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Abstract

Ensembling is now recognized as an effective approach for increasing the predictive performance 

and calibration of deep networks. We introduce a new approach, Parameter Ensembling by 

Perturbation (PEP), that constructs an ensemble of parameter values as random perturbations 

of the optimal parameter set from training by a Gaussian with a single variance parameter. The 

variance is chosen to maximize the log-likelihood of the ensemble average (L) on the validation 

data set. Empirically, and perhaps surprisingly, L has a well-defined maximum as the variance 

grows from zero (which corresponds to the baseline model). Conveniently, calibration level of 

predictions also tends to grow favorably until the peak of L is reached. In most experiments, PEP 

provides a small improvement in performance, and, in some cases, a substantial improvement in 

empirical calibration. We show that this “PEP effect” (the gain in log-likelihood) is related to 

the mean curvature of the likelihood function and the empirical Fisher information. Experiments 

on ImageNet pre-trained networks including ResNet, DenseNet, and Inception showed improved 

calibration and likelihood. We further observed a mild improvement in classification accuracy on 

these networks. Experiments on classification benchmarks such as MNIST and CIFAR-10 showed 

improved calibration and likelihood, as well as the relationship between the PEP effect and 

overfitting; this demonstrates that PEP can be used to probe the level of overfitting that occurred 

during training. In general, no special training procedure or network architecture is needed, and in 

the case of pre-trained networks, no additional training is needed.

1 Introduction

Deep neural networks have achieved remarkable success on many classification and 

regression tasks [28]. In the usual usage, the parameters of a conditional probability model 

are optimized by maximum likelihood on large amounts of training data [10]. Subsequently 

the model, in combination with the optimal parameters, is used for inference. Unfortunately, 

this approach ignores uncertainty in the value of the estimated parameters; as a consequence 

over-fitting may occur and the results of inference may be overly confident. In some 
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domains, for example medical applications, or automated driving, overconfidence can be 

dangerous [1].

Probabilistic predictions can be characterized by their level of calibration, an empirical 

measure of consistency with outcomes, and work by Guo et al. shows that modern neural 

networks (NN) are often poorly calibrated, and that a simple one-parameter temperature 
scaling method can improve their calibration level [12]. Explicitly Bayesian approaches 

such as Monte Carlo Dropout (MCD) [8] have been developed that can improve likelihoods 

or calibration. MCD approximates a Gaussian process at inference time by running the 

model several times with active dropout layers. Similar to the MCD method [8], Teye 

et al. [45] showed that training NNs with batch normalization (BN) [18] can be used to 

approximate inference with Bayesian NNs. Directly related to the problem of uncertainty 

estimation, several works have studied out-of-distribution detection. Hendrycks and Gimpel 

[14] used softmax prediction probability baseline to effectively predict misclassification 

and out-of-distribution in test examples. Liang et al. [31] used temperature scaling and 

input perturbations to enhance the baseline method of Hendrycks and Gimpel [14]. In 

a recent work, Rohekar et al. [39] proposed a method for confounding training in deep 

NNs by sharing neural connectivity between generative and discriminative components. 

They showed that using their BRAINet architecture, which is a hierarchy of deep neural 

connections, can improve uncertainty estimation. Hendrycks et al. [15] showed that using 

pre-training can improve uncertainty estimation. Thulasidasan et al. [46] showed that mixed 

up training can improve calibration and predictive uncertainty of models. Corbière et al. [5] 

proposed True Class Probability as an alternative for classic Maximum Class Probability. 

They showed that learning the proposed criterion can improve model confidence and failure 

prediction. Raghu et al. [37] proposed a method for direct uncertainty prediction that can 

be used for medical second opinions. They showed that deep NNs can be trained to predict 

uncertainty scores of data instances that have high human reader disagreement.

Ensemble methods [6] are regarded as a straightforward way to increase the performance 

of base networks and have been used by the top performers in imaging challenges such as 

ILSVRC [44]. The approach typically prepares an ensemble of parameter values that are 

used at inference-time to make multiple predictions, using the same base network. Different 

methods for ensembling have been proposed for improving model performance, such as 

M-heads [30] and Snapshot Ensembles [16]. Following the success of ensembling methods 

in improving baseline performance, Lakshminarayanan et al. proposed Deep Ensembles 
in which model averaging is used to estimate predictive uncertainty [26]. By training 

collections of models with random initialization of parameters and adversarial training, they 

provided a simple approach to assess uncertainty.

