Skip to main content
. 2022 Nov 7;13:993162. doi: 10.3389/fpsyg.2022.993162

Table 5.

Metrics of the best model achieved for each TECA subscale both in the validation and test sets.

Subscale Model Features (n) Validation set Test set
Eye-tracking Behavioral Total Accuracy Kappa AUC TPR TNR Accuracy Kappa AUC TPR TNR
TECA EU kNN 12 7 19 0.69 0.3 0.67 0.81 0.51 0.58 0 0.44 0.75 0.25
TECA EJ Random forest 4 10 14 0.76 0.49 0.81 0.87 0.65 0.75 0.47 0.83 0.86 0.6
TECA ES Random forest 16 1 17 0.81 0.58 0.85 0.88 0.71 0.67 0.31 0.66 0.71 0.6
TECA PT Random forest 14 5 19 0.82 0.63 0.87 0.83 0.83 0.83 0.67 0.83 0.83 0.83

The number of variables used by each model is divided according to the source (i.e., eye-tracking or behavioral data). The values shown per metric in the validation set are the mean values of the cross-validation iterations. TPR, true positive rate; TNR, true negative rate.