Table 5.
Subscale | Model | Features (n) | Validation set | Test set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eye-tracking | Behavioral | Total | Accuracy | Kappa | AUC | TPR | TNR | Accuracy | Kappa | AUC | TPR | TNR | ||
TECA EU | kNN | 12 | 7 | 19 | 0.69 | 0.3 | 0.67 | 0.81 | 0.51 | 0.58 | 0 | 0.44 | 0.75 | 0.25 |
TECA EJ | Random forest | 4 | 10 | 14 | 0.76 | 0.49 | 0.81 | 0.87 | 0.65 | 0.75 | 0.47 | 0.83 | 0.86 | 0.6 |
TECA ES | Random forest | 16 | 1 | 17 | 0.81 | 0.58 | 0.85 | 0.88 | 0.71 | 0.67 | 0.31 | 0.66 | 0.71 | 0.6 |
TECA PT | Random forest | 14 | 5 | 19 | 0.82 | 0.63 | 0.87 | 0.83 | 0.83 | 0.83 | 0.67 | 0.83 | 0.83 | 0.83 |
The number of variables used by each model is divided according to the source (i.e., eye-tracking or behavioral data). The values shown per metric in the validation set are the mean values of the cross-validation iterations. TPR, true positive rate; TNR, true negative rate.