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Abstract

We introduce an unsupervised motion-compensated reconstruction scheme for high-resolution 

free-breathing pulmonary MRI. We model the image frames in the time series as the deformed 

version of the 3D template image volume. We assume the deformation maps to be points on 

a smooth manifold in high-dimensional space. Specifically, we model the deformation map at 

each time instant as the output of a CNN-based generator that has the same weight for all 

time-frames, driven by a low-dimensional latent vector. The time series of latent vectors account 

for the dynamics in the dataset, including respiratory motion and bulk motion. The template image 

volume, the parameters of the generator, and the latent vectors are learned directly from the k-t 

space data in an unsupervised fashion. Our experimental results show improved reconstructions 

compared to state-of-the-art methods, especially in the context of bulk motion during the scans.
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1. Introduction

Magnetic resonance imaging (MRI) is an attractive imaging modality for patient groups that 

require serial followup because it does not use ionizing radiation. Ultra-short echo-time MRI 

[1] methods are capable of significantly reducing the T2* losses, mitigating some of the main 

challenges associated with lung MRI. However, MRI is a slow imaging modality, which 

makes it challenging to image moving organs such as the lung. For lung MRI, the respiratory 

motion can be frozen by breath-holds. However, subjects usually are unable to hold their 

breath for a long time, which will significantly limit the achievable spatial resolution and 
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coverage. Besides, there are several patient groups (e.g., patients with chronic obstructive 

pulmonary disease (COPD), pediatric patients, and neonates) who cannot hold their breath 

even for a short duration [2, 3, 4]. For these reasons, some of these patients need to be 

sedated for MRI exams or are often not eligible for MRI scans.

Several gating approaches were introduced to eliminate the need for breath-holding in 

pulmonary MRI [5, 6, 7, 8]. For instance, classical methods (e.g., [9]) rely on respiratory 

bellows or self-gating signals to bin the data to specific phases. Prospective methods 

only acquire the data during a specific respiratory phase, while retrospective methods 

continuously acquire the data but only use the data from a specific phase. Self-gating 

approaches such as XD-GRASP [10] use the information from the central k-space samples 

to estimate the motion signal, which is used to bin the acquired data into several respiratory 

phases. After the binning, a compressed-sensing approach is used to jointly reconstruct 

the phase images (See Fig. 1 (a) for illustration), which is more data efficient than 

traditional binned acquisitions. These approaches are often called motion-resolved methods. 

A challenge with these methods is the potential sensitivity to bulk motion during the scan. 

In particular, the subjects may move abruptly during the scan. Because XD-GRASP and 

similar gating methods rely on low-pass filtering to estimate the pseudo-periodic motion 

signal, the bulk motion effects are often filtered out. In addition, these approaches are 

only able to recover the respiratory phase images, which correspond to the averaged data 

over several minutes, and not the true dynamics. Another challenge associated with the 

motion-resolved scheme is the trade-off between residual aliasing and blurring resulting 

from intra-bin motion. For instance, increasing the number of bins can reduce intra-bin 

motion artifacts. However, this will come at the expense of k-t space data available for each 

bin, which will translate to residual alias artifacts. While manifold approaches [11, 12, 13, 

14], which perform soft-gating as opposed to explicit binning, offer improved trade-offs but 

are also vulnerable to these challenges. These schemes use machine learning algorithms to 

perform soft-binning of the data using the manifold structure of images in the dataset. These 

unsupervised machine learning methods have been shown to offer improved performance 

and robustness to different motion patterns over explicit binning strategies.

Motion compensation (MoCo) is often used to further improve the data efficiency and to 

reduce residual aliasing and noise in the reconstructed images. Many of the approaches 

require a high-resolution reference image. The recovered images are then registered to 

the reference image to obtain the motion fields [15]. Another approach is to estimate the 

motion-maps between the phase images reconstructed by XD-GRASP; the different motion 

phases are registered together and averaged to obtain a MoCo volume [7]. Recently, Zhu et 

al. used a non-linear compressed sensing algorithm to directly recover the MoCo volume 

from the k-t space data, using the deformation maps estimated from XD-GRASP [16]. This 

approach, named iMoCo, is shown to significantly improve the image quality. The main 

challenge with this multi-step strategy (binning based on motion estimation, followed by 

XD-GRASP reconstruction, followed by the final MoCo reconstruction) is the dependence 

of the image quality on the intermediate steps. In particular, this approach inherits the 

sensitivity of XD-GRASP to bulk motion because it is dependent on motion estimates from 

XD-GRASP. For example, when the data is corrupted with a single bulk motion effect, the 

data with bulk motion is removed in [16] to obtain good reconstructions; this approach is 

Zou et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2023 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not readily applicable to settings where there are multiple bulk motion events during the 

acquisition. This multi-step strategy was recently extended to dynamic PET [17]. The main 

distinction of this scheme from [16] is the use of a deep learning algorithm to estimate 

the deformation maps between the different motion phases. The different motion phases are 

registered to a fixed state using a deep network, followed by a reconstruction scheme similar 

to iMoCo [16].

