
PEP: Parameter Ensembling by Perturbation

Alireza Mehrtash1,2, Purang Abolmaesumi1, Polina Golland3, Tina Kapur2, Demian
Wassermann4, William M. Wells III2,3

1ECE Department, University of British Columbia (UBC), Vancouver, BC

2Department of Radiology, BWH, Harvard Medical School, Boston, MA

3CSAIL, MIT, Boston, MA

4INRIA Saclay, Palaiseau, France

Abstract

Ensembling is now recognized as an effective approach for increasing the predictive performance

and calibration of deep networks. We introduce a new approach, Parameter Ensembling by

Perturbation (PEP), that constructs an ensemble of parameter values as random perturbations

of the optimal parameter set from training by a Gaussian with a single variance parameter. The

variance is chosen to maximize the log-likelihood of the ensemble average (L) on the validation

data set. Empirically, and perhaps surprisingly, L has a well-defined maximum as the variance

grows from zero (which corresponds to the baseline model). Conveniently, calibration level of

predictions also tends to grow favorably until the peak of L is reached. In most experiments, PEP

provides a small improvement in performance, and, in some cases, a substantial improvement in

empirical calibration. We show that this “PEP effect” (the gain in log-likelihood) is related to

the mean curvature of the likelihood function and the empirical Fisher information. Experiments

on ImageNet pre-trained networks including ResNet, DenseNet, and Inception showed improved

calibration and likelihood. We further observed a mild improvement in classification accuracy on

these networks. Experiments on classification benchmarks such as MNIST and CIFAR-10 showed

improved calibration and likelihood, as well as the relationship between the PEP effect and

overfitting; this demonstrates that PEP can be used to probe the level of overfitting that occurred

during training. In general, no special training procedure or network architecture is needed, and in

the case of pre-trained networks, no additional training is needed.

1 Introduction

Deep neural networks have achieved remarkable success on many classification and

regression tasks [28]. In the usual usage, the parameters of a conditional probability model

are optimized by maximum likelihood on large amounts of training data [10]. Subsequently

the model, in combination with the optimal parameters, is used for inference. Unfortunately,

this approach ignores uncertainty in the value of the estimated parameters; as a consequence

over-fitting may occur and the results of inference may be overly confident. In some

mehrtash@bwh.harvard.edu .

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

Published in final edited form as:
Adv Neural Inf Process Syst. 2020 December ; 33: 8895–8906.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

domains, for example medical applications, or automated driving, overconfidence can be

dangerous [1].

Probabilistic predictions can be characterized by their level of calibration, an empirical

measure of consistency with outcomes, and work by Guo et al. shows that modern neural

networks (NN) are often poorly calibrated, and that a simple one-parameter temperature
scaling method can improve their calibration level [12]. Explicitly Bayesian approaches

such as Monte Carlo Dropout (MCD) [8] have been developed that can improve likelihoods

or calibration. MCD approximates a Gaussian process at inference time by running the

model several times with active dropout layers. Similar to the MCD method [8], Teye

et al. [45] showed that training NNs with batch normalization (BN) [18] can be used to

approximate inference with Bayesian NNs. Directly related to the problem of uncertainty

estimation, several works have studied out-of-distribution detection. Hendrycks and Gimpel

[14] used softmax prediction probability baseline to effectively predict misclassification

and out-of-distribution in test examples. Liang et al. [31] used temperature scaling and

input perturbations to enhance the baseline method of Hendrycks and Gimpel [14]. In

a recent work, Rohekar et al. [39] proposed a method for confounding training in deep

NNs by sharing neural connectivity between generative and discriminative components.

They showed that using their BRAINet architecture, which is a hierarchy of deep neural

connections, can improve uncertainty estimation. Hendrycks et al. [15] showed that using

pre-training can improve uncertainty estimation. Thulasidasan et al. [46] showed that mixed

up training can improve calibration and predictive uncertainty of models. Corbière et al. [5]

proposed True Class Probability as an alternative for classic Maximum Class Probability.

