
Abstract. Background/Aim: With diabetes, skeletal muscle
mitochondrial quality (fusion, fission & mitophagy) and
muscle mass are compromised. Geranylgeraniol (GGOH)
can prevent mitochondrial damage, inflammation, and
improve muscle health; however, the effect of GGOH on a
diabetic model is not known. This study aimed to determine
the effect of GGOH on mitochondrial quality and muscle
mass in diabetic rats. Materials and Methods: Sprague-
Dawley rats were divided into three groups: regular diet
(CON; n=7), high-fat-diet with 35 mg/kg body weight of
streptozotocin (STZ) (HFD; n=7), and HFD/STZ with 800
mg/kg of GGOH (GG; n=7) for a total of 8 weeks. At the end
of the study, soleus and gastrocnemius muscles were
collected and analyzed for gene and protein expression of
OPA1, MFN2, DRP1, p-DRP, LC3AB, PINK1, Parkin,
SOD2, NF-ĸB, IL-6, TNF-α, and IL-1β. Additionally, the
cross-sectional area (CSA) of soleus muscles was analyzed.
Results: In soleus, HFD group had significantly higher IL-
1β and lower LC3A, MFN2, DRP1, and SOD2 mRNA
expression compared to CON group. The GG group had
higher PINK1 mRNA expression than the HFD group.
Additionally, the GG group had lower LC3B and DRP1
protein than the HFD group and lower LC3A and MFN2
protein than the HFD and CON groups. Lastly, HFD and
GG groups had a smaller CSA than CON group, whereas
GG had a greater CSA than HFD. Conclusion: GGOH
supplementation could prevent mitochondrial fragmentation
and potentially decrease the demand for mitochondrial

fusion. Additionally, autophagosome degradation occurred
at a greater rate than formation, indicating increased
clearance of damaged organelles. Improved mitochondrial
quality could potentially rescue muscle CSA in diabetic rats
with GGOH supplementation.

Type 2 Diabetes (T2D) is characterized by hyperglycemia
and insulin resistance (1) and its incidence is approximately
8.8% (415 million people) worldwide. Hyperglycemia can
increase reactive oxygen species (ROS) and reduce
mitochondrial biogenesis, resulting in inflammation, tissue
damage, and mitochondrial dysfunction (2). In addition, the
mitochondrial dysfunction reduces β-oxidation and ATP
production and can also further increase ROS, leading to
insulin resistance and diabetes (2). Dysfunctional
mitochondria and hyperglycemia play a major role in this
vicious cycle that causes inflammation, insulin resistance,
and diabetes. Therefore, to prevent mitochondrial
dysfunction observed in T2D, mitochondrial quality must be
well regulated and maintained through mitochondrial fusion,
fission, and mitophagy (3).

Mitochondria are regularly reorganized through
mitochondrial fusion [outer mitochondrial membrane
(OMM): MFN1/2 and inner mitochondrial membrane
(IMM): OPA1] and fission (DRP1) (4). The dysfunctional
mitochondria are removed via mitophagy (PINK1, Parkin,
LC3A, & LC3B) to maintain proper function (4). These
processes have been demonstrated to maintain muscle mass
(5, 6), muscle force production (6, 7) and myofibril
contractility (7), and prevent mitochondrial dysfunction (7,
8) in the skeletal muscles of mice. However, the balance
between fusion and fission must be maintained to prevent the
accumulation of dysfunctional mitochondria (9). Therefore,
mitochondrial fragmentation can occur through increased
fission, decreased fusion, or a combination of both (9). For
example, over-expression of MFN2 in liver cells generated
mitochondrial clusters composed of small damaged
mitochondria (9), while DRP1 knockdown mice had reduced
clearance of dysfunctional mitochondria and caused muscle
atrophy in skeletal muscle (5). This suggests that the
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dynamics between fusion and fission are critical in
preventing increases in damaged mitochondria.