Deep Ensembles and MCD have both been successfully used in several applications for 

uncertainty estimation and calibration improvement. However, Deep Ensembles requires 

retraining a model from scratch for several rounds, which is computationally expensive for 

large datasets and complex models. Moreover, Deep Ensembles cannot be used to calibrate 

pre-trained networks for which the training data is not available. MCD requires the network 

architecture to have dropout layers, hence there is a need for network modification if the 

original architecture does not have dropout layers. In many modern networks, BN removes 
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the need for dropout [18]. It is also challenging or not feasible in some cases to use MCD on 

out-of-the-box pre-trained networks.

Gaussians are an attractive choice of distribution for going beyond point estimates of 

network parameters – they are easily sampled to approximate the marginalization that is 

needed for predictions, and the Laplace approximation can be used to characterize the 

covariance by using the Hessian of the loss function. Kristiadi et al. [23] support this 

approach for mitigating the overconfidence of ReLU-based networks. They use a Laplace 

approximation that is based on the last layer of the network that provides improvements to 

predictive uncertainty and observe that “a sufficient condition for a calibrated uncertainty 

on a ReLU network is to be a bit Bayesian.” Ritter et al. [38] use a Laplace approach with 

a layer-wise Kronecker factorization of the covariance that scales only with the square of 

the size of network layers and obtain improvements similar to dropout. Izmailov et al. [19] 

describe a stochastic weight averaging Stochastic Weight Averaging (SWA) approach that 

averages in weight space rather than in model space such as ensembling approaches and 

approaches that sample distributions on parameters. Averages are calculated over weights 

observed during training via SGD, leading to wider optima and better generalization in 

experiments on CIFAR10, CIFAR100 and ImageNet. Building on SWA, Maddox et al. 

[32] describe Stochastic Weight Averaging-Gaussian (SWAG) that constructs a Gaussian 

approximation to the posterior on weights. It uses SWA to estimate the first moment on 

weights combined with a low-rank plus diagonal covariance estimate. They show that 

SWAG is useful for out of sample detection, calibration and transfer learning.

In this work, we propose Parameter Ensembling by Perturbation (PEP) for deep learning, 

a simple ensembling approach that uses random perturbations of the optimal parameters 

from a single training run. PEP is perhaps the simplest possible Laplace approximation - an 

isotropic Gaussian with one variance parameter, though we set the parameter with simple 

ML/cross-validation rather than by calculating curvature. Parameter perturbation approaches 

have been previously used in climate research [33, 2] and they have been used to good effect 

in variational Bayesian deep learning [21] and to improve adversarial robustness [20].

Unlike MCD which needs dropout at training, PEP can be applied to any pre-trained 

network without restrictions on the use of dropout layers. Unlike Deep Ensembles, PEP 

needs only one training run. PEP can provide improved log-likelihood and calibration for 

classification problems, without the need for specialized or additional training, substantially 

reducing the computational expense of ensembling. We show empirically that the log-

likelihood of the ensemble average (L) on hold-out validation and test data grows initially 

from that of the baseline model to a well-defined peak as the spread of the parameter 

ensemble increases. We also show that PEP may be used to probe curvature properties of 

the likelihood landscape. We conduct experiments on deep and large networks that have 

been trained on ImageNet (ILSVRC2012) [40] to assess the utility of PEP for improvements 

on calibration and log-likelihoods. The results show that PEP can be used for probability 

calibration on pre-trained networks such as DenseNet [17], Inception [44], ResNet [13], 

and VGG [43]. Improvements in log-likelihood range from small to significant but they 

are almost always observed in our experiments. To compare PEP with MCD and Deep 

Ensembles, we ran experiments on classification benchmarks such as MNIST and CIFAR-10 
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which are small enough for us to re-train and add dropout layers. We carried out an 

experiment with non-Gaussian perturbations We performed further experiments to study 

the relationship between over-fitting and the “PEP effect,” (the gain in log likelihood over 

the baseline model) where we observe larger PEP effects for models with higher levels of 

over-fitting, and finally, we showd that PEP can improve out-of-distribution detection.

