receptor D4; HTR1A: 5-Hydroxytryptamine Receptor 1A; HTR2A:
5-Hydroxytryptamine Receptor 2A; ADRA1A: Adrenoceptor Alpha 1A; HRH1:
Histamine Receptor H1; AD+P network: protein–protein interaction
network with AD+P-related genes and targets of antipsychotics; SCZ
network: protein–protein interaction network with schizophrenia-related
genes and targets of antipsychotics

Efficiency values for the major targets of antipsychotics are
shown in Table 3. Antipsychotic targets in the AD+P network
showed a significantly lower efficiency than those in the SCZ
network (P = 0.0039).

The results in Table 3 indicate that these targets have less
impact in AD+P compared with schizophrenia when perturbed
with the same strength and can be interpreted as the antipsy-
chotics targeting these proteins may therefore be less efficacious
in AD+P than in schizophrenia.

Decreased efficiency for antipsychotics in AD+P compared
with schizophrenia
To acquire a more direct measure, efficiencies of antipsychotics
were calculated in the networks. The efficiency value of each
antipsychotic was considered equal to the sum of all its targets’
efficiency. FGAs and SGAs were calculated separately in two sets
of networks. As Table 4 showed, all SGAs have lower efficiency
values in the AD+P network compared with the SCZ network
(P < 0.001). This might indicate that these SGAs would have lower
activity in AD+P than in schizophrenia.

As for FGAs, their efficiency values were also calculated
in AD+P network and SCZ network. Like SGAs, FGAs showed
significantly lower values in AD+P than in schizophrenia (Table 5)
(P < 0.001). In addition, some FGAs, like Chlorpromazine and
Thioridazine, showed higher or comparable efficiency values with
the top SGAs. These results can be interpreted in two ways: (i) the
results are biased by the amount of study because more studies
are done on FGAs so they have more known targets included in
the database; (ii) since the network analysis method can only
evaluate drug efficiency, it is possible that Chlorpromazine may
have comparable or better efficacy than some SGAs. As a matter
of effect, Chlorpromazine is reliable for its efficacy and one of
the most tested FGAs. It has been used as a ‘gold standard’ to

Table 4. Network efficiency of second-generation antipsychotics
calculated from AD+P network and SCZ network

Drugs Efficiency in AD+P
network

Efficiency in SCZ
network

Paliperidone 1.694 1.831
Brexpiprazole 1.643 1.799
Sertindole 1.337 1.45
Aripiprazole 0.726 0.779
Clozapine 0.726 0.779
Iloperidone 0.726 0.779
Olanzapine 0.726 0.779
Quetiapine 0.726 0.779
Risperidone 0.726 0.779
Ziprasidone 0.726 0.779
Lurasidone 0.352 0.386
Pimavanserin 0.352 0.386
Paired Wilcoxon Test W = 78, P < 0.001

aAD+P network: protein–protein interaction network with AD+P-related
genes and targets of antipsychotics; SCZ network: protein–protein
interaction network with schizophrenia-related genes and targets of
antipsychotics.

Table 5. Efficiency of first-generation antipsychotics in AD+P
network and SCZ network

Drugs Efficiency in AD+P
network

Efficiency in SCZ
network

Chlorpromazine 2.311 2.489
Thioridazine 1.675 1.798
Thiothixene 1.068 1.138
Trifluoperazine 0.961 1.037
Loxapine 0.726 0.779
Mesoridazine 0.726 0.779
Fluphenazine 0.716 0.752
Perphenazine 0.716 0.752
Haloperidol 0.699 0.755
Molindone 0.374 0.393
Paired Wilcoxon Test W = 55, P < 0.001

aAD+P network: protein–protein interaction network with AD+P-related
genes and targets of antipsychotics; SCZ network: protein–protein
interaction network with schizophrenia-related genes and targets of
antipsychotics.

compare the efficacy of older and newer antipsychotic drugs.
According to randomized controlled trials (RCTs) that compared
chlorpromazine with any other atypical antipsychotic drugs for
schizophrenia, it showed comparable efficiency with olanzapine,
risperidone and quetiapine [51]. Therefore, it is reasonable that
Chlorpromazine showed comparable efficiency values with
the SGAs.