The main focus of this work is to introduce a novel unsupervised deep-learning MoCo 

reconstruction scheme, which can be readily applied for free-breathing pulmonary MRI. 

This method is the generalization of the previous motion-resolved generative manifold 

methods [13, 14] to the MoCo setting; we hence call the proposed approach motion-

compensated smoothness regularization on manifolds (MoCo-SToRM). Unlike [13, 14], 

which assume the images to be on a smooth manifold, we assume that the motion 

deformation maps at different time instants are living on a manifold, parameterized by 

low-dimensional latent vectors. We assume the deformation maps to be the output of a 

convolutional neural network (CNN) based generator, whose inputs are time-dependent 

low-dimensional latent vectors that capture the motion information (See Fig. 1 (b) for 

illustration). The generated deformation maps are used to deform a learned template 

image, which corresponds to the image volume frame in the time series. A multi-channel 

non-uniform Fourier transform (NUFFT) is used to generate the k-space measurements of 

the images. Unlike prior MoCo approaches that use a series of algorithms for binning, 

reconstruction, motion estimation, and reconstruction, we formulate the joint recovery of 

the latent vectors, deformation maps, and the template image directly from the measured 

k-t space data as a single non-linear optimization scheme. The cost function is the squared 

error between the multi-channel Fourier measurements of the image volumes and the actual 

measurements acquired from the specific subject. We note that the deformation maps are 

smooth and are less complex than the images themselves; we expect the proposed scheme to 

be less data-demanding than motion-resolved approaches [10, 13, 14].

The proposed framework, built using modular blocks, is highly explainable. In particular, 

the learned latent vectors capture the intrinsic temporal variability in the time series, 

including respiratory and bulk motion as seen from our experiments. Moreover, the smooth 

deformation maps capture the spatial deformation of the image template and can be 

visualized. More importantly, the reconstructions can be viewed as a movie, allowing one 

to visualize the images at respective time-frames, unlike binning-based approaches that only 

recover the phase images. Unlike current deep-learning strategies that pre-learn the CNN 

parameters from example data, the proposed scheme learns all the parameters from the data 

of the specific subject. We also note that the MoCo approach enables us to minimize the 

trade-off between intra-phase motion and the data available for reconstruction. We do not 

make any assumptions on the latent vectors, which allows it to learn all the motion events 

during the acquisition, including bulk motion, which is challenging for traditional methods.
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2. Methods

2.1. Brief background on motion-resolved and motion-compensated reconstruction

Several self-navigated motion-resolved free-breathing MRI schemes [10, 18], which use 

3D radial ultra-short-echo (UTE) acquisition, were recently introduced for lung imaging. 

These schemes rely on a combination of low-pass filtering and/or clustering to derive the 

self-gating signals, which are used to bin the k-space data into different motion phases. Once 

the data is binned, these schemes (e.g., XD-GRASP [10]) perform the motion-resolved joint 

reconstruction of the phases by solving the following:

F* = arg min
F

∥ A(F) − B ∥2
2 + λs ∥ ΨF ∥1 + λtTV(F) .

The first term is the data consistency term that compares the multi-channel measurements 

of the phase images F = {f1, ⋯, fN} with the binned data B = {b1, ⋯, bN}. Here N is the 

number of bins and hence the number phases in the XD-GRASP reconstruction. The second 

term is a spatial sparsity ℓ1-wavelet penalty term, in which Ψ is the wavelet transform. 

The third term is the total variation penalty along the motion phases. The above scheme is 

usually called XD-GRASP-type motion-resolved reconstruction, which is illustrated in Fig. 

1 (a).