To the best of our knowledge, this is the first report of using ensembles of perturbed 

deep nets as an accessible and computationally inexpensive method for calibration and 

performance improvement. Our method is potentially most useful when the cost of training 

from scratch is too high in terms of effort or carbon footprint.

2 Method

In this section, we describe the PEP model and analyze local properties of the resulting 

PEP effect (the gain in log-likelihood over the comparison baseline model). In summary 

PEP is formulated in the Bayes’ network (hierarchical model) framework; it constructs 

ensembles by Gaussian perturbations of the optimal parameters from training. The single 

variance parameter is chosen to maximize the likelihood of ensemble average predictions 

on validation data, which, empirically, has a well-defined maximum. PEP can be applied to 

any pre-trained network; only one standard training run is needed, and no special training or 

network architecture is needed.

2.1 Baseline Model

We begin with a standard discriminative model, e.g., a classifier that predicts a distribution 

on yi given an observation xi,

p yi; xi, θ . (1)

Training is conventionally accomplished by maximum likelihood,

θ∗ ≐ argmax
θ

ℒ(θ) where the log − likelihood is: ℒ(θ) ≐ ∑
i

ln Li(θ), (2)

and Li(θ) ≐ p yi; xi, θ  are the individual likelihoods. Subsequent predictions are made with 

the model using θ*.

2.2 Hierarchical Model

Empirically, different optimal values of θ are obtained on different data sets; we aim to 

model this variability with a very simple parametric model – an isotropic normal distribution 

with mean and scalar variance parameters,

p(θ; θ, σ) ≐ N θ; θ, σ2I . (3)

The product of Eqs. 1 and 3 specifies a joint distribution on yi and θ; from this we can obtain 

model predictions by marginalizing over θ, which leads to
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p yi; xi, θ, σ = Eθ ∼ N θ, σ2I p yi; xi, θ . (4)

We approximate the expectation by a sample average,

p yi; xi, θ, σ ≈ 1
m ∑

j
p yi; xi, θj where θj = 1

m
IID N θ, σ2I , (5)

i.e., the predictions are made by averaging over the predictions of an ensemble. The log-

likelihood of the ensemble prediction as a function of σ is then

L(σ) ≐ ∑
i

ln 1
m ∑

j
Li θj where θj = 1

m
IID N θ, σ2I (6)

(dependence on θ is suppressed for clarity). Throughout most of paper we will use i to index 

data items, j to index ensemble of parameters, and m to indicate the size of the ensemble. We 

estimate the model parameters as follows. First we optimize θ with σ fixed at zero using a 

training data set (when σ 0 the θj θ), then

θ∗ = argmax
θ

∑
i

ln p yi; xi, θ , (7)

which is equivalent to maximum likelihood parameter estimation of the base model. Next we 

optimize over σ, (using a validation data set), with θ fixed at the previous estimate, θ*,

σ∗ = argmax
σ

∑
i

ln 1
m ∑

θj
p yi; xi, θj where θj = 1

m
IID N θ∗, σ2I . (8)

Then at test time the ensemble prediction is

p yi; xi, θ∗, σ∗ ≈ 1
m ∑

θj
p yi; xi, θj where θj = 1

m
IID N θ∗, σ ∗ 2I . (9)

In our experiments, perhaps somewhat surprisingly, L(σ) has a well-defined maximum away 

from σ = 0 (which corresponds to the baseline model). As σ grows from 0, L(σ) rises to 

a well-defined peak value, then falls dramatically (Figure 1). Conveniently, the calibration 

quality tends to grow favorably until the L(σ) peak is reached. It may be that L(σ) initially 

grows because the classifiers corresponding to the ensemble parameters remain accurate, 

and the ensemble performs better as the classifiers become more independent [6]. Figure 1 

shows L(σ) for experiments with InceptionV3 [44], along with the average log-likelihoods 

(ln(L)) of the individual ensemble members. Note that in the figures, in the current machine 

learning style, we have used averaged log-likelihoods, while in this section we use the 

estimation literature convention that log-likelihoods are summed rather than averaged. We 

can see that for several members, ln(L) grows somewhat initially, this indicates that the 
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optimal parameter from training is not optimal for the validation data. Interestingly, the 

ensemble has a more robust increase, which persists over scale substantially longer than 

for the individual networks. We have observed this L(σ) “increase to peak” phenomenon in 

many experiments with a wide variety of networks.