Inflammation observed in T2D is associated with increased
mitochondrial fragmentation caused by the upregulation of
DRP1 or downregulation of MFN2 (10). Increased
mitochondrial fragmentation and reduced fusion lead to
increased ROS production in myoblasts treated with high
concentrations of glucose (11) and in MFN2 knockout model
(12). Studies have demonstrated a reduction in fusion (MFN2
and OPA1) (13-15) and mitophagy protein expression (PINK1
and LC3B) in T2D patients (16, 17) and high-fat diet-fed mice
(15). In contrast, fission protein expression (DRP1) is
upregulated in obese high-fat diet-fed mice (15). Additionally,
evidence has suggested that the observed muscular atrophy
(18), impaired metabolism (4), and fiber-type transition (4) in
T2D could potentially stem from the mitochondria (4). This
leads to skeletal muscle dysfunction characterized by reduced
muscle strength/power, poor functional capacity (19, 20), and
exercise intolerance (4). These results demonstrate that
improving mitochondrial health could mitigate the skeletal
muscle dysfunction observed in T2D. 

Most T2D patients are prescribed statins depending on
their age and risk factors (21), and statins have been shown
to reduce the synthesis of ubiquinone (CoQ10) and
geranylgeraniol (GGOH) (22). Compared to healthy
individuals, T2D individuals had lower levels of CoQ10 (23-
25), which could ultimately lead to mitochondrial
dysfunction. GGOH supplementation with statins has been
shown to prevent statin toxicity by promoting CoQ10
synthesis in monocytic cells (26). These results have
suggested that GGOH could mitigate statin-mediated
mitochondrial dysfunction. Additionally, GGOH
supplementation to Wistar rats has been shown to exert anti-
inflammatory effects by inhibiting nuclear factor-ĸB (NF-
ĸB), which caused a reduction in inflammatory cytokines
(IL-6, IL-1β, and TNF-α) in the plasma and the liver (27).
Similarly, when incubating neuronal cells with GGOH, there
was a reduction in inflammatory markers, and preservation
of the integrity of the mitochondria (28). Notably,
supplementing GGOH in a denervated rat model has
prevented reduction in gastrocnemius cross-sectional area
(CSA) (29). These results suggest that GGOH could be a
viable supplementation for a diabetic model as GGOH
mitigates inflammation, preserves mitochondrial health and
shape, and protects against reduction in muscle size.
Improving mitochondrial quality is essential to enhance
metabolic regulation in diabetic populations; however, to our
knowledge, no research has examined the effect of GGOH
supplementation on mitochondrial quality (mitochondrial
fusion, fission, and mitophagy) and muscle cross-sectional
area (CSA) in the skeletal muscle of T2D rats. Therefore,
this study aimed to determine the effect of GGOH on
mitochondrial quality and muscle CSA in rats with diabetes.

Materials and Methods
Animals and treatments. Twenty-one Sprague-Dawley rats were
randomly assigned to three groups: regular diet (CON; n=7), high-
fat diet (HFD; n=7), and geranylgeraniol+high-fat diet (GG; n=7).
CON was given an AIN-93G diet (10% calories from fat) throughout
the eight weeks of the study. After two weeks of feeding, the CON
group was given a vehicle citrate buffer in a dose volume of 1 ml/kg.
The HFD group was fed with a high-fat diet (45% calories came
from fat, Research Diets), while the GG group was given a high-fat
diet with 800 mg/kg GGOH (American River Nutrition, LLC.,
Hadley, MA, USA) for eight weeks. After two weeks of feeding,
HFD and GG were given a streptozotocin (STZ) dose of 35 mg/kg
body weight at 0.1 mmol/L citrate buffer dissolved in citrate buffer
at a pH of 4.4 (30) to induce diabetes. Fasting blood sugar was
collected 42-72 h after STZ injection, and rats were considered
diabetic if fasting blood sugar was above 200 mg/dl. Additionally,
non-fasting blood sugar (NFBS) was measured one week after STZ
injection from 8-10 am. The rats in HFD and GG groups were
confirmed to have diabetes based on their fasting glucose levels (data
not shown). The rats were kept in individual cages with the
temperature set at 21±2˚C with a 12 h light-dark cycle. They were
fed their respective diets twice a week and had free access to food
and water. All conditions and handling of the animals were approved
by the Texas Tech University Health Sciences Center Institutional
Animal Care and Use Committee. All experiments were performed
by the relevant guidelines and regulations.