Weighted efficiency based on binding affinity values for
antipsychotics in AD+P and schizophrenia
In the above sections, the efficiency values for antipsychotics were
calculated as a simple sum of efficiency values from all its targets.
A simple sum method is accurate under the assumption that all
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Table 6. Weighted efficiency of selected antipsychotics in AD+P
network and SCZ network

Drugs Weighted efficiency
in AD+P network

Weighted efficiency
in SCZ network

Sertindole 8.535 9.357
Fluphenazine 4.016 4.206
Ziprasidone 3.619 3.964
Risperidone 0.967 1.058
Lurasidone 0.799 0.877
Loxapine 0.681 0.746
Clozapine 0.194 0.212
Olanzapine 0.177 0.193
Pimavanserin 0.092 0.101
Aripiprazole 0.025 0.026
Haloperidol 0.014 0.014
Quetiapine 0.008 0.009
Paired Wilcoxon Test W = 66, P = 0.0016

aAD+P network: protein–protein interaction network with AD+P-related
genes and targets of antipsychotics; SCZ network: protein–protein
interaction network with schizophrenia-related genes and targets of
antipsychotics.

antipsychotics can impact their targets at the same strength. To
acquire a more accurate result, binding affinity-weighted effi-
ciency values were calculated for 12 antipsychotics for which
data was available and 21 drug-target pairs were included. All the
targets included in this section have been validated for pharmaco-
logical effects. Weights and weighted efficiencies were calculated
as

Wdrug−target = 10 × RS (7)

Eweighted
(
i
) = Wdrug−target ∗ E

(
i
)

, (8)

where Wdrug–target is the weight for a drug-target pair, and S is the
relative strength of the binding affinity between drug and target.
Therefore, weighted efficiency for an antipsychotic can be calcu-
lated by the sum of all Eweighted from its targets. As we can be seen
in Table 6, the values of weighted efficiency for antipsychotics are
significantly lower in AD+P network (P = 0.0016) than in the SCZ
network.

Different pathways involved in AD+P and
schizophrenia networks
To get a more detailed look at how AD+P network and SCZ net-
work react toward antipsychotics, several of the commonly used
SGAs (Aripiprazole, Olanzapine, Quetiapine and Risperidone) were
selected as examples to explore the pathways that are affected
when administered. All SGAs share DRD2 and HTR2A as major
targets. The signaling pathways represented by first and second
neighbors of these two targets are of great value since information
flow attenuates quickly in networks [52].

Furthermore, pathway enrichment analysis was conducted for
the genes that are exclusively affected in the AD+P network by
DRD2 and HTR2A (489 genes for DRD2, 233 for HTR2A). The ten
most significant pathways are shown in Table 7. The pathways
identified in Table 7 are more specific for the AD+P network
compared with the SCZ network.

From the pathways identified in Table 7, we can see a strong
association with inflammation reactions in human tissue and can
also see an association with autophagy and apoptosis. In addition,
RNA synthesis and cell cycle-related pathways are highlighted in
our results. Since HTR2A and DRD2 are the most targeted drug
targets for antipsychotics and are involved in multiple biologi-
cal processes that play important roles in human neurological

activities, the difference of their downstream effect can tell us a
lot about how they respond differently to the medications. Just like
we showed in Table 7, the results of the pathway analysis suggest
a tighter bound between AD+P and neuroinflammation. As a
matter of fact, AD+P was identified to be more correlated with
depressive symptoms rather than schizophrenia suggestive of a
possibility of different mechanisms behind the psychotic symp-
toms in AD+P and schizophrenia. In comparison with the func-
tional annotation studies conducted with the DEGs by Dr Sweet’s
lab, our results showed a stronger presence of neuroinflammation
which may provide insights for novel drug development.

Discussion and conclusion
In this study, we elucidated the underlying sources of efficacy
differences of antipsychotics in AD+P and schizophrenia by using
network efficiency and pathway analysis on combined disease-
target networks. The major targets of antipsychotics are found to
have lower efficiency in the AD+P network than in the SCZ net-
work, indicative of antipsychotic’s interaction with these targets
may modulate AD+P less efficiently. Finally, we identified novel
comprehensive pathways that are engaged by antipsychotics in
AD+P, but not in schizophrenia, and which may contribute to
the limited efficacy or enhanced toxicity of these medications in
AD+P.

Multiple meta-analysis studies have reported modest efficacy
of antipsychotics in treating AD+P [4, 53]. In those studies,
Aripiprazole, Olanzapine, Quetiapine and Risperidone were most
extensively studied. Though no significant effect was reported
across trials and measurements, individual agents showed some
efficacy on specific outcome measures. In our results, Aripipra-
zole, Olanzapine, Quetiapine and Risperidone are ranked 4th, 7th,
8th and 9th in Table 4 as the leading part in SGAs, but changed
to 10th, 8th, 12th and 4th when they were weighted in Table 6.
The ranks of these four SGAs concur well with other evidence of
efficacy where Risperidone > Aripiprazole > Olanzapine > Que-
tiapine was suggested [54]. Risperidone, as the only antipsychotic
licensed for the treatment of aggression (in Europe but not in the
USA), has been reported by multiple studies including clinical
trials as having beneficial effects against AD+P [54, 55].