2.3 Local Analysis

In this section, we analyze the nature of the PEP effect in the neighborhood of θ*. Returning 

to the log-likelihood of a PEP ensemble (Eq. 6), and “undoing” the approximation by 

sample average,

L(σ) ≈ ∑
i

ln Eθ ∼ N θ∗, σ2I Li(θ) . (10)

Next, we develop a local approximation to the expected value of the log-likelihood. The 

following formula is derived in the Appendix (Eq 5) using a second-order Taylor expansion 

about the mean.

For x ~ N(μ, Σ)

Ex[f(x)] ≈ f(μ) + 1
2TR(Hf(μ)Σ), (11)

where Hf(x) is the Hessian of f(x) and TR is the trace. In the special case that Σ = σ2I,

Ex[f(x)] ≈ f(μ) + σ2

2 Δ f(μ) (12)

where Δ is the Laplacian, or mean curvature. The appendix shows that the third Taylor term 

vanishes due to Gaussian properties, so that the approximation residual is O σ4∂4f(μ)  where 

∂4 is a specific fourth derivative operator.

Applying this to the log-likelihood in Eq. 10 yields

L(σ) ≈ ∑
i

ln Li θ∗ + σ2

2 Δ Li θ∗ ≈ ∑
i

ln Li θ∗ + σ2

2
Δ Li θ∗

Li θ∗ (13)

(to first order), or

L(σ) ≈ ℒ θ∗ + Bσ θ∗ , (14)

where ℒ(θ) is the log-likelihood of the base model (Eq. 2) and

Bσ(θ) ≐ σ2

2 ∑
i

ΔLi(θ)
Li(θ) (15)

Mehrtash et al. Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is the “PEP effect.” Note that its value may be dominated by data items that have low 

likelihood, perhaps because they are difficult cases, or incorrectly labeled. Next we establish 

a relationship between the PEP effect and the Laplacian of the log-likelihood of the base 

model. From Appendix (Eq 34),

Δ ℒ(θ) = ∑
i

ΔLi(θ)
Li(θ) − ∇ ln Li(θ) 2

(16)

(here the square in the second term on the right is the dot product of two gradients) Then

Δ ℒ(θ) = 2
σ2Bσ(θ) − ∑

i
∇ ln Li(θ) 2

or

Bσ(θ) = σ2

2 Δ ℒ(θ) + ∑
i

∇ ln Li(θ) 2 . (18)

The empirical Fisher information (FI) is defined in terms of the outer product of gradients as

F(θ) ≐ ∑
i

∇ ln Li(θ)∇ ln Li(θ)T
(19)

(see [25]). So, the second term above in Eq. 18 is the trace of the empirical FI. Then finally 

the PEP effect can be expressed as

Bσ(θ) = σ2

2 Δ ℒ(θ) + TR(F(θ)) . (20)

The first term of the PEP effect in Eq. 20, the mean curvature of the log-likelihood, can be 

positive or negative, (we expect it to be negative near the mode), while the second term, the 

trace of the empirical Fisher information, is non-negative. As the sum of squared gradients, 

we may expect the second term to grow as θ moves away from the mode.

The first term may also be seen as a (negative) trace of an empirical FI. If the sum is 

converted to an average it approximates an expectation that is equal to the negative of the 

trace of the Hessian form of the FI, while the second term is the trace of a different empirical 

FI. Empirical FI are said to be most accurate at the mode of the log-likelihood [25]. So, if θ* 

is close to the log-likelihood mode on the new data, we may expect the terms to cancel. If θ* 

is farther from the log-likelihood mode on the new data, they may no longer cancel.

Next, we discuss two cases, in both we examine the log-likelihood of the validation data, 

ℒ(θ), at θ*, the result of optimization on the training data. In general, θ* will not coincide 

with the mode of the log-likelihood of the validation data. Case 1: θ* is ‘close’ to the 

mode of the validation data, so we expect the mean curvature to be negative. Case 2: θ* is 

‘not close’ to the mode of the validation data, so the mean curvature may be positive. We 
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conjecture that case 1 characterizes the likelihood landscape on new data when the baseline 

model is not overfitted, and that case 2 is characteristic of an overfitted model (where, 

empirically, we observe positive PEP effect).