Deep manifold-based approaches [13, 19] offer an alternate route for motion-resolved 

recovery. In particular, the images in the time series are modeled as ft = θ(zt), where 

θ is a deep CNN generator that is shared across different image frames. The parameters 

of the generator denoted by θ and the low-dimensional latent vectors zt are learned such 

that the cost function ∑t AtGθ zt − bt
2 is minimized. Here, t denotes the forward model 

corresponding to the tth image frame, and bt are the corresponding k-space measurements. 

The proposed approach is a generalization of these deep manifold models [13, 19] to the 

MoCo setting.

Many of the early MoCo methods rely on a high-resolution static reference image [15]. 

Recent approaches [7, 16] rely on motion-resolved XD-GRASP reconstructions. Once the 

motion-resolved reconstructions are obtained, one of the phases (usually the exhalation 

phase) will be chosen as the reference. Then the other motion phases are registered to 

the reference phase to obtain the deformations Φ1, ..Φp. The iMoCo approach solves the 

following optimization scheme to obtain the MoCo reconstruction fimoco:

fimoco* = arg  min
fimoco

∑
p = 1

N
At Φp fimoco − bp 2

2 + λTGV fimoco .

The first term is the data consistency term, and the second is a spatial total generalized 

variation sparsity regularizer [20].
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2.2. Proposed approach

In this work, we extend the motion-resolved deep manifold methods [13, 19] to the 

MoCo reconstruction setting. The proposed framework is a end-to-end self-supervised deep-

learning algorithm involving explainable learning modules. We model the image volumes ft 

in the time series as the deformed versions of a single image template f:

ft(x, y, z) = f x − ϕx(t), y − ϕy(t), z − ϕz(t) ≔ D(f, ϕ(t)) . (1)

Here ϕ(t) = {ϕx(t), ϕy(t), ϕz(t)} is the motion/deformation map at the time instant t. We 

implement  as a differentiable interpolation layer.

We propose to jointly estimate the deformation maps and the single image template f 
directly from the k-t space data. We note that it is impossible for us to acquire the k-space 

data at the Nyquist–Shannon sampling rate. Therefore, the joint estimation problem is highly 

ill-posed. In order to regularize the deformation maps, we use the manifold assumption. 

In other words, we assume that the deformation map for each image frame ft is living 

on a smooth manifold, parameterized by low-dimensional latent vectors zt, t = 1,···M that 

capture the dynamics (e.g., respiratory motion, bulk motion in lung imaging). We model the 

non-linear mapping between the low-dimensional latent vectors and the high-dimensional 

deformation maps by a CNN generator:

ϕ(t) = Gθ zt , (2)

whose input is the low-dimensional latent vector zt ∈ ℝd. As the dominant motion in free-

breathing lung imaging is the respiratory motion, we set d = 1 in this work; we will consider 

higher dimensional latent space in our future work. Combining (1) and (2), each image 

frame ft in the time series is modeled as:

ft(r) = D(f, Gθ zt
ϕ(t)

) .
(3)

Here, r = (x, y, z) is the spatial coordinate. See Fig. 1.(b) for an illustration.

We note that the generated image at each time instant t is dependent on the image template 

f, the parameters of the deep CNN generator θ, and the low-dimensional latent vectors z = 

[z1, .., zM]. Here, M is the number of image frames in the time series. When golden-angle or 

bit-reversed radial acquisitions are used, M can be a user-defined parameter. We propose to 

jointly solve for the above unknowns directly from the k-t space data of the specific subjects 

as the optimization problem:

C(z, θ, f) = ∑
t = 1

M
At ft − bt

2 + λ1 ∣ ∇tz ℓ1 + λ2 ∇rf ℓ1, (4)

where ft is related to the static image f by (3). Here, t are the forward operators that 

are performed on each of the time points. We implement t as multi-channel NUFFT 

[21] operators using the k-space trajectory at the tth time instant using the SigPy package 
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[22]. bt are the multi-channel k-space measurements acquired from the subject. The second 

term in (4) is a smoothness penalty on the latent vector that captures the dynamics (e.g., 

respiratory and/or bulk motion). If this term is not added, the learned latent vectors will learn 

high-frequency oscillations. To minimize this risk, we added a total-variation penalty on the 

latent vector z along the time direction to encourage the latent vectors to learn piecewise 

smooth motion. The last term in (4) is the spatial total variation penalty on the static image, 

which enables us to further reduce alias artifacts in the learned static image.