Sample collection. At the end of the study, blood was collected from
rats fasted for 4 h and then anesthetized with isoflurane. Blood
samples were centrifuged and kept at −80˚C for further analysis. In
addition, the right soleus muscles were harvested and placed in
optimal cutting temperature molds and flash-frozen in liquid
nitrogen for CSA analysis. In contrast, the left soleus muscle and
gastrocnemius were flash-frozen in liquid nitrogen for gene and
protein expression analysis. Muscle samples were kept at −80˚C for
further analysis.

Muscle tissue homogenization and RNA isolation. Muscle samples
were weighed, stripped from surrounding structures, and placed in
a homogenization safe tube. Homogenizing buffer and glass beads
were added and homogenized using the preset setting for rat muscle
in the FastPrep-24 5G (MP Biomedicals, Solon, OH, USA). The
tube was then incubated at room temperature for 10 min. The
homogenized sample was centrifuged at 10,640×g for 5 min at 4˚C,
and the supernatant was transferred to a new tube and aliquoted for
protein concentration and western blot analysis. Using the
manufacturer’s protocol, the soleus muscle RNA was extracted
using RNeasy Fibrous Tissue Mini Kit (Qiagen, Germantown, MD,
USA). The supernatant was then mixed with ethanol and added to
the RNeasy Mini Column, and centrifuged. Next, DNase stock
solution was added to the RNeasy membrane and incubated at 20-
30oC for 15 min. Following incubation, Buffer RW1 was added to
the RNeasy column, centrifuged for 15 s, and the flow-through was
discarded. RNeasy column was then placed in a 2 ml tube,
centrifuged for 1 min, and finally, put into a new 1.5 ml tube with
RNase-free water, and the RNA was eluted.

Muscle gene expression. Muscle samples were analyzed for muscle
gene expression of NF-ĸB, IL-1β, IL-6, TNF-α, SOD2, MFN2,
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DRP1, PINK1, Parkin, LC3A, and LC3B in the CON, HFD, and GG
groups. Real-time PCR was performed using # 2 ABI PRISM70500
Sequence Detection System (Applied Biosystems, Waltham, MA,
USA) with iTaq SYBR Green Supermix (Bio-Rad, Hercules, CA,
USA) and was normalized to β-actin. Relative fold change in
transcript abundance was determined using the 2-ΔΔCt method.

CSA analysis. Muscle samples were sectioned at 10 μm using a
Shandon Cryotome (Thermo-Fisher, Waltham, MA, USA). Soleus
muscles from CON, HFD, and GG groups were placed on the same
microscope slide in duplicates and immediately fixed using 4%
paraformaldehyde (PFA) for ten min. Once fixed, the slides were
washed in phosphate-buffered saline with Tween-20 (PBST) 3 times
for 5 min (3´5). After washing, the slides were placed in
hematoxylin for 10 min and then washed in PBST 3X5. Slides were
then dipped in Eosin for 5 min. A mounting medium was added, and
slides were mounted and stored in the darkened box at room
temperature. Slides were then visualized using a Zeiss Axiovert
200m Inverted Fluorescent Motorized Microscope (Ziess, Dublin,
CA, USA). Images were taken, and muscle CSA was analyzed using
Image J (National Institute for Health, Bethesda, MD, USA). One
hundred muscle fiber areas were measured for each sample.