As these are local characterizations, they are only valid near θ*. While the analysis may 

predict PEP effect for small σ, as it grows, and the θj move farther from the mode, the 

log-likelihood will inevitably decrease dramatically (and there will be a peak value between 

the two regimes).

There has been a lot of work recently concerning the curvature properties of the log-

likelihood landscape. Gorbani et al. point out that “Hessian of training loss … is crucial in 

determining many behaviors of neural networks”; they provide tools to analyze the Hessian 

spectrum and point out characteristics associated with networks trained with BN [9]. Sagun 

et al. [41] show that there is a ‘bulk’ of zero valued eigenvalues of the Hessian that can be 

used to analyze overparameterization, and in a related paper discuss implications that “shed 

light on the geometry of high-dimensional and non-convex spaces in modern applications” 

[42]. Goodfellow et al. [11] report on experiments that characterize the loss landscape by 

interpolating among parameter values, either from the initial to final values or between 

different local minima. Some of these demonstrate convexity of the loss function along 

the line segment, and they suggest that the optimization problems are less difficult than 

previously thought. Fort et al. [7] analyze Deep Ensembles from the perspective of the loss 

landscape, discussing multiple modes and associated connectors among them. While the 

entire Hessian spectrum is of interest, some insights may be gained from the avenues to 

characterizing the mean curvature that PEP provides.

3 Experiments

This section reports performance of PEP, and compares it to temperature scaling [12], MCD 

[8], and Deep Ensembles [26], as appropriate. The first set of results are on ImageNet 

pre-trained networks where the only comparison is with temperature scaling (no training 

of the baselines was carried out so MCD and Deep Ensembles were not evaluated). Then 

we report performance on smaller networks, MNIST and CIFAR-10, where we compare to 

MCD and Deep Ensembles as well. We also show that the PEP effect is strongly related to 

the degree of overfitting of the baseline networks.

Evaluation metrics:

Model calibration was evaluated with negative log-likelihood (NLL), Brier score [3] and 

reliability diagrams [34]. NLL and Brier score are proper scoring rules that are commonly 

used for measuring the quality of classification uncertainty [36, 26, 8, 12]. Reliability 

diagrams plot expected accuracy as a function of class probability (confidence), and perfect 

calibration is achieved when confidence (x-axis) matches expected accuracy (y-axis) exactly 

[34, 12]. Expected Calibration Error (ECE) is used to summarize the results of the reliability 

diagram. Details of evaluation metrics are given in the Supplementary Material (Appendix 

B).
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3.1 ImageNet experiments—We evaluated the performance of PEP using large scale 

networks that were trained on ImageNet (ILSVRC2012) [40] dataset. We used the subset of 

50,000 validation images and labels that is included in the development kit of ILSVRC2012. 

From the 50,000 images, 5,000 images were used as a validation set for optimizing σ in 

PEP, and temperature T in temperature scaling. The remaining 45,000 images were used 

as the test set. Golden section search [35] was used to find the σ* that maximizes L(σ). 
The search range for σ was 5×10−5 −5×10−3, ensemble size was 5 (m = 5), and number 

of iterations was 7. On the test set with 45,000 images, PEP was evaluated using σ* and 

with ensemble size of 10 (m = 10). Single crops of the center of images were used for 

the experiments. Evaluation was performed on six pre-trained networks from the Keras 

library[4]: DenseNet121, DenseNet169 [17], InceptionV3 [44], ResNet50 [13], VGG16, 

and VGG19 [43]. For all pre-trained networks, Gaussian perturbations were added to the 

weights of all convolutional layers. Table 1 summarizes the optimized T and σ values, model 

calibration in terms of NLL, Brier score, and classification errors. For all the pre-trained 

networks, except VGG19, PEP achieves statistically significant improvements in calibration 

compared to the baseline and temperature scaling. Note the reduction in top-1 error of 

DenseNet169 by about 1.5 percentage points, and the reduction in all top-1 errors. Figure 2 

shows the reliability diagram for DenseNet169, before and after calibration with PEP with 

some corrected misclassification examples.