The proposed self-supervised scheme offers several benefits. First of all, the reconstruction 

relies only on the undersampled data acquired from the specific subject. Unlike most deep-

learning strategies, the proposed framework does not require fully sampled training datasets, 

which are not available in our setting, to train the networks. Secondly, the proposed scheme 

does not require physiological monitors such as respiratory belts or dedicated k-space 

navigators. It also eliminates the need for band-pass filtering or clustering to estimate the 

phase information, which will filter out bulk motion. Finally, unlike binned approaches that 

recover average images over the acquisition duration within respective respiratory phases, 

the proposed scheme enables the recovery of the natural dynamics of the lung.

2.3. Approaches to minimize computational complexity

We use ADAM optimization [23] with a batch size of one time-frame to find the optimal 

z, θ and f. The small memory footprint enables us to use this scheme for high-resolution 

3D+time problems. The network and optimization scheme was implemented in PyTorch. 

The motion generator is implemented using an eight-layer network. The first seven layers 

are 3D convolutional layers with 200 features per layer. The last layer is an up-sampling 

layer, which uses tri-linear interpolation to interpolate the deformation maps from lower 

resolution to high resolution. The final interpolation step allows us to account for the prior 

knowledge that the deformation maps are smooth functions. ReLU activation function [24] 

is used for all the convolutional layers.

Directly solving the above optimization problem (4) is computationally expensive, 

especially when the image resolution is high. To minimize the computational complexity, we 

use a progressive strategy. In particular, we first solve for (4) for very low-resolution images 

using the corresponding region in the central k-t space. These latent vectors, motion fields, 

and the images are used to initialize the network at a higher spatial resolution. We use two 

progressive steps to refine the resolution, until the final resolution is reached. We observe 

that this progressive strategy significantly improves the convergence rate. In particular, few 

iterations are needed at the highest resolution, compared to the setting where the parameters 

of the motion network and the image are initialized randomly.

The above joint optimization strategy offers good estimates of the latent vectors with 

few iterations, even at the lowest resolution. By contrast, the stochastic gradients with 

a batch size of one can result in low convergence rates for the static image f and the 

CNN parameters. To further accelerate the convergence rate, we additionally use a binning 

strategy similar to motion-resolved schemes shown in Fig. 1.(a), assuming z to be fixed. We 

bin the latent vector to P phases, based on the latent vectors we estimated. We use 25 phases 

in the adult subjects with less extensive motion and 150 in the neonatal intensive care unit 
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(NICU) patient with extensive motion. This approach allows us to bin the data to different 

phases. We update θ and f using the optimization strategy:

C(θ, f) = ∑
p = 1

P
∥ Ap D f, Gθ zp

fp

− bp ∥2 + λ2 ∇rf ℓ1, (5)

Here, zp is the latent vector at the pth bin, and ϕp = θ(zp) is the motion vector for the pth 

bin. Here fp is the image in the pth bin, obtained by deforming f with ϕp.

We only use the above binning-based optimization in (5) at the highest resolution level. Note 

that (5) only solves for θ and f, and not z. We hence alternate between (5) and (4) at the 

highest resolution.

3. Datasets and evaluation

3.1. Experimental datasets

The datasets used in the experiments in this work were acquired using an optimized 3D 

UTE sequence with variable-density readouts to oversample the k-space center [25]. We 

used four datasets acquired from two adult subjects. Two of them are from a healthy subject 

(pre-contrast and post-contrast) and another two are from a fibrotic subject (pre-contrast 

and post-contrast). We also used one dataset acquired from a female subject with severe 

ronchopulmonary dysplasia (BPD), who was admitted to the NICU. The gestational age of 

the patient at birth is 24 weeks, and the MRI is prescribed at the chronological age of 15 

weeks and 3 days. The weight of the patient at MRI is 3.18 Kg.

The datasets from the healthy subject were acquired on a 1.5T GE scanner using 8 coils. 

The variable-density readouts help retain signal-to-noise ratio (SNR), and oversampling 

reduces aliasing artifacts. A bit-reversed ordering was used during the data acquisition. The 

prescribed field of view (FOV) = 32 × 32 × 32 cm3. The matrix size is 256×256×256. 

The data were acquired with 90K radial spokes with TR≈ 3.2 ms and 655 samples/readout, 

corresponding to an approximately five-minute acquisition.

The datasets from the diseased subject were acquired on a 3T GE scanner using 32 coils. 

The prescribed FOV = 32×32×32 cm3. The matrix size is 256×256×256. The data were 

acquired with 91K radial spokes with TR≈ 2.8 ms and 655 samples/readout, corresponding 

to an approximately four-minute acquisition. When we were processing the datasets with 

32 coils, we used a PCA-based coil combination [26] using SVD to keep only eight virtual 

coils.