They showed that learning the proposed criterion can improve model confidence and failure

prediction. Raghu et al. [37] proposed a method for direct uncertainty prediction that can

be used for medical second opinions. They showed that deep NNs can be trained to predict

uncertainty scores of data instances that have high human reader disagreement.

Ensemble methods [6] are regarded as a straightforward way to increase the performance

of base networks and have been used by the top performers in imaging challenges such as

ILSVRC [44]. The approach typically prepares an ensemble of parameter values that are

used at inference-time to make multiple predictions, using the same base network. Different

methods for ensembling have been proposed for improving model performance, such as

M-heads [30] and Snapshot Ensembles [16]. Following the success of ensembling methods

in improving baseline performance, Lakshminarayanan et al. proposed Deep Ensembles
in which model averaging is used to estimate predictive uncertainty [26]. By training

collections of models with random initialization of parameters and adversarial training, they

provided a simple approach to assess uncertainty.

Deep Ensembles and MCD have both been successfully used in several applications for

uncertainty estimation and calibration improvement. However, Deep Ensembles requires

retraining a model from scratch for several rounds, which is computationally expensive for

large datasets and complex models. Moreover, Deep Ensembles cannot be used to calibrate

pre-trained networks for which the training data is not available. MCD requires the network

architecture to have dropout layers, hence there is a need for network modification if the

original architecture does not have dropout layers. In many modern networks, BN removes

Mehrtash et al. Page 2

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the need for dropout [18]. It is also challenging or not feasible in some cases to use MCD on

out-of-the-box pre-trained networks.

Gaussians are an attractive choice of distribution for going beyond point estimates of

network parameters – they are easily sampled to approximate the marginalization that is

needed for predictions, and the Laplace approximation can be used to characterize the

covariance by using the Hessian of the loss function. Kristiadi et al. [23] support this

approach for mitigating the overconfidence of ReLU-based networks. They use a Laplace

approximation that is based on the last layer of the network that provides improvements to

predictive uncertainty and observe that “a sufficient condition for a calibrated uncertainty

on a ReLU network is to be a bit Bayesian.” Ritter et al. [38] use a Laplace approach with

a layer-wise Kronecker factorization of the covariance that scales only with the square of

the size of network layers and obtain improvements similar to dropout. Izmailov et al. [19]

describe a stochastic weight averaging Stochastic Weight Averaging (SWA) approach that

averages in weight space rather than in model space such as ensembling approaches and

approaches that sample distributions on parameters. Averages are calculated over weights

observed during training via SGD, leading to wider optima and better generalization in

experiments on CIFAR10, CIFAR100 and ImageNet. Building on SWA, Maddox et al.

[32] describe Stochastic Weight Averaging-Gaussian (SWAG) that constructs a Gaussian

approximation to the posterior on weights. It uses SWA to estimate the first moment on

weights combined with a low-rank plus diagonal covariance estimate. They show that

SWAG is useful for out of sample detection, calibration and transfer learning.

In this work, we propose Parameter Ensembling by Perturbation (PEP) for deep learning,

a simple ensembling approach that uses random perturbations of the optimal parameters

from a single training run. PEP is perhaps the simplest possible Laplace approximation - an

isotropic Gaussian with one variance parameter, though we set the parameter with simple

ML/cross-validation rather than by calculating curvature. Parameter perturbation approaches

have been previously used in climate research [33, 2] and they have been used to good effect

in variational Bayesian deep learning [21] and to improve adversarial robustness [20].

Unlike MCD which needs dropout at training, PEP can be applied to any pre-trained

network without restrictions on the use of dropout layers. Unlike Deep Ensembles, PEP

needs only one training run. PEP can provide improved log-likelihood and calibration for

classification problems, without the need for specialized or additional training, substantially

reducing the computational expense of ensembling. We show empirically that the log-

likelihood of the ensemble average (L) on hold-out validation and test data grows initially

from that of the baseline model to a well-defined peak as the spread of the parameter

ensemble increases. We also show that PEP may be used to probe curvature properties of

the likelihood landscape. We conduct experiments on deep and large networks that