3.2 MNIST and CIFAR experiments—The MNIST handwritten digits [27] and fashion 

MNIST [47] datasets consist of 60,000 training images and 10,000 test images. The 

CIFAR-10 and CIFAR-100 datasets [24] consists of 50,000 training images and 10,000 

test images. We created validation sets by setting aside 10,000 and 5,000 training images 

from MNIST (handwritten and fashion) and CIFAR, respectively. For the handwritten 

MNIST dataset, the predictive uncertainty was evaluated for two different neural networks: a 

Multilayer Perception (MLP) and a Convolutional Neural Network (CNN) similar to LeNet 

[29] but with smaller kernel sizes. The MLP is similar to the one used in [26] and has 3 

hidden layers with 200 neurons each, ReLu non-linearities, and BN after each layer. For 

MCD experiments, dropout layers were added after each hidden layer with 0.5 dropout rate 

as was suggested in [8]. The CNN for MNIST (handwritten and fashion) experiments has 

two convolutional layers with 32 and 64 kernels of sizes 3 × 3 with stride size of 1 followed 

by two fully connected layers (with 128 and 64 neurons each) with BN after both types 

of layers. Here, again for MCD experiments, dropout was added after all layers with 0.5 

dropout rate, except the first and last layers. For the CIFAR-10 and CIFAR-100 dataset, 

the CNN architecture has 2 convolutional layers with 16 kernels of size 3 × 3 followed 

by a max-pooling of 2 × 2; another 2 convolutional layers with 32 kernels of size 3 × 3 

followed by a max-pooling of size 2 × 2 and a dense layers of size 128, and finally, a dense 

layer of 10 for CIFAR-10 and 100 for CIFAR-100. BN was applied to all convolutional 

layers. For MCD experiments, dropout was added similar to CNN for MNIST experiments. 

Each network was trained and evaluated 25 times with different initializations of parameters 

(weights and biases) and random shuffling of the training data. For optimization, stochastic 

gradient descent with the Adam update rule [22] was used. Each baseline was trained for 

15 epochs. The training was carried out for another 25 rounds with dropout for MCD 

experiments. Models trained and evaluated with active dropout layers were used for MCD 
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evaluation only, and baselines without dropout were used for the rest of the experiments. 

The Deep Ensembles method was tested by averaging the output of the 10 baseline models. 

MCD was tested on 25 models and the performance was averaged over all 25 models. 

Temperature scaling and PEP were tested on the 25 trained baseline models without dropout 

and the results were averaged.

Table 2 compares the calibration quality and test errors of baselines, PEP, temperature 

scaling [12], MCD [8], Stochastic Weight Averaging (SWA) [19], and Deep Ensembles [26]. 

The averages and standard deviation values for NLL, Brier score, and ECE% are provided. 

For all cases, it can be seen that PEP achieves better calibration in terms of lower NLL 

compared to the baseline. Deep Ensembles achieves the best NLL and classification errors 

in all the experiments. Compared to the baseline, temperature scaling and MCD improve 

calibration in terms of NLL for all three experiments.

Non-Gaussian Distributions

We performed limited experiments to test the effect of of using non-Gaussian distributions. 

We tried perturbing by a uniform distribution with MNIST (MLP) and observed similar 

performance to a normal distribution. Further tests with additional benchmarks and 

architectures are needed for conclusive findings.

Effect of Overfitting on PEP effect

We ran experiments to quantify the effect of overfitting on PEP effect, and optimized σ 
values. For the MNIST and CIFAR-10 experiments, model checkpoints were saved at the 

end of each epoch. Different levels of overfitting as a result of over-training were observed 

for the three experiments. σ* was calculated for each epoch and PEP was performed and 

the PEP effect was measured. Figure 3 (a), shows the effect of calibration and reducing 

NLL for CIFAR-10 models. Figures 3 (b–d) shows that PEP effect increases with overfitting. 

Furthermore, we observed that the σ* values also increase with overfitting, meaning that 

larger perturbations are required for more overfitting.

Out-of-distribution detection

We performed experiments similar to Maddox et al. [32] for out-of-distribution detection. 

We trained a WideResNet-28x10 on data from five classes of the CIFAR-10 dataset and then 

evaluated on the whole test set. We measured the symmetrized Kullback–Leibler divergence 

(KLD) between the in-distribution and out-of-distributions samples. The results show that 

using PEP, KLD increased from 0.47 (baseline) to 0.72. In the same experiment temperature 

scaling increased KLD to 0.71.