Western blot analysis. The supernatant was isolated and analyzed for
protein concentration using Pierce™ BCA Protein Assay Kit and was
stored a -80˚C. Supernatant from each sample was combined with
Tris-buffered saline (TBS), 2X Laemmli buffer, and dithiothreitol.
The supernatant was sonicated and heated at 95˚C. Then, 50 μg of
protein were loaded into 20% polyacrylamide gel (4-20% Mini-
PROTEAN TGX gel, Bio-Rad) and separated at 120V for 45 min at
room temperature. All samples from CON, HFD, and GG groups
were loaded on the same gel in duplicates. Samples were then
electrophoretically transferred to a Polyvinylidene fluoride membrane
at 70V at 4˚C for 2.5 h for immunoblotting. Membranes were washed
with TBST (TBS with Tween-20) 3X5 and dried using methanol for
1 min. The ladder was marked with a WesternBright ChemiPen
(Advansta Inc., San Jose, CA, USA) and then rewetted and washed
with TBST 3X5. Next, 5% nonfat dry milk with TBST was used to
block the membranes for 1 h, and after that, the membrane was
incubated with primary antibodies against OPA1 (1:1,000; Cell
Signaling, Danvers, MA, USA), MFN2 (1:1,000; Cell Signaling),
PINK1 (1:1,000; Novus, Centennial, CO, USA), Parkin (1:1,000; Cell
Signaling), LC3AB (1:1,000; Cell Signaling), IL-1β (1:1,000; Novus),
IL-6 (1:1,000; Santa Cruz, Dallas, TX, USA), SOD2 (1:1,500;
Novus), and GAPDH (1:4,000; Cell Signaling) with 3% nonfat dry
milk with TBST at 4˚C for 16 h. DRP1 (1:500; Cell Signaling) and
p-DRP1 (1:500; Cell Signaling) were blocked with 5% bovine serum
albumin (BSA) in TBST for both primary and secondary antibody
incubation. After overnight incubation the membranes blocked with
mouse and rabbit monoclonal primary antibodies were incubated with
secondary anti-mouse IgG (1:1,000; Cell Signaling) and anti-rabbit
IgG (1:1,000; Cell Signaling), respectively, for 1 h at room
temperature with 5% milk in TBST. Chemiluminescent substrate
(WesternBright Sirius HRP substrate Advanta, Menlo Park, CA,
USA) and the C-Digit imaging system (Li-Cor, Lincoln, NE, USA)
were used to visualize the stained protein bands. Image Studio Digits
Ver 4.0 (Li-Cor) was used for band densitometry. Membranes were
stripped using 5X Western reprobe for 60 min and reblotted with
antibodies. Total protein concentrations were normalized to GAPDH
and expressed in arbitrary units. 

Statistical analysis. SPSS (IBM version 26; IBM Corp, Armonk, NY,
USA) was used for all statistical analyses. Log10 transformation was
used when the assumption of normality was violated. Gene
expression, protein expression, and soleus muscle CSA were
analyzed using a one-way analysis of variance. Bonferroni post hoc
tests were used for pairwise comparisons. The statistical significance
was set at p≤0.05. Data are reported as mean±SE.

Results

Pro-inflammatory cytokines. The expression of IL-1β gene in
the soleus muscle was significantly higher in the HFD group
(1.99±0.48) (p<0.05) than that in the CON group (1.00±0.20;
p=0.033; Figure 1A) while no significant (p>0.05) differences
were observed between GG and CON groups and GG and
HFD groups. No significant differences were observed for
NF-ĸB, IL-6, and TNF-α among groups. No significant
differences were observed in protein expression of IL-1β, IL-
6, and TNF-α in the soleus muscle among all groups. 

The expression IL-1β gene in the gastrocnemius muscle
was significantly higher in the HFD group (2.72±0.64;
p=0.016) than in the CON group (1.00±0.19), while no
differences were observed between GG and HFD groups,
and CON and GG groups. No significant differences were
observed for NF-ĸB, IL-6, and TNF-α gene expression
among groups. Furthermore, no significant differences were
observed regarding the expression of IL-1β, IL-6, and TNF-
α proteins in the gastrocnemius muscle among the groups.