The dataset from the neonatal subject was acquired on a 1.5T small footprint MRI scanner 

[3] located in the NICU. The data was acquired using the built-in body coil, which translates 

to poor SNR compared to the adult scans. In addition, the scan is made challenging because 

of the extensive bulk motion by the subject during the scan. For this dataset, the prescribed 

FOV = 18×18×18 cm3. The matrix size is 256×256×256. The data was acquired with 200K 

radial spokes with TR≈ 5 ms and 1013 samples/readout, corresponding to an approximately 

16-minute acquisition.
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This research study was conducted using human subject data. Approval was granted by the 

Ethics Committees of the institutions where the data was acquired.

3.2. Numerical Phantom to validate MoCo-SToRM

We note that we do not have accurate ground truth datasets to evaluate the quantitative 

accuracy of the proposed scheme and its potential impact to bulk motion. We hence 

constructed a high-resolution numerical phantom using the XD-GRASP and iMoCo 

reconstructions of the pre-contrast dataset from a healthy subject. Specifically, we registered 

the XD-GRASP exhalation phase to the inhalation phase to obtain the deformation maps. 

Then we modulated the deformation maps by a periodic triangular function with a specific 

frequency and a DC off-set to simulate the motion from the exhalation phase to the 

inhalation phase. To study the impact of bulk motion, we also consider additional random 

translational motion (move about 2 – 5 pixels), at random time points as shown in Fig. 3. 

We deform the static iMoCo reconstruction with the above deformation maps to generate the 

high-resolution images at different time points. The multi-channel NUFFT of these images 

were used as the measurements, with an additive white Gaussian noise of 0.5%. The creation 

of the simulation data is illustrated in Fig. 2.

3.3. Figures of merit for quantitative evaluation

For image quality comparisons, we compare the proposed MoCo-SToRM reconstruction 

with XD-GRASP and iMoCo. To quantitatively compare the image quality, we use three 

images metrics in this work.

• Diaphragm maximum derivative (DMD) [16, 27]: the DMD will be used to 

measure the sharpness of the lung-liver diaphragm. It is defined as:

DMD = Max(∂I)
Mean Iliver

,

where Max(∂I) is the maximum intensity change between the lung–liver 

interface, which is computed by choosing the maximum value of the image 

gradient. Mean(Iliver) is the mean intensity in the chosen liver region. A higher 

DMD implies sharper edges.

• Signal-to-noise ratio (SNR) [28, 29, 30]: The SNR is computed as

SNR = 20 log
μs
σn

,

where μs is the mean of the intensity of the chosen region of interest and σn is 

the standard deviation of the intensity of a chosen noise region. A higher SNR 

usually means better image quality. In our study, we manually choose the regions 

of interest.

• Contrast-to-noise ratio (CNR) [16, 31]: The CNR is computed as
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CNR = 20 log
μA − μB

σn
,

where μA and μB are the mean of the intensity of two regions within the region of 

interest and σn is the standard deviation of the intensity of a chosen noise region. 

The higher CNR usually means better image quality. In our study, we manually 

choose the regions of interest.

4. Results

4.1. Numerical simulation experiments

The results of the simulation study are shown in Fig. 3. In this simulation study, we 

investigate the impact of bulk motion events. Specifically, we create the simulation data with 

no, two, four, and ten bulk motion events. We quantitatively compare the reconstructions 

using the metrics of PSNR, SSIM, relative error of the reconstruction, and relative error of 

the deformation maps. The quantitative results of the simulation study are summarized in 

Fig. 3 (a). In (b) and (c), we show some results of the simulation study. We show the learned 

latent vectors, the time profiles of the reconstructed image volumes, and the deformation 

maps. The comparisons of the reconstructions are also shown in the figure. From the 

simulation study, we see that the proposed MoCo-SToRM approach works reasonably when 

there are four bulk motion events. By contrast, when there are ten bulk motion events, the 

performance of the proposed scheme degrades in a graceful fashion. In particular, the limited 

number of radial k-space spokes translates to imperfect estimation of motion, which in turn 

translates to blurry reconstructions.

4.2. Experimental datasets

In Fig. 4, we show the learned latent vectors, time profiles, and example estimated 

deformation maps and corresponding time profiles from the pre-contrast dataset from the 

healthy subject. We show the estimated latent vectors from the first 200 frames in (a). 