4 Conclusion

We proposed PEP for improving calibration and performance in deep learning. PEP 

is computationally inexpensive and can be applied to any pre-trained network. On 

classification problems, we show that PEP effectively improves probabilistic predictions 

in terms of log-likelihood, Brier score, and expected calibration error. It also nearly always 

provides small improvements in accuracy for pre-trained ImageNet networks. We observe 
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that the optimal size of perturbation and the log-likelihood increase from the ensemble 

correlates with the amount of overfitting. Finally, PEP can be used as a tool to investigate the 

curvature properties of the likelihood landscape.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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6

Broader Impact

Training large networks can be highly compute intensive, so improved performance and 

calibration by ensembling approaches that use additional training, e.g., deep ensembling, 

can potentially cause undesirable contributions to the carbon footprint. In this setting, 

PEP can be seen as a way to reduce training costs, though prediction time costs are 

increased, which might matter if the resulting network is very heavily used. Because it is 

easy to apply, and no additional training (or access to the training data) is needed, PEP 

provides a safe way to tune or improve a network that was trained on sensitive data, e.g., 

protected health information. Similarly, PEP may be useful in competitions to gain a mild 

advantage in performance.
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Figure 1: 
Parameter Ensembling by Perturbation (PEP) on pre-trained InceptionV3 [44]. The rectangle 

shaded in gray in (a) is shown in greater detail in (b). The average log-likelihood of the 

ensemble average, L(σ), has a well-defined maximum at σ = 1.85 × 10−3. The ensemble 

also has a noticeable increase in likelihood over the individual ensemble item average 

log-likelihoods, (ln(L)) and over their average. In this experiment, an ensemble size of 5 (M 

= 5) was used for PEP and the experiments were run on 5000 validation images.
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Figure 2: 
Improving pre-trained DenseNet169 with PEP (M=10). (a) and (b) show the reliability 

diagrams of the baseline and the PEP. (c) shows examples of misclassifications corrected 

by PEP. The examples were among those with the largest PEP effect on the correct class 

probability. (c) Top row: brown bear and lampshade changed into Irish terrier and boathouse; 

Middle row: band aid and pomegranate changed into sandal and strawberry; Bottom row: 

bathing cap and wall clock changed into volleyball and pinwheel. The histograms at the right 

of each image illustrate the probability distribution of ensemble. Vertical red and green lines 

show the predicted class probabilities of the baseline and the PEP for the correct class label. 

(For more reliability diagrams see Supplementary Material.)
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Figure 3: 
The relationship between overfitting and PEP effect. (a) shows the average of NLLs on test 

set for CIFAR-10 baselines (red line) and PEP L (black line). The baseline curve shows 

overfitting as a result of overtraining. The degree of overfitting was calculated by subtracting 

the training NLL (loss) from the test NLL (loss). PEP reduces the effect of overfitting and 

improves log-likelihood. The PEP effect is more substantial as the overfitting grows. (b), (c), 

and (d) show scatter plots of overfitting vs PEP effect for CIFAR-10, MNIST(MLP), and 

MNIST(CNN), respectively.
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Table 1:

ImageNet results: For all models except VGG19, PEP achieves statistically significant improvements in 

calibration compared to baseline (BL) and temperature scaling (TS), in terms of NLL and Brier score. PEP 

also reduces test errors, while TS does not have any effect on test errors. Although TS and PEP outperform 

baseline in terms of ECE% for DenseNet121, DenseNet169, ResNet, and VGG16, the improvements in ECE% 

is not consistent among the methods. T* and σ* denote optimized temperature for TS and optimized sigma 

for PEP, respectively. Boldfaced font indicates the best results for each metric of a model and shows that the 

differences are statistically significant (p-value<0.05).

σ* Negative log-likelihood Brier score ECE% Top-1 error %

Model T* ×10−3 BL TS PEP BL TS PEP BL TS PEP BL PEP

DenseNet121 1.10 1.94 1.030 1.018 0.997 0.357 0.356 0.349 3.47 1.52 2.03 25.73 25.13

DenseNet169 1.23 2.90 1.035 1.007 0.940 0.354 0.350 0.331 5.47 1.75 2.35 25.31 23.74

IncepttionV3 0.91 1.94 0.994 0.975 0.950 0.328 0.328 0.317 1.80 4.19 2.46 22.96 22.26

ResNet50 1.19 2.60 1.084 1.057 1.023 0.365 0.362 0.350 5.08 1.97 2.94 26.09 25.18

VGG16 1.09 1.84 1.199 1.193 1.164 0.399 0.399 0.391 2.52 2.08 1.64 29.39 28.83

VGG19 1.09 1.03 1.176 1.171 1.165 0.394 0.394 0.391 4.77 4.50 4.48 28.99 28.75
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Table 2:

MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100 results. The table summarizes experiments described in 

Section 3.2.