Antioxidant marker. The expression of SOD2 gene in the
soleus muscle was significantly lower in the HFD group
(0.65±0.08) than in the CON group (1.00±0.07; p=0.007;
Figure 1B), while no differences were observed between
CON and GG groups and GG and HFD groups. No
significant differences were observed in soleus SOD2 protein
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Figure 1. Gene expression analyses for (A) IL-1β and (B) SOD2. A
significant condition effect was observed for IL-1β and SOD2. Values
are mean±SE. *p<0.05 vs. high-fat-diet (HFD). φp<0.05 vs. regular
diet (CON).



expression among groups. Furthermore, no significant
differences were observed regarding SOD2 gene and protein
expression in the gastrocnemius muscle among the groups.

Mitochondrial quality.
Mitochondrial fusion. MFN2 gene expression in the soleus
muscle was significantly lower in the HFD group
(0.74±0.10) than in the CON group (1.00±0.06; p=0.041;
Figure 2A), while no differences were observed between GG
and CON groups and GG and HFD groups. 

MFN2 protein expression in the soleus muscle was
significantly lower in the GG group (0.43±0.17) than in the
CON (1.00±0.10; p=0.007) and HFD (1.54±0.18; p=0.010;
Figure 3A) groups, while no differences were observed
between CON and HFD groups. No significant differences
were observed in OPA1 protein expression in the soleus
muscle among groups. For the gastrocnemius gene and
protein expression, no significant differences were observed
for MFN2 and OPA1 among the groups.

Mitochondrial fission. DRP1 gene expression in the soleus
muscle was significantly lower in the HFD group
(0.61±0.09) than in the CON group (1.00±0.04; p=0.002;
Figure 2B), while no differences were observed between GG
and CON groups and GG and HFD groups. DRP1 protein
expression in the soleus muscle was significantly lower in
the GG group (0.58±0.16) than that in the HFD group
(1.30±0.06; p=0.019; Figure 3B), while no differences were
observed between the GG and CON groups and HFD and
CON groups. Additionally, no significant differences were
observed in soleus p-DRP protein expression and the ratio of
p-DRP/DRP-1 among the groups. 

For the gastrocnemius gene and protein expression, no
significant differences were observed for DRP1, p-DRP1,
and p-DRP1/DRP-1 among the groups.

Mitophagy. PINK1 gene expression in the soleus muscle was
significantly higher in the GG group (1.30±0.13) than in the
HFD group (0.81±0.16; p=0.034; Figure 2C), while no
differences were observed between GG and CON groups and
CON and HFD groups. No significant differences were
observed among the groups for Parkin expression. The
LC3A protein expression in the soleus muscle was
significantly lower in the GG group (0.38±0.10) than in the
CON (1.00±0.20; p=0.028; Figure 2C) and HFD (1.42±0.21;
p=0.010; Figure 3C) groups, while no differences were
observed between CON and HFD groups. The LC3B protein
expression of in the soleus muscle was significantly lower in
the GG group (0.48±0.17) than in the HFD group
(1.49±0.19; p=0.012; Figure 3D), while no differences were
observed between the HFD and CON groups and GG and
CON groups. No significant differences were observed in
soleus protein expression for PINK1, Parkin, and the ratio of
LC3B/A among the groups. 

The PINK1 gene expression in the gastrocnemius muscle
was significantly greater in the HFD (2.07±0.21; p=0.012)
and GG (2.73±0.81; p=0.006) groups than in the CON group
(1.00±0.10) while no differences were observed between
HFD and GG groups. No significant differences were
observed for Parkin gene expression in the gastrocnemius
muscle among the groups. No significant differences were
observed for PINK1, Parkin, LC3A, and LC3B protein
expression, and the ratio of LC3B/A in the gastrocnemius
muscle among the groups.
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Figure 2. Gene expression analyses for (A) MFN2, (B) DRP1, and (C) PINK1. A significant condition effect was observed for MFN2, DRP1, and
PINK1. Values are mean±SE. *p<0.05 vs. high-fat-diet (HFD).