While not many antipsychotics have been tested against
AD+P, the results of this study can help nominate and repurpose
antipsychotics that may possess higher efficacy in treating AD+P.
Three antipsychotics, Sertindole, Fluphenazine and Ziprasidone,
showed higher weighted efficacy than Risperidone which is
the most effective and commonly used SGA in the clinic.
Fluphenazine is an FGA, and is uncommonly used in AD+P due to
extrapyramidal side effects, and thus we can rule it out from the
list [56]. Sertindole and Ziprasidone provide better efficacy and
safety profiles in treating psychosis [57, 58]. Previous studies also
showed that Sertindole has better performance than other SGAs
on cognitive functions such as processing speed and executive
function while Ziprasidone has better performance on composite
score, executive function and processing speed, working memory
and memory and verbal learning [59]. The benefits of Sertindole
and Ziprasidone can be supported by their higher affinity for
5HT6, 5HT2C and 5HT3 receptors [60, 61]. Therefore, we believe
that Sertindole and Ziprasidone are promising candidates with
improved efficacy in treating AD+P among SGAs.

The results of pathway enrichment analysis showed that when
similar perturbation is applied to major antipsychotics’ targets,
such as DRD2 and HTR2A, AD+P patients will have different reac-
tions compared to schizophrenia patients because the pathways
influenced by the perturbation are different under the two disease
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Table 7. Overrepresented specific pathways of AD+P

Targets Pathways P-value ∗ Overlaps
with dataset

Genes overlapped with datasets

DRD2 Cell Cycle: G2/M DNA Damage Checkpoint
Regulation

5.62E−09 0.22 ATR,BORA,BTRC,CDK1,PPM1D,PRKDC,RPS6KA1,WEE1,
YWHAB,YWHAH,YWHAZ

tRNA Charging 1.48E−05 0.179 AARS2,DARS1,EPRS1,GARS1,LARS2,RARS2,SARS1
Role of PKR in Interferon Induction and
Antiviral Response

3.16E−05 0.0882 ATF3,CASP8,HSP90AB1,IFIH1,IFNGR1,IRF1,JAK1,MAPK3,
MARCO,NLRP3,STAT1,TRAF6

Cyclins and Cell Cycle Regulation 6.76E−05 0.107 ATR,BTRC,CDK1,HDAC4,PPP2CA,RB1,RBL2,TGFB3,WEE1
Systemic Lupus Erythematosus In B Cell
Signaling Pathway

8.71E−05 0.0614 BCL2L1,CALML5,CD40,CTNNB1,IFIH1,IFNGR1,JAK1,LYN,
MAPK3,PIK3CB,PIK3R5,PTPN11,RASGRP3,SHE,STAT1,TGFB3,
TRAF6

IL-22 Signaling 1.23E−04 0.208 IL10RB,IL22RA2,JAK1,MAPK3,STAT1
Urate Biosynthesis/Inosine 5′-phosphate
Degradation

1.62E−04 0.286 IMPDH1,IMPDH2,NT5C,NT5C1A

EIF2 Signaling 2.88E−04 0.0628 ACTA2,ATF3,IGF1R,MAPK3,PIK3CB,PIK3R5,PPP1CB,RPL13A,
RPL21,RPL32,RPL6,RPS14,RPS6,RPS8

Phosphatidylcholine Biosynthesis I 3.02E−04 0.429 CHKA,PCYT1A,PCYT1B
Wnt/β-Catenin Signaling 3.09E−04 0.0694 BMPR2,BTRC,CDH2,CSNK1A1,CTNNB1,PIN1,PPP2CA,SOX2,

SOX9,TGFB3,TLE1,WNT8B
HTR2A IL-22 Signaling 3.55E−06 0.208 IL10RB,IL22RA2,JAK1,MAPK3,STAT1

Systemic Lupus Erythematosus In B Cell
Signaling Pathway

2.51E−05 0.0433 CALML5,CD40,CTNNB1,FGR,IFNGR1,JAK1,LYN,MAPK3,
PIK3CB,PIK3R5,PTPN11,STAT1

Phosphatidylcholine Biosynthesis I 3.39E−05 0.429 CHKA,PCYT1A,PCYT1B
Rac Signaling 7.76E−05 0.058 IQGAP1,ITGAL,MAPK3,PIK3CB,PIK3R5,PIP4K2A,PIP4K2C,