Experiment Baseline PEP Temp. Scaling MCD SWA Deep Ensembles

NLL

MNIST (MLP) 0.096 ± 0.01 0.079 ± 0.01 0.074 ± 0.01 0.094 ± 0.00 0.067 ± 0.00 0.044 ± 0.00

MNIST (CNN) 0.036 ± 0.00 0.034 ± 0.00 0.032 ± 0.00 0.031 ± 0.00 0.028 ± 0.00 0.021 ± 0.00

Fashion MNIST 0.360 ± 0.01 0.275 ± 0.01 0.271 ± 0.01 0.218 ± 0.01 0.277 ± 0.01 0.198 ± 0.00

CIFAR-10 1.063 ± 0.03 0.982 ± 0.02 0.956 ± 0.02 0.798 ± 0.01 0.827 ± 0.01 0.709 ± 0.00

CIFAR-100 2.685 ± 0.03 2.651 ± 0.03 2.606 ± 0.03 2.435 ± 0.03 2.314 ± 0.02 2.159 ± 0.01

Brier

MNIST (MLP) 0.037 ± 0.00 0.035 ± 0.00 0.035 ± 0.00 0.040 ± 0.00 0.032 ± 0.00 0.020 ± 0.00

MNIST (CNN) 0.016 ± 0.00 0.015 ± 0.00 0.015 ± 0.00 0.014 ± 0.00 0.013 ± 0.00 0.010 ± 0.00

Fashion MNIST 0.137 ± 0.01 0.127 ± 0.01 0.126 ± 0.00 0.111 ± 0.00 0.121 ± 0.00 0.096 ± 0.00

CIFAR-10 0.469 ± 0.01 0.450 ± 0.01 0.447 ± 0.01 0.381 ± 0.01 0.373 ± 0.00 0.335 ± 0.00

CIFAR-100 0.795 ± 0.01 0.786 ± 0.01 0.782 ± 0.01 0.768 ± 0.01 0.723 ± 0.00 0.695 ± 0.00

ECE %

MNIST (MLP) 1.324 ± 0.16 0.528 ± 0.12 0.415 ± 0.10 2.569 ± 0.17 0.536 ± 0.08 0.839 ± 0.08

MNIST (CNN) 0.517 ± 0.07 0.366 ± 0.08 0.259 ± 0.06 0.832 ± 0.06 0.282 ± 0.04 0.287 ± 0.05

Fashion MNIST 5.269 ± 0.22 1.784 ± 0.54 1.098 ± 0.18 1.466 ± 0.30 3.988 ± 0.11 0.942 ± 0.13

CIFAR-10 11.718 ± 0.72 4.599 ± 0.82 1.318 ± 0.26 7.109 ± 0.62 8.655 ± 0.29 8.867 ± 0.23

CIFAR-100 9.780 ± 0.69 5.535 ± 0.50 2.012 ± 0.31 12.608 ± 0.59 7.180 ± 0.48 11.954 ± 0.29

Classification Error %

MNIST (MLP) 2.264 ± 0.22 2.286 ± 0.24 2.264 ± 0.22 2.452 ± 0.14 2.082 ± 0.10 1.285 ± 0.05

MNIST (CNN) 0.990 ± 0.13 0.990 ± 0.12 0.990 ± 0.13 0.842 ± 0.06 0.868 ± 0.06 0.659 ± 0.03

Fashion MNIST 8.420 ± 0.32 8.522 ± 0.34 8.420 ± 0.32 7.692 ± 0.34 7.734 ± 0.11 6.508 ± 0.10

CIFAR-10 33.023 ± 0.68 32.949 ± 0.74 33.023 ± 0.68 27.207 ± 0.66 26.004 ± 0.36 22.880 ± 0.21

CIFAR-100 64.843 ± 0.69 64.789 ± 0.69 64.843 ± 0.69 60.772 ± 0.58 58.092 ± 0.42 53.917 ± 0.30
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