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Abstract

This review identifies frequent design and analysis errors in aging and senescence research and discusses best practices in study design, 
statistical methods, analyses, and interpretation. Recommendations are offered for how to avoid these problems. The following issues are 
addressed: (a) errors in randomization, (b) errors related to testing within-group instead of between-group differences, (c) failing to account for 
clustering, (d) failing to consider interference effects, (e) standardizing metrics of effect size, (f) maximum life-span testing, (g) testing for effects 
beyond the mean, (h) tests for power and sample size, (i) compression of morbidity versus survival curve squaring, and (j) other hot topics, 
including modeling high-dimensional data and complex relationships and assessing model assumptions and biases. We hope that bringing 
increased awareness of these topics to the scientific community will emphasize the importance of employing sound statistical practices in all 
aspects of aging and senescence research.

Keywords:   Geroscience, Methodologies, Reproducibility

Profound concerns about the proper use of statistical methods have 
been the subject of a large scientific literature and many profes-
sional discussions. Most notably, in 2016, the American Statistical 
Association, for the first time in its history, made a formal state-
ment on statistical practice: “The validity of scientific conclusions, 
including their reproducibility, depends on more than the statistical 

methods themselves. Appropriately chosen techniques, properly 
conducted analyses and correct interpretation of statistical results 
also play a key role in ensuring that conclusions are sound and that 
uncertainty surrounding them is represented properly.” It is note-
worthy that the intended audience of this Statement on Statistical 
Significance and p Values “would be researchers, practitioners, and 
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science writers who are not primarily statisticians” (1). As for all 
areas of research, the appropriate use and interpretation of statistical 
methods pertain to the study of aging, senescence, senescent cells, 
and senolytic agents, and to aging and longevity research in general.

Aging and senescence research requires the utmost efforts to ensure 
rigor, reproducibility, transparency, and sound inference (2). Yet, the 
value of published reports is frequently compromised because seemingly 
adequate methods are underdeveloped (3), available adequate methods 
are not used (4), or the methods chosen are used improperly (5,6). We 
highlight these errors here in the hope that they will be avoided in future 
studies, and we share best practices to assist investigators in choosing the 
most appropriate methods for their research (Table 1).

Errors

Topic 1: Errors in Randomization
The random assignment of subjects (eg, patients, mice, flies) in aging 
research bolsters causal inference (7). Randomization, if implemented 
correctly, is the only known method that allows for the assignment 
of units of observation (ie, subjects) to treatments to be completely 
independent of the prerandomization characteristics of those units, 
both observed and unobserved, that could confound the outcome, 
providing unbiased estimation of treatment effects (8). More spe-
cifically, the difference (or other contrast) between randomization 
groups is asymptotically (ie, for large sample sizes) equivalent to the 
expected paired differences between potential outcomes (9), that is, 
the mean of paired individual differences in outcomes that would 
have occurred (hypothetically if the outcome of both treatment con-
ditions could have been observed) between the observed and unob-
served treatment conditions. Analyzing and reporting randomized 
experiments according to the intent-to-treat principle, that is, where 

the treatment status of every subject is based entirely on their ran-
domized assignment (10), therefore, yield unbiased estimates for the 
causal effect of being randomized to the given treatment.

By extension, both the use of nonrandom methods where it is 
possible to randomize and the incorrect implementation, analysis, 
and reporting of randomized designs increase our uncertainty in the 
knowledge of aging-related research questions. We have identified 
numerous instances of authors representing nonrandom allocation 
as random, which has spurred retractions (11). Some of these ways 
include using control groups that were not randomly allocated, al-
locating in nonrandom ways to reach a certain sample size, allo-
cating participants in a household or other group setting together 
and analyzing their data as if they were individually randomized, re-
placing subjects in ways that are not random, and allocating animals 
by body weight instead of using an appropriate method to generate 
random assignments (for specific examples, see (11,12)). In cases 
where participants drop out of a study, or outcome data are missing, 
failing to appropriately handle these missing data breaks the random 
assignment and can introduce bias (13,14). In other instances, au-
thors fail to blind the random allocation of participants, which is 
key to preventing selection bias and confounding (15–17), and is 
associated with larger effect estimates than those with adequate con-
cealment (ie, suggestive of bias) (18). Finally, we and others observe 
that published reports frequently contain insufficient information 
for readers to understand exactly how subjects were randomized 
(19–23). Consolidated Standards of Reporting Trials reporting 
guidelines for parallel-group randomized trials, Animal Research: 
Reporting of In Vivo Experiments guidelines for animal studies, or 
related guidelines and extensions assist authors in how to report ad-
equately, which provide readers confidence that experiments were 
executed rigorously (24). To facilitate their use, journals can require 

Table 1.  Summary of Common Errors or Challenges and Their Associated Best Practices in Aging Research

Common Error or Challenge Best Practices

1 Participants, animals, or organisms are nonrandomly assigned 
to treatment groups.

Randomize using a random number generator or table with 
allocation concealment.