We also show the time profile of the reconstructed images in (b) and the time profile of 

the deformation maps in (c), corresponding to the blue lines in the images. From the two 

profiles, we see that the motion patterns coincide with the learned latent vectors. In (d) we 

show the estimated deformation maps from two time points, indicated by red and green dots 

in (a), corresponding to the inhalation phase and the exhalation phase. The results show that 

the latent vectors closely capture the dynamics of the motion.

4.3. Comparison with state-of-the-art methods

In this section, we compare the results of the proposed scheme with XD-GRASP and 

iMoCo. In Fig. 5, we show the visual comparisons of the methods on post-contrast 

datasets. From Fig. 5, we observe that the MoCo-SToRM reconstructions can reduce 

the noise and capture more details when compared to the motion-resolved XD-GRASP 

reconstructions. Furthermore, the MoCo-SToRM reconstructions are less blurred than those 

of the motion-compensated iMoCo reconstructions. We note that the post-contrast dataset 
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from the diseased subject had a bulk motion event (see Fig. 7), which translates to blurred 

iMoCo reconstructions.

The quantitative comparison of the proposed scheme with the competing methods on four 

datasets (two from healthy adult subjects and two from diseased adult subjects) are shown in 

Fig. 6. We first measure the DMD on 15 sagittal slices in each dataset, and the quantitative 

results are shown in Fig. 6 (a). From the DMD results, we see that the proposed MoCo-

SToRM scheme is able provide comparable results. In particular, the motion-compensated 

methods (i-MoCO and MoCO-SToRM) are observed to yield marginally higher DMD than 

XD-GRASP, implying reduced blurring, as shown in Fig. 6 (a).

In addition to DMD, we also report the SNR and CNR of the aortic arch and lung 

parenchyma region, as shown in Fig. 6 (b). We see that the proposed MoCo-SToRM results 

are comparable with the results obtained from the motion-compensated iMoCo.

4.4. Impact of bulk motion

The acquisition time in pulmonary MRI is around four minutes for adult subjects and around 

16 minutes for NICU subjects. The relatively long scan time makes current approaches 

vulnerable to bulk motion artifacts, especially during the imaging of diseased and pediatric 

patients. If they are not compensated, these bulk motion errors translate to residual blurring.

In cases with significant bulk motion, existing methods use additional image-based 

approaches to detect and reject sections of data with bulk motion [16]. These approaches 

are readily applicable to cases with very few bulk motion events; for instance, a case with 

a single bulk motion event was considered in [16]. If multiple events are in the dataset, 

this approach may severely restrict the available k-t space data and hence translate to 

significantly degraded image quality.

An advantage of the proposed MoCo-SToRM scheme is its ability to directly account for 

bulk motion during the scan. In the proposed MoCo-SToRM scheme, the latent vectors and 

the CNN-based generator have the ability to capture the bulk motion in the data and account 

for it during the reconstruction. In particular, we observe sudden jumps in the learned latent 

vectors. The non-linear nature of the learned generator allows the generation of deformation 

maps for each motion state, depending on the value of the latent vectors.

4.4.1. Adult study: In the post-contrast dataset acquired from a diseased subject, we 

detected one bulk motion, which is shown in Fig. 7. In Fig. 7 (a), we show the latent vectors 

that are learned using MoCo-SToRM. As we mentioned before, the sudden jump in the 

latent vectors indicates the bulk motion. We highlight two time regions, one without bulk 

motion (red box) and one with bulk motion (green box). We also show the time profiles 

of the yellow line indicated in Fig. 7 (a). From the plots of the time profiles, we see that 

when the latent vectors have no sudden jump, then no bulk motion can be seen. However, 

when sudden jump happens in the latent vectors, we clearly see a bulk motion event from 

the time profile. In (I) of Fig. 7 (a), we zoomed the reconstructed image corresponding 

to the yellow cross shown in the latent vectors, and in (II) of Fig. 7 (a), we zoomed the 
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reconstructed image corresponding to the purple cross shown in the latent vectors. From the 

red line marker, we can see that the subject moved the shoulder during the scan.

In Fig. 7 (b), we also show the deformation maps estimated by the proposed scheme at four 

different time points indicated by the brown, yellow, blue, and purple crosses in Fig. 7 (a). 

From the red ellipses in the images, we see that the subject moved the shoulder during the 

scan. The deformation map will be very different from the deformation maps when there is 

no bulk motion. In Fig. 5 (b), we compared the reconstructions from the proposed scheme 

and the iMoCo and XD-GRASP reconstructions. From the figure, we see that the proposed 

scheme is able to deal with bulk motion and offer improved reconstructions.