Muscle CSA. The GG group (7,284.69±70.91 μm2) had
significantly greater CSA than the HFD group
(5,615.59±59.97 μm2; p=0.001), while the CON group
(10,092.88±104.67 μm2) had significantly greater CSA than
the GG (7,284.69±70.91 μm2) and HFD (5,615.59±59.97
μm2; p=0.001; Figure 4) groups. 

Discussion

The major finding of this study is that, in the soleus muscle,
diabetic rats (HFD) had increased levels of the pro-
inflammatory cytokine (IL-1β), decreased oxidative capacity
(SOD2), fusion (MFN2), and fission (DRP1) transcriptional
activity when compared to non-diabetic rats (CON).
However, supplementation of their diet with GGOH (GG)
resulted in increased mitophagy (PINK1) transcriptional
activity, decreased levels of fusion (MFN2), fission (DRP1),
and mitophagy (LC3A, LC3B) proteins compared to those in
the HFD group. Concomitantly, the GG group had a greater
soleus CSA than the HFD group; however, CSA in the GG
group was still smaller than that in the CON group. These
findings suggest that GGOH supplementation may have an
integral role in preserving muscle mass which could, at least
partly, be due to the attenuation of inflammation and
favorable mitochondrial dynamics. 

Diabetes is characterized by insulin resistance and
hyperglycemia, which are implicated with chronic
inflammation (31) and oxidative stress (32). In the current
study, diabetic rats (HFD) had higher expression of IL-1β (in

gastrocnemius and soleus) and lower mitochondria-specific
SOD2 genes in the soleus muscle than control rats (CON)
with no difference in IL-6 and TNF-α. These suggested that
8-week high fat diet with STZ was sufficient to promote
inflammatory response and impair mitochondrial oxidative
capacity in the soleus muscle. In accordance with our results,
a greater IL-1β gene expression was observed in myoblasts
from T2D individuals (33) and the soleus muscle from a
T2D (34) and insulin-resistance (35) mouse models with no
differences in IL-6 and TNF-α (33). For SOD2, despite the
different measurement sites [i.e., spinal cord (36)], our result
is consistent with that in mice fed a high-fat diet (36).
However, SOD2 protein content was decreased in the
gastrocnemius muscle of type 1 diabetic (T1D) rats (37). The
discordance result between Pottecher et al. (2018) and ours
could be due to the muscle (gastrocnemius vs. soleus), model
(T1D vs. T2D), and STZ dose (65 mg/kg vs. 35 mg/kg) (37).
The transcription factor Nuclear Factor-Kappa B (NF-ĸB)
modulates gene expression of many cellular processes, e.g.,
inflammation and oxidative stress (38). It has been well
elucidated that NF-ĸB regulates the transcriptional activity
for IL-1β, IL-6, and TNF-α. In addition, NF-ĸB-induced p53
has been shown to suppress SOD2 transcription activity (39).
It is important to note that although one-way ANOVA results
revealed no difference in NF-ĸB among groups since IL-1β
was different between HFD and CON groups, a secondary
analysis using an independent t-test was conducted. Results
showed that NF-ĸB was higher in the HFD group than in the
CON group, which could partly explain the greater IL-1β
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Figure 3. Protein expression analyses for (A) MFN2, (B) DRP1, (C) LC3A & LC3B. Protein expression analysis [regular diet (CON): n=7; high-
fat-diet (HFD): n=7; GG: n=7] data were normalized to GAPDH. A significant condition effect was observed for MFN2, DRP1, LC3A, and LC3B.
The western blots display an example of protein expression for MFN2, DRP1, LC3A & LC3B, and the corresponding GAPDH in CON, HFD, and
GG groups of rats. Values are mean±SE. #p<0.05 vs. GG. 