2 Conclusions in an RCT are based on within-group differences 
rather than between-group differences.

Test differences between groups rather than within groups.

3 Clustering in data, such as group-housed animals, is ignored. Consider correlation among observations in the analysis, 
especially for cluster-randomized trials.

4 Interference effects, where the treatment of one individual 
affects another individual, are not considered.

Consider study design should be done carefully to prevent 
interdependency.

5 Individual studies may report different metrics of effect size. Standardize effect size metrics in data shared publicly.
6 Comparison of longevity between groups is often limited to 

overall difference in means.
Consider maximum life-span tests to compare differences at 
older ages.

7 Standard t-tests comparing means may violate assumptions of 
normality and Type I error rate.

Consider quantile regression and generalized lambda 
distributions for comparisons beyond the mean, with FWER 
control.

8 Testing negligible senescence has challenges including limited 
power.  
Power calculations are complicated for nonnormally distributed 
data.

Consider maximum life span and other tests for small 
differences.  
Use plasmode and EEE approaches to facilitate power 
calculations.

9 Compression of morbidity is confused with survival curve 
squaring.

The 2 concepts should be clearly separated with discussion in 
the literature.

10 Complicated relationships for aging and senescence are overly 
simplified in standard comparisons or incorrectly analyzed in 
complex models.  
Missing data, outliers, and skewed data are often handled 
inappropriately leading to biased results.

Analysis for high-dimensional data and machine learning are 
needed for complicated data.  
Handle missing data carefully with multiple imputation or 
linear mixed models. Perform sensitivity analyses without 
outliers.  
Transform data to satisfy normality.

Note: RCT = randomized controlled trial; FWER = family-wise error rate; EEE = Elston’s excellent estimator.
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and enforce adherence to reporting guidelines for publication. Each 
of these issues increases the risk of producing results that are not 
trustworthy and slows scientific discovery in aging research. In 
geroscience, when allocation of participants, animals, or well plates 
to conditions is needed for their evaluation, randomization using a 
random number generator or table is recommended unless it is deter-
mined to be not feasible or ethical. In those cases, it may still be pos-
sible to randomize outcome or sample measurements. In all cases, 
the method of allocation should be clearly communicated so readers 
can appropriately evaluate the potential for bias.

Topic 2: Making Conclusions Based on Differences 
in Nominal Significance in Effects (or Associations), 
Effect Modification, and Regressions
A common statistical procedure is to declare a comparison nom-
inally significant if it has a p value below a threshold like p < .05. 
Unfortunately, numerous studies make conclusions based on tests 
of differences within groups instead of between groups. Consider a 
parallel-arm study in which units (eg, mice) are measured at Time 1 
and again at Time 2. In treatment group A, there is a statistically sig-
nificant change from baseline, while in treatment group B there is not. 
Some authors use this to conclude that the treatment worked com-
pared to the control. However, this represents 2 within-group com-
parisons, but the purpose of having a control group is to conduct a 
between-group comparison. In the extreme, further imagine that those 
in treatment group A grew by 5 g with a p value of .049, while those 
in treatment group B grew by 5 g but with a p value of .051 (Figure 
1A). We can conclude that the between-group comparison is not stat-
istically significant (1 − 1 = 0), even without calculating the p value. 
Several of the present authors call this the “differences in nominal 
significances” (DINS) error because authors are comparing nominal 
significance within groups instead of between groups (25). Another 
perspective on this error is identifying subgroup effects without first 
testing the interaction. To avoid this error, a significant result should 
be observed for the group-by-treatment interaction before making 
any statements about individual subgroups. Although this error has 
been addressed multiple times (26–29), including a related warning in 
the American Statistical Association’s statement on p values (1), and 
is now part of formal methodology standards (standard HT-3) pro-
duced by the Patient-Centered Outcomes Research Institute (30), it 
still occurs. We have identified it in multiple papers (summarized here 
(25,31,32)) and in at least one aging-related example (33).