PTK2B
Role of JAK family kinases in IL-6-type
Cytokine Signaling

1.05E−04 0.16 JAK1,MAPK3,PTPN11,STAT1

JAK/Stat Signaling 1.78E−04 0.0732 JAK1,MAPK3,PIK3CB,PIK3R5,PTPN11,STAT1
RhoA Signaling 2.57E−04 0.0565 ARHGEF1,GNA12,IGF1R,PIP4K2A,PIP4K2C,PPP1CB,PTK2B
RhoGDI Signaling 3.31E−04 0.0419 ARHGEF1,GNA11,GNA12,GNB4,GRIP1,ITGAL,PIP4K2A,

PIP4K2C,RHOU
Interferon Signaling 4.47E−04 0.111 IFNGR1,IRF1,JAK1,STAT1
Trans, trans-farnesyl Diphosphate
Biosynthesis

9.77E−04 0.4 FDPS,IDI1

aP-value calculated by the right-tailed Fisher’s Exact Test; AD+P: Alzheimer’s disease with psychosis.

conditions. The identified overrepresented pathways shown in
Table 7 indicate a special role of neuroinflammation and RNA
synthesis in AD+P compared with schizophrenia. Furthermore,
many studies have reported the role of neuroinflammation in the
pathogenesis of AD [23, 62] and schizophrenia [63]. The results
of our study showed that though inflammation processes are
involved in both conditions, different responses can be activated
in AD+P and schizophrenia patients and can be used to explain
the causal relationship between activated systemic inflamma-
tion and the development of neuropsychiatric symptoms in AD
[62]. The accordance between the existing reports and results of
our pathway enrichment analysis provides additional support for
the rationale of our results. The different pathways affected in
AD+P and schizophrenia may also have a peripheral effect that
can increase the risks of adverse events for antipsychotics in
AD+P patients. Infection, for example, is a common adverse event
reported by multiple studies [64, 65] and can be associated with
the interruption of immune systems caused by these antipsy-
chotics [66, 67].

The size difference between the AD+P and SCZ networks may
raise bias. To minimize the possible bias, multiple approaches
were considered, including filtering nodes and edges with certain
threshold to fix the size or density of networks. However, these
approaches may introduce new bias to this study by enforcing
noise in a smaller network and ignore significant connections in a
larger network. Furthermore, since these two networks are cate-
gorized as small-world networks, their connectivity parameters

are not sensitive to changes in network size by definition [38].
Additionally, a study indicated that the average path length and
the cluster coefficient in a small-world network are not sensitive
to change of node number or to average degree [68]. Since our
efficiencies are calculated based on the path lengths in different
networks, we believe it is safe to say the bias caused by network
size in our measurement is minimized and acceptable.

Collectively, the result of this study not only provides a possi-
ble explanation for antipsychotics’ modest efficacy in AD+P but
can also help nominate antipsychotics that may possess higher
efficacy in treating AD+P which should be tested and validated
in further studies, especially for Sertindole and Ziprasidone. In
addition, the methodology we used in this study showed great
accordance with other reported pieces of evidence by incorpo-
rating bioactivity data with network analysis approaches. This
methodology can be applied to provide support and guidance in
drug repurposing or treatment optimization studies for building
personalized therapies for these patients.

Key Points

• Recent breakthroughs in AD+P genetics studies (GWAS
and DEGs) provided unprecedented opportunities in
mechanism studies and treatment screenings for AD+P.

• By combining network analysis and systems pharmacol-
ogy approaches, we were able to quantitatively evaluate
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the differences for antipsychotics’ efficacy in AD+P and
schizophrenia.

• We found that antipsychotics’ targets are less connected
to the proteins that are involved in AD+P compared
to schizophrenia, which is accordant to the reported
decrease in efficacy of antipsychotics in AD+P.

• By incorporating binding affinity data into the net-
work analysis, we got the consistent conclusions on the
decreased efficiency of antipsychotics in AD+P.

Data availability
Data sources used in this study are described in the Methods
and Materials sections. Genes that are associated with AD+P
and schizophrenia were collected and combined from multiple
sources, and we are happy to provide the formatted data upon
request. The drugs and their targets along with binding affinity
data are included in the supplementary materials.
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Supplementary data are available online at https://academic.oup.
com/bib.
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