4.4.2. Feasibility study in neonatal imaging: Neonatal subjects often suffer from 

several developmental lung disorders; the non-ionizing nature of MRI radiation makes it 

the ideal modality to image the lung of these subjects [2, 3, 4]. A low-field, low-footprint 

MRI system was considered in [2, 4]. By imaging the neonatal subjects within the NICU, 

this approach minimizes the risk of infection. The subject was imaged using a body coil, 

which offers limited SNR compared to the multi-coil array used in the adult setting. One 

of the main challenges with neonatal MRI is bulk motion, especially when the subjects 

are awake. In this work, we study the feasibility of the proposed scheme to offer motion 

compensation in a challenging subject with extensive bulk motion, which was challenging 

for the conventional methods. We show the results in Fig. 8. In Fig. 8.(a), we show the 

motion signal (latent vectors) estimated from the proposed MoCo-SToRM scheme. We 

note that there are several discontinuities in the latent signal, which correspond to bulk 

motion events. Two of the bulk motion events are highlighted in the red and purple boxes, 

respectively. Besides the two examples of bulk motion, we also zoom into a section with no 

bulk motion. We also show the reconstructed images corresponding to the marked positions 

in the latent vectors in each of the sub-series in the respective boxes. The bulk motions in 

the two examples can be clearly seen from the boundary of the body, denoted by the red 

dotted curve. Furthermore, we see that when the patient was in different positions, the shape 

of the lung was different, as indicated by the yellow dotted curves. In Fig. 8.(b), we show 

the comparisons with iMoCo and XD-GRASP based on two slices from the axial view. From 

the figure, we see that MoCo-SToRM is able to reduce the motion artifacts, as indicated by 

the red arrows in the figures. Furthermore, we can see that the boundaries in iMoCo and 

XD-GRASP are blurred out due to bulk motions, as shown by the yellow arrows. However, 

MoCo-SToRM is able to reconstruct the boundaries. Also, we can see that some details in 

the lung region are captured in the MoCo-SToRM reconstructions, as indicated by the green 

arrows. Fig. 8.(c) shows the sagittal view of the comparisons.

4.5. Maximum intensity projections of the reconstructions

In this section, we show some results that we obtained from the proposed MoCo-SToRM 

reconstructions. In Fig. 9, we show the reconstructions obtained from two post-contrast 

datasets, one from a healthy subject and anther from a diseased subject. Maximum intensity 

projection (MIP) [32] is used to generate the results. MIP is known to have the benefit that 

the vascular structures can be clearly seen as tubular and branching structures in MIP images 

[33]. By showing the three views for the reconstruction using MIP, the lung structure and 
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vascular structures for each subject can be seen in a direct way, which can be readily used by 

doctors in clinics. For each sub-figure in Fig. 9, 20 slices are used for MIP images.

More results, including some movies on the reconstructions and showcases of the bulk 

motions in both the adult subject and the neonatal subject, can be found on our website: 

https://sites.google.com/view/qing-zou/blogs/moco-storm.

5. Discussion & Conclusion

In this work, we proposed an unsupervised motion-compensated scheme using smoothness 

regularization on manifolds for the reconstruction of high-resolution free-breathing lung 

MRI. The proposed algorithm jointly estimates the latent vectors that capture the motion 

dynamics, the corresponding deformation maps, and the reconstructed motion-compensated 

images from the raw k-t space data of each subject. Unlike current motion-resolved 

strategies, the proposed scheme is more robust to bulk motion events during the scan, which 

translates to less blurred reconstructions in datasets with extensive motion. The proposed 

approach may be applicable to pediatric and neonatal subjects that are often challenging to 

image using traditional approaches.

In this study, we restricted our attention to 1-D latent vectors. In our future work, we will 

consider its extension using higher-dimensional latent space, which will allow improved 

robustness to different motion components, including cardiac motion and bulk motion. The 

challenge with the direct extension of the proposed scheme to this setting is the increased 

computational complexity.