The same inferential error can occur for various comparisons. 
Imagine a study stratified by male and female with a treatment group 
and a control group. If there was a statistically significant differ-
ence in treatment versus control in males but not in females, a DINS 
error may conclude that the treatment “worked” better in males 
than in females (34). However, no formal between-group test was 
done (eg, through an interaction effect in a 2-way analysis of vari-
ance [ANOVA]). The error can occur in mediation models, in which 
models with and without the mediator are not formally tested. They 
can also arise in regression models in which one group’s slope is 
not statistically significantly different from zero while another is, but 
with no between-group test (eg, Figure 1B). It can occur in random-
ized, nonrandomized, or observational designs. The use of appro-
priate tests for making comparisons between groups of interest is 
essential for appropriate inference.

Topic 3: Errors Involving Clustering
The incorrect identification of the experimental unit in the design 
and analysis of aging studies is common (35,36). The experimental 

unit is the smallest unit independently allocated to a particular treat-
ment (37). Experimental design of aging research may involve hier-
archical data structures and, thus, underlying correlations among 

Figure 1.  Two examples of the differences in nominal significance (DINS) 
error. The DINS error occurs when the nominal significance (eg, if a result 
is called “statistically significant” by meeting a threshold like p < .05) of 2 
different results is compared, rather than a direct between-group comparison. 
(A) The change in outcome during Treatment A  is marked as statistically 
significantly greater than 0 (demarked with an asterisk), while the change 
during Treatment B is not statistically significantly different from 0. A DINS 
error would occur if authors concluded Treatment A  worked better than 
Treatment B, when there is no compelling difference between the 2 groups, 
if they were compared directly. (B) The regression lines for 2 different groups 
(eg, different sexes) as a function of an exposure are nearly identical, with 
the dashed line having a slope significantly different from 0 and the solid line 
having a slope not significantly different from 0. If authors concluded these 2 
regression lines were different based on statistical significance (eg, that there 
was a sex difference in the exposure–outcome relationship), they would be 
committing a DINS error, as the lines are not statistically different from each 
other if compared directly.
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observations (eg, participants in hospitals or care facilities, cells/tis-
sues/organs from the same animal, animals housed within the same 
cage, or a single cell line being independently sampled at different 
time points) (36,38). When groups of subjects are assigned as units 
to treatment conditions (eg, by a physician clinic), or when indi-
viduals are assigned to treatment conditions, but the treatment is 
applied at the aggregate level (eg, a nursing home social program), 
subjects in the same group are not independent, have common in-
fluences, and influence each other on many variables (36,38,39). In 
this case, treating the individual subject as the experimental unit for 
analysis ignores variability due to clustering and nesting. This leads 
to an incorrect estimation of the standard error of treatment dif-
ferences, which is a type I error that is often inflated, and p values 
that are too small (ie, concluding a treatment effect when there is no 
evidence for one) (37,38). The degree of independent information 
depends on the number and size of clusters (as captured by their co-
efficient of variation) and the intracluster correlation (ICC), where 
fewer clusters, with smaller cluster sizes and higher ICCs, lead to less 
independent information. A number of formulas have been derived 
to quantify the inflation factor in the context of cluster-randomized 
designs (40). The most severe type of error results in designs that 
cannot be rescued by reanalysis. To effectively determine treatment 
effects in scenarios with group housing, experimental units (eg, 
cages, clinics) are needed within each treatment group, taking the 
correlated observations into consideration when performing power 
calculations and statistical analyses (36,37). More efforts are needed 
to prevent and correct errors related to clustering and nesting in 
aging research to maximize the return on investment.