and lower SOD2 in the HFD group than in the CON group.
Previously, Carlsen et al. (2009) had shown that mice fed
with a high-fat diet (similar nutritional contents compared to
the current high-fat diet) had a higher whole body NF-ĸB
activity than mice fed with a low-fat diet (40). In addition,
compared to healthy adults, insulin-resistant adults had
higher NF-ĸB activity in the skeletal muscle (41). Together,
these results might, at least partly, suggest that the NF-ĸB
signaling cascade could mediate high IL-1β and low SOD2
in the HFD group. 

Emerging evidence has demonstrated that mitochondrial
fusion (MFN2 and OPA1) and fission (DRP1) are
dysregulated in T2D model (3) and could contribute to
muscle atrophy (6, 8, 42, 43). Regarding fusion and fission,
the diabetic rats had lower mitochondrial fusion (lower
MFN2) and fission (lower DRP1) transcriptional capacity
than the control rats. Interestingly, when a high-fat diet was
supplemented with GGOH (GG), no changes were observed
for transcriptional capacity; however, MFN2 and total DRP1
protein levels were lower in the HFD group and the CON
group, with no change in DRP1 activational state (no
difference in the ratio between p-DRP1Ser637 and total
DRP1). Our results for MFN2 and OPA1 were consistent
with those of previous studies. Previous results have
demonstrated that MFN2 gene or protein expression was
reduced in skeletal muscle of obese mice fed a high-fat diet
(15), newly diagnosed diabetic subjects (44), and type 2
obese and lean diabetic individuals (13). Additionally, no
differences were observed in OPA1 protein expression in
obese mice fed a high-fat diet than in mice fed a normal diet
(15). Despite the similar role of MFN2 and OPA1 in
mitochondrial fusion, it has been shown that MFN is
essential for fusion as no OMM fusion was observed in

MFN-null cells, while in OPA1-null cells partial fusion was
observed (45). Although it is not uncommon, our findings
regarding MFN2 protein expression were not consistent with
the gene data. The discordance between gene and protein
expression could be due to the complicated post-translational
and variation in in vivo protein half-life (46).

In contrast, our gene and protein results for DRP1 are
inconsistent with those of others showing an increase in total
DRP1 protein in diabetic individuals and rodent models (15,
47, 48). Nevertheless, these studies (15, 48) did not assess the
DRP1 activational state, which is a better indication of
mitochondrial fission than total DRP1. Interestingly, when
mice over-expressed DRP1, they experienced a severe
reduction in muscle mass in both the soleus and
gastrocnemius muscles, suggesting that DRP1 could be
critical in maintaining skeletal muscle CSA (43). The
decrease in fusion indicated a reduction in mitochondrial
dynamics and has been implicated in muscle mass loss (6, 8,
42, 43). The decreased fusion and fission were previously
observed during cellular aging (49). Rather than considering
it as a negative physiological change, Figge et al. suggested
that when mitochondria were damaged and lost their function
due to oxidative stress, the rate of fusion and fission could be
reduced as an adaptative measure to prolong cellular function
(50). Thus, the greater CSA in the GG group than in the HFD
group might, at least partly, be explained by the
mitochondria’s adaptative response to a high-fat diet. 