A difference between the proposed scheme and the motion-resolved reconstruction is that 

rather than just resolve some phases, the proposed scheme is able to get the temporal-

resolved reconstruction with 0.1s temporal resolution. This means that we are able to 

have more intermediate motion states (~ 25 states) between the exhalation state and the 

inhalation state. The proposed MoCo-SToRM scheme is also able to deal with bulk motions 

as discussed in the previous section. This offers the possibility of using the proposed scheme 

for patient groups such as pediatric patients.
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Figure 1. 
Illustration of XD-GRASP and MoCo-SToRM algorithms. (a) XD-GRASP uses the central 

k-t space data to estimate the motion signals and bins the k-t space data into several motion 

phases. The binned data are then used for the recovery of the images using total variation 

and wavelet regularization. (b) The proposed MoCo-SToRM scheme jointly learns the 

deformation maps ϕt and the static image template f from the k-t space data. To regularize 

the deformation maps, we model ϕt = θ(zt) as the outputs of a deep CNN generator θ 
whose weights are denoted by θ. The inputs of the generator are the low-dimensional (e.g., 

1-D in lung MRI) latent vectors. The parameters of the CNN generator θ, the latent vectors 

zt, and the template f are jointly estimated from the data. The loss is the mean square 

error between the actual measurements and the multi-channel measurements of the deformed 

images ft.
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Figure 2. 
Illustration of the numerical Phantom data generation. We create the simulation data using 

the reconstructions from XD-GRASP and iMoCo following the process shown in the figure.
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Figure 3. 
Results of the numerical simulation study. The proposed MoCo-SToRM scheme is applied 

on the simulation data, where we simulated the data with no, two, four, and ten bulk 

motions. The quantitative results of the simulation are shown in (a). In (b) and (c), we show 

the learned latent vectors, the time profiles of the image volumes, the time profiles of the 

deformation maps, and the comparison of the reconstructions for the four cases. We note 

that the proposed scheme can offer reliable estimates when there are few bulk motion events. 

When the number of bulk motion events increases, the amount of k-t space data available in 

each bulk motion state decreases. The reduced data translates to higher motion errors, which 

results in increased reconstruction error.
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Figure 4. 
Illustration of the learned quantities from the pre-contrast healthy volunteer. In (a), we show 

the estimated latent vectors corresponding to the first 200 frames, while (b) and (c) show 

the time profile of the reconstructed image volumes and the deformation maps, respectively. 

From the three figures on the left, we see that the motion patterns in the time profiles 

closely match the learned latent vectors. In (d), we show the deformation maps in the three 

directions, corresponding to the time frames marked by red and green cross marks in the 

latent vectors in (a).
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Figure 5. 
Visual comparison of the reconstructions from different methods on two post-contrast 

datasets. In (a), we show the results from the healthy subject. Two regions from both the 

sagittal view are shown in the figure. In (b), we show the results obtained from the diseased 

subject. From the figure, we can see that the proposed MoCo-SToRM scheme is able to 

reduce the noise and blur when compared to the competing methods.
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Figure 6. 
Results of quantitative comparison. (a) shows the DMD results, from which we can see that 

the proposed MoCo-SToRM scheme is able to provide comparable DMD results to those of 

the iMoCo scheme. (b) shows the results of the SNR and CNR comparison. We can see from 

the figure that the proposed MoCo-SToRM results are comparable with those obtained from 

the motion-compensated iMoCo scheme.
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Figure 7. 
Impact of bulk motion. (a) shows the latent vectors estimated from the proposed scheme, 

which are zoomed to regions without bulk motion (I) and regions with bulk motion (II), 

captured by the discontinuity in the latent vectors. We plot the time profiles at the position 

marked by the yellow line in the image shown in the middle row. From the plots of the time 

profiles, we see the subject moved his shoulder during the scan, evidenced by the rightmost 

reconstructed frame in (I) and (II), respectively; the red lines are in the same location, 

indicating motion in the shoulder. We also show show four exemplar deformation maps 

corresponding to four time points marked in (I) and (II). We note that the deformation maps 

with yellow and blue borders corresponding to the local minima of the latent vectors are 

similar. By contrast, the local maxima of the map with the purple border shows significant 

deviation from the one with the red border.
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Figure 8. 
Study of the neonatal subject in the NICU. (a) shows the latent vectors estimated from 

the proposed scheme, and three parts are zoomed to study the bulk motions. In (b) and 

(c), we showed the comparison of the reconstructions from different methods based on the 

two different views. We can see that iMoCo and XD-GRASP suffered from heavy motion 

artifacts and failed to capture any details in the lung.
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Figure 9. 
Showcase of the proposed scheme on the post-contrast data from both the healthy subject 

and the fibrotic subject. Maximum intensity projection of three views are shown for each 

dataset.
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