Best Practices

Topic 4: Accounting for Interference Effects
To make causal inferences about the effects of interventions, inves-
tigators typically use design and analysis procedures predicated on 
the concept that an individual’s outcome is independent of treatment 
assignment and the outcomes of other individuals in the study (41). 
However, this independence may not always hold owing to inter-
ference effects. Interference occurs when the treatment of one indi-
vidual affects the outcome of another (42). This is often referred to 
as “contamination” in human aging and cluster-randomized studies 
(43). When interference is present, interpreting causal inference is 
more complex, particularly when interference is in the same dir-
ection as the direct effects. In this case, direct effects alone do not 
capture the full impact of the intervention (43). The role of inter-
ference on causal inference has begun to be acknowledged (43–
46). However, the discussion of methods to address and estimate 
interference effects has primarily occurred in the vaccine literature 
(47–50), with few articles in other areas (51,52). The field of senes-
cence and aging research has largely overlooked interference, even 
though there is ample evidence of it occurring. For example, housing 
conditions can affect aging-related outcomes, as shown in animal 
models (53,54), as can the interplay between an individual’s position 
in a social hierarchy and energy availability when food is supplied 
to the group (55). Interference can also occur when individuals in 
an education intervention share their materials with control group 
participants (56). Interestingly, the ability of senescent cells to influ-
ence neighboring cells through secreted soluble factors could also 
contribute to interference effects (57). In some instances, methods 
for determining mechanistic interaction, direct and indirect effects 
(eg, cluster-randomized trials, sensitivity analysis), and principal 

stratification can be applied to address interference (42). However, 
interference can be quite complicated, so there is no one strategy 
to address it. Rather, different strategies to prevent or avoid such 
interdependency will depend on the setting. This further highlights 
the need to develop additional methodologies. Thus, it is important 
investigators are aware of the inherent assumptions in their study 
design and analyses, and the implications of these, for the interpret-
ations of their results.

Topic 5: Reporting Comprehensible, Sensible, and 
Consistent Effect Size Indicators
One challenge in interpreting individual studies is that different in-
vestigators use different metrics of effect size, and not all metrics 
used are easily interpreted. For instance, in one study of the impact 
of rapamycin (initiated at 20 months of age) on male mouse lon-
gevity, effect size was reported as increased mean longevity of both 
9% and 28%, depending on whether the effect was calculated on 
total longevity or longevity from the initiation of treatment, respect-
ively (58).

To facilitate clearer interpretation and comparison across 
studies, it would be useful if all investigators reported the same, and 
sound, metrics of effect size. The adoption of a common set of met-
rics would improve clarity and provide common grounds for correct 
comprehension, interpretation, and further research. In addition, it 
is advisable that results be reported in both relative and absolute 
terms because the implications of these differ. For example, in sur-
vival analysis, hazard ratios (a relative term), which inform on how 
large (or small) the hazard is in one group using another group as a 
reference, are commonly reported. However, combining the hazard 
ratio with the median survival time (an absolute term) of each group 
would allow readers to roughly assess the magnitude of the ratio on 
the absolute scale. The ideal situation, which allows the best of both 
freedom of reporting for the investigator and comparison across 
studies, is that the raw data along with the analytical codes be pub-
licly deposited or published with corresponding articles whenever 
possible. This would allow everyone to have access to the raw data.

Because not all investigators are likely to make all data and codes 
publicly available and not all people who wish to make comparisons 
across studies will necessarily have equal ability to download and 
analyze the raw data, it will be valuable to devise a list of standard-
ized metrics. Ideal effect size metrics should inform both the mag-
nitude of the effect of interest and the precision of the estimated 
effect (59). Furthermore, the pros and cons of each metrics need to 
be clearly understood. To promote more consistent reporting and 
interpretation, we recommend the adoption of a standard whereby 
a common suite of effect size indicators is always reported at a 
minimum, with the option to supplement that reporting with other 
effect size indicators of interest. In Table 2, we list a variety of po-
tential effect sizes, a reference, and a mention of advantages and 
disadvantages.

Topic 6: Maximum Life-Span Testing
While the vast majority of survival analyses will compare the 
“average” (mean or median) longevity between treatments (eg, Cox 
models or log-rank tests), it is often overlooked and valuable to also 
consider differences in the so-called maximum life-span test (74,75) 
among the animals that lived the longest. Here, the right tail of the 
survival distribution determines how a treatment affects animals 
later in life, even when the median life spans were not different. 
In these methods, a threshold (τ) is set for “old” age, such as the 
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90th percentile of life span, across animals in all groups combined. 
Where the Wang-Allison test (75) compares the proportion of ani-
mals reaching the threshold between treatment groups, its successor, 
the Gao-Allison maximum life-span test (74) compares the groups 
on both the likelihood to live past the old age threshold and the 
magnitude of how long the individuals lived past the threshold. The 
Gao-Allison test is performed such that a new variable Z is calcu-
lated where Zi  =  survival time (Yi) for animal i if survival (Yi) is 
greater than the threshold (τ), and Zi = 0 otherwise, where τ is com-
monly the 90th percentile of survival across the 2 groups. An exact 
Wilcoxon–Mann–Whitney test is then used to compare the distri-
butions of Z between the 2 groups. The Kruskal–Wallis test could 
replace the exact Wilcoxon–Mann–Whitney test for multiple group 
comparisons. The maximum life-span tests in the studies of Wang 
et al. (75) and Gao et al. (74) provide tools for comparing treatment 
effects on how animals age later in life.