Fragmented mitochondria must be removed via
PINK1/Parkin-mediated mitophagy (4). Otherwise,
increased accumulation of fragmented mitochondria could
increase ROS and further add to the inflammatory state
commonly observed in diabetic models (10). In contrast to
previous studies that observed a decrease in PINK1 and
Parkin compared to control (17, 44, 51), our results showed
that PINK1 and Parkin were not different between the HFD
and CON groups. Interestingly, with GGOH
supplementation (GG), the transcript abundance for PINK1
was higher than that in the HFD group and no changes were
observed in PINK1 protein and Parkin gene and protein
expression. The discordance in the PINK1 gene and protein
could potentially be due to the rate of PINK1 protein
degradation when the mitochondrial membrane potential is
maintained (52). PINK1 phosphorylation is essential for the
recruitment and activation of Parkin (53); hence, the
absence of changes in PINK1 protein did not allow for
activation and recruitment of the Parkin protein.
Additionally, LC3A/B can also selectively remove damaged
mitochondria. The LC3A protein undergoes lipidation and
forms LC3B protein (54), and an increase in LC3B is
indicative of autophagosome formation (55). Our results
showed no difference between CON and HFD groups,
whereas the GG group had lower LC3A and LC3B protein
expression than the HFD and CON groups. Previously, it
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Figure 4. Cross-sectional area (CSA) analyses for soleus muscle of rats.
For CSA analysis [regular diet (CON): n=7; high-fat-diet (HFD): n=7;
GG: n=7), 100 muscle fibers from each rat (n=700 muscle fibers) were
analyzed. A significant condition effect was observed. Values are
mean±SE. $p<0.05 vs. GG and HFD groups. *p<0.05 vs. HFD group. 



has been demonstrated that skeletal muscle LC3B was
lower, and LC3A trended to be lower in T2D patients (16).
With GGOH, the reduction in LC3A and LC3B could
suggest an overall greater rate of LC3A lipidation (forming
LC3B) and LC3B degradation. Therefore, these changes
could improve the clearance of damaged mitochondria in the
GG group. The inhibition of overall clearance of damaged
mitochondria can reduce muscle mass and is therefore
essential for preventing atrophy (56). 

In this study, GGOH appeared to mitigate the decrease in
soleus muscle CSA observed in HFD; but it was still smaller
than that in the CON group. The potential mechanism of
effects of GGOH on the anti-inflammatory properties could
be through improving the mitochondrial quality (reduced
total DRP1, LC3A, and LC3B protein expression). Studies
have revealed that over-expression of DRP1 and inhibition
of damaged mitochondria clearance can reduce skeletal
muscle size (43, 56). This could suggest that GGOH may
have a protective role in preserving soleus muscle CSA in
diabetic rats, at least partly, due to the decrease in
mitochondrial fission (DRP1) and improved autophagy
(LC3A and LC3B), which could prevent excessive
mitochondrial fragmentation leading to mitophagy to clear
out the damaged mitochondria. 

The lack of differences in fission and fusion markers
between HFD and CON groups was inconsistent with
previous studies (15, 57, 58) and could be related to the
model and duration of feeding (individuals with T2D, human
podocytes, and mice administered HFD for 40 weeks). The
advantage of using the STZ/HFD model was that its
progression to diabetes is similar to that observed in humans
with T2D (59); however, Zucker diabetic fatty rat and db/db
mouse could be a better model for studying the pathogenesis
of diabetes (59). In addition, the HFD/STZ model can result
in sustained hyperglycemia and diabetic symptoms (59);
however, the mitochondrial changes might require a longer
duration to manifest pathogenic symptoms.

In conclusion, GGOH supplementation in diabetic rats
mitigated the CSA reduction, possibly through decreased
mitochondrial fragmentation and a greater rate of
autophagosome degradation. Additionally, GGOH
supplementation also prevented a significant increase in the
levels of the pro-inflammatory cytokine IL-1β and prevented
a decrease in the levels of the antioxidant marker SOD2,
which may have also helped preserve muscle CSA in diabetic
rats. Thus, changes in mitochondrial quality and reduced
inflammation could potentially attenuate the reduction of
muscle CSA in diabetic rats with GGOH supplementation.
Further research is necessary to investigate the effects of
GGOH supplementation on human skeletal muscle regarding
mitochondrial quality and muscle size. GGOH is inexpensive
and could be used in various clinical and orthopedic
conditions susceptible to muscle mass reduction. 
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