Topic 7: Testing for Effects Beyond Mean but 
Controlling the Family-Wise Error Rate
Conventional statistical methods often test for group differences 
in a single parameter of a distribution, usually the conditional 
mean under specific distributional assumptions (such as a normal 

distribution for the t-test). However, distributional assumptions of 
conventional statistical methods may be violated in some situations, 
especially with a small sample size that fails to satisfy the central 
limit theorem. Parameters other than the mean may be of interest in 
geroscience. For example, the distribution of longevity is skewed to 
the right (ie, early death events are often not observed). Therefore, 
measures of central tendency such as the mean may change only a 
little when the distribution changes at the tails. Because of this, some 
studies report and test the difference in percentiles of life span using 
Fisher’s exact test (76). If the independent variables are continuous 
variables, quantile regression is increasingly used (77,78). Several of 
the present authors also invented a statistical approach to test the 
difference in maximum life span (74). In such approaches, one must 
specify the percentile (such as the 95th percentile) to test. If mul-
tiple percentiles are tested, some would opine that there is a need 
to control the family-wise error rate (FWER). Such FWER control 
may result in reduced statistical power and a failure to detect effects 
when they exist. One potential approach to lessening this concern 
is the use of a flexible distribution, the generalized lambda distribu-
tion, to test the difference beyond central tendency (58). The gener-
alized lambda distribution is characterized by 4 parameters, which 
relate to (a) median, (b) interquartile range, (c) asymmetry, and (d) 

Table 2.  Advantages and Disadvantages of Commonly Used Effect Sizes

Effect size indicator Advantages Disadvantages

Cohen’s d, Hedge’s g, and 
Glass’s delta (60–62)

•	 Allows the comparisons across different continuous measures.  
•	 Allows the quantification of effect size using a unit-free 

measure.

•	 Standardizing effect size measure leads to a loss 
of units of the measure.  

•	 Standardized effect size measures are determined 
not only by the size of the effect, but also by the 
amount of variance in the data.  

•	 With this and other metrics involving variance 
in the denominator, miscalculations are common 
(63).

Cohen’s f (64–66) •	 Enables the evaluation of effect size.  
•	 Makes it easy to compare results across studies and forms 

the basis for meta-analysis.  
•	 Useful and appropriate for measuring local effect size in 

hierarchical and repeated-measures data.  
•	 Cohen’s f used in repeated-measures studies often yields stronger 

effect sizes compared to an equivalent independent design.

•	 Estimated effect size can be reduced by variables 
with low reliability/high variance.  

•	 It could be unstable across studies with different 
designs.  

•	 Effect size can be distorted by the sampling 
procedure, and this can consequentially affect the 
generalizability of the effect.

Eta squared (62,67) •	 Easy to interpret.  
•	 Easy to evaluate.

•	 The addition of more variables to the model leads 
to a decrease in the proportion explained by any 
one of the variables.

Common language effect 
size indicator (68,69)

•	 Effect can be generalized to a variety of research designs.  
•	 Although it assumes normal distributions, it is robust to the 

violation of its assumptions.  
•	 It can easily be translated into Cohen’s d.  
•	 Quickly and easily calculated and associated with ease of 

interpretation.  
•	 Reporting using CL allows all including nonstatisticians to 

intuitively evaluate the effect.

•	 The disadvantages listed for Cohen’s d apply here.

Hazard ratio reduction 
(70–72)

•	 The tests behind the hazard ratios can account for censoring 
problems that are common in longevity studies.  

•	 Takes the entire survival curve into account.  
•	 Almost always available for studies including meta-analysis 

of effects.  
•	 Practically reasonable, and interpretation is comprehensible.

•	 Interpretation of the metric is challenging.  
•	 Need to meet the proportional hazards 

assumption.  
•	 Only applicable to survival data.

Life expectancy 
difference and life 
expectancy ratio (73)

•	 The difference is presented in the same unit as the outcome 
(ie, week or year), thus easy to interpret.  

•	 Applicable even when the proportional hazard assumption is 
violated.

•	 Dependent on units.  
•	 Only applicable to survival data.

Note: CL = common language.
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steepness. Thus, it has 4 basic shapes: (a) unimodal (with or without 
symmetry), (b) U-shape, (c) monotone (decline or increase), and (d) 
S-shape, including the normal distribution as a special case of a uni-
modal distribution (79). By fitting the model to the data and subse-
quently performing a likelihood ratio test, it is possible to test the 
difference among those 4 parameters. Therefore, with this test, one 
arguably does not have to specify percentiles to be tested or control 
the FWER (80).

Topic 8: Power and Sample Size
Tests and power for negligible senescence
Senescence is often measured by monitoring decline in global func-
tional capacity (81,82). Previous studies have tested negligible sen-
escence using the time required for mortality rate to double, initial 
mortality rate, and survival methods (82,83), including Bayesian sur-
vival trajectory analyses (84) and the Gompertz model of survival 
curves (85). However, limitations and challenges have been noted 
regarding the power of these tests to detect minimal effects, and 
alternatives for negligible senescence are lacking (86). Researchers 
have suggested statistical tests with power to detect minimal effects 
in other areas of gerontological studies, such as the Wang-Allison 
(75) and Gao-Allison (74) tests for maximum life span, and Hall 
et al. (87,88) to detect a small departure from a monotonic shape. 
The suggested methods can also be extended for use in negligible 
senescence testing. Finally, researchers have suggested that success 
could be achieved in testing for the presence of negligible senescence 
by following sequential steps along the pathway to discovery and by 
using specific and validated methods (82). These sequential steps are 
necessary and set the exact parameters and boundaries in the process 
of testing. The steps include clearly defining negligible senescence; 
identifying biomarkers that satisfy the requirements implied by the 
definition; developing appropriate techniques and tools to measure 
senescence; and understanding and accurately interpreting the re-
sults, manipulation of data, and development of therapeutics. Once a 
concrete definition of negligible senescence is determined, a primary 
emphasis should be placed on then identifying proper analyses and 
validation criteria (86). Thus, extending existing and developing new 
statistical models to test and improve the power of the effect of neg-
ligible senescence has become vital.

Power and sample size—plasmode approaches
Sample size and power calculation is now essential both when 
writing grant applications and when designing (and registering) 
experiments. The conventional approach used for sample size and 
power calculation makes several strong assumptions about the 
distributions of the outcome, such as equal variance and normal 
distribution, and depends on strictly unadjusted results. However, 
typical longevity studies using animal models have data that may 
violate assumptions of common statistical tests. We have pro-
posed a data-driven “plasmode simulation approach” (89). In a 
plasmode simulation, multiple data sets are created by resampling 
from the original (empirical) data set  allowing for replacement. 
Statistical tests are performed on the plasmodes, and the results 
(eg, p values) are summarized to compute power. The strength 
of a plasmode simulation approach is that it preserves the data 
structure of the original data set, which may not necessarily follow 
a normal distribution. The approach is flexible enough to be ex-
tended to survival analysis, quantile regression, and other types 
of tests used in geroscience. Familiarizing geroscience researchers 
with the plasmode approach and developing and providing a 

plasmode-based power (and sample size) calculator that is access-
ible to the scientific community are suggested.

Other issues and techniques
Power and sample size calculations are vital to ensure that an appro-
priate number of animals are included to provide adequate power for 
detecting statistically significant and biologically meaningful effects. 
While simple calculations can be done in freely available software, 
assuming normally distributed survival times with no censored data 
and no clustering of individuals, these conditions are not always met. 
More complex cases require careful thought with more sophisticated 
methods. Methods for Cox proportional hazards models and expo-
nential models are available in commercial software such as PASS 
from NCSS (90). The more general Weibull distribution may also 
be considered, which accommodates increasing, decreasing, or flat 
hazards across the life span rather than restricting to the constant 
hazards required in Cox models. Heo et al. (91) discuss power and 
sample size calculations assuming the Weibull distribution. Where 
calculations are not available in closed-form formulas or software, 
Tiwari et al. (92) provide an option called the Elston’s excellent es-
timator in which the power, alpha level, and sample size reported in 
previous literature can be used to calculate approximate power for 
a new study with different sample sizes (when other parameters are 
expected to remain the same). It is important to perform power cal-
culations that most closely align with the ultimate statistical models 
and assumptions to be performed in data analysis and to give careful 
consideration to the consequences on estimates of power and sample 
size when simplified methods are utilized. When available techniques 
do not sufficiently match the ultimate statistical models and assump-
tions, simulation studies may be required to characterize the statis-
tical properties of those models.

Topic 9: The Compression of Morbidity Versus 
Survival Curve Squaring
A common point of confusion involves discussion of the compres-
sion of morbidity and its inadvertent conflation with so-called sur-
vival curve squaring (93,94). These are 2 different concepts. Yet, 
because they both involve examination of curves in which the ab-
scissa (X-axis) is age and the ordinate (Y-axis) is some function that 
slowly declines with age, they seem to be confused and conflated. 
In a survival curve, the ordinate is the proportion of a population 
that has or is predicted to survive up to that age (ie, point on the ab-
scissa). Many survival curves are characterized by slow and steady 
declines after the population has reached maturity. In contrast, one 
could imagine that roughly all members of an animal population 
survive until approximately the same age and then all die shortly 
thereafter. This would lead to a curve that more closely approxi-
mates a step function and visually appears rectangular or “squared.” 
Hence, the achievement of such a curve is sometimes referred to as 
“curve squaring.” Such curve squaring might be taken as a sign of 
egalitarianism or a “disparity-free” environment in that all members 
of the population achieve roughly the same life span. However, the 
phrases curve squaring or squaring the survival curve also seem to 
be used to imply that one has achieved a situation in which members 
of a population do not decline in their functional ability, health, or 
freedom from morbidity and disability until just before death. This 
concept is sometimes referred to as compression of morbidity (95), 
and yet it is not implied by a squaring of the population survival 
curve. In contrast, one could imagine an individual curve in which 
the ordinate was health, functional ability, or freedom of disability, 
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and the abscissa was again age. Such a curve would represent an 
individual’s degree of decline in health or functional ability with 
age. A compression of morbidity would imply a squaring of these 
curves in which the ultimate loss of health or functionality coin-
cided with the point of death. After all, when it comes to people 
aging, compression of morbidity is a highly desired outcome, that 
is, most people want to live independently as long as possible before 
death. Although it is easy to see how these 2 ideas are conflated, the 
compression of morbidity in individuals and the squaring of survival 
curves in populations are indeed distinct. Therefore, we advocate 
both a clear discussion of this in the literature to separate the ideas 
(others have addressed confusion and misconception in this area 
(93,96)) and the development of methods in which the degree of 
compression of morbidity for individuals can be analyzed as a func-
tion of antisenescence interventions.

Topic 10: Other Topics
Modeling high-dimensional data and complex relationships
Methods for aging and senescence research will likely continue to 
depend on increasingly complex measurement approaches (eg, for 
dietary intake or physical activity), which then necessitate statis-
tical models that effectively incorporate high-dimensional data and 
model the complex relationships between predictors and outcome. 
Specification of the associated statistical models represents a critical 
aspect of formulating clinical prediction models (97), for example, 
for identifying high-risk subjects or subjects most likely to respond 
to treatment. While the best general approach to model specification 
for a given problem depends largely on the underlying scientific con-
struct and is difficult to specify in practice, relevant factors to con-
sider include the number and degree of correlation among predictors, 
the sample size available to estimate model coefficients (including 
main effects, nonlinear relationships, and interactions), and the need 
to balance precision (ie, minimizing random variability of model 
predictions) with bias (ie, minimizing systematic differences between 
predictions and observed outcomes) and to balance model com-
plexity with interpretability. If a large number of predictor variables 
(or risk factors) are highly correlated and tend to represent a smaller 
number of lower-dimensional characteristics, dimension reduction 
methods, such as principal component analysis (PCA) (98), may be 
preferable to repeated testing of individual variables or groups of 
variables. Methods such as PCA avoid errors due to multiple testing 
and may retain a high percentage of variability in the data through a 
much smaller number of variables in the model. PCA may be used as 
an initial step, possibly after multiple testing, to reduce the number 
of variables while still retaining most of the variability in predictor 
variables, especially when the number of variables is larger than the 
number of subjects.

Another challenge in the model specification is optimally ac-
counting for the complexity of the relationship between predictors, 
for example, subject characteristics, and outcome. Standard regres-
sion methods assume linearity on some scale and require explicit 
specification of any interaction or nonlinear effects (99). Machine 
learning, or modern regression methods, provides an alternative set 
of methods. Machine learning tends to automate both the variable 
selection and the complexity of the predictor–outcome relationship 
by using either a deterministic algorithm (eg, tree models that re-
cursively partition the data into increasingly homogenous subsets 
of data (100)) or variations of more standard statistical modeling 
approaches combined with data reduction techniques (eg, LASSO 
regression, which uses shrinkage methods and automated variable 

selection (101,102)). While the methods of machine learning ap-
proaches vary substantially, they essentially provide different ways 
to automate the process of specifying the variables in the model 
and the functional form of the relationship between predictors and 
outcome. Different machine learning methods yield more (or less) 
complex relationships, which then produces more (or less) precise 
(or alternatively less (or more) biased) predictions. While machine 
learning methods are often described relative to observational data, 
they are becoming increasingly useful for randomized trials to iden-
tify the high-risk group or those most likely to respond to treatment.

Missing data and outliers
Robust and rigorous data analysis requires careful assessment of 
model assumptions and diagnostics. Errors and incorrect conclu-
sions will result from failure to assess and satisfy model assump-
tions such as normally distributed residuals with constant variance 
(89). While ANOVA is shown to be robust to modest violations of 
normality with large sample sizes, and consequences of unequal 
variance are mitigated with balanced sample sizes, the risks to the  
type I  error rate must be evaluated carefully and reported trans-
parently. Transformations such as logs are commonly helpful for 
skewed data. Outliers and missing data can also cause bias and com-
promise the reliability of results (103). While analysts are tempted 
to throw out values deemed to be outliers to ensure well-behaved 
data distributions, results could be drastically affected and poten-
tially biased by removing valid data, particularly in experiments with 
small sample sizes. Sensitivity analyses may be used to perform ana-
lyses with and without outliers in full transparency. Concerns about 
missing data have been reported extensively and should be handled 
thoughtfully to ensure unbiased results (104). Two suggested op-
tions for handling missing data to provide unbiased results are mul-
tiple imputation and the use of mixed models for longitudinal data 
(105,106).

Multiple testing
Although not unique to aging, the use of the same data to calcu-
late multiple tests increases the likelihood of a significant finding by 
chance when no true difference exists (ie, Type I errors). Specifically, 
as some of the present authors previously pointed out, testing 59 
comparisons on any set of independent calculations results in a 95% 
chance of finding at least one significant difference at the p < .05 
level when no differences exist (107). When discovery work, such as 
evaluating large data sets, testing each gut microbe independently, 
sifting through specific genes, or associating all possible foods or nu-
trients against aging outcomes, is being undertaken, it is almost cer-
tain that such false discoveries will be made. Controlling for multiple 
comparisons, such as through adjusting the FWER (eg, Bonferroni 
or Tukey) or controlling the false discovery rate (108), can help the 
aging community from being overly confident in apparent differ-
ences in the data that are, in fact, just there by chance.

Conclusion

The goal of this report is to provide investigators valuable infor-
mation to aid in avoiding errors while implementing best practices 
during the design and execution of aging and senescence research. 
In many cases, immense value is gained by including a professional 
statistician early. The statistician should be involved in virtually 
all aspects of the project—from design to measurement to data 
analysis, interpretation, and presentation, and including selection 
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and evaluation for randomization, data recording practices, and 
data cleaning and checking. We realize this does not always occur. 
Even in our own research, we are often brought in long after 
many of these steps are done. Therefore, we further suggest con-
tinued awareness through the promotion and production of educa-
tional materials and programs. Some existing sources include the 
American Statistical Association, which curates an online list of 
biostatistics degree programs and offers several professional devel-
opment events (109,110); certain universities, which offer online 
courses (eg, University of California San Diego, Drexel University, 
and Washington University); and the Society for Epidemiologic 
Research, which holds preconference workshops in connection 
with its annual meeting (111). We encourage readers to not only 
carefully consider the American Statistical Association statement 
(1) but also to review the articles in a special issue of The American 
Statistician devoted to exploring the statement’s implications (112). 
Investing in methodologic training programs, and developing new 
methodologic research, all of which emphasize the implementation 
of rigor, reproducibility, and transparency, may also help move the 
discipline forward. Collectively, we hope this perspective brings 
awareness and value to investigators as it relates to the appropriate 
use of statistical and methodologic practices while conducting 
geroscience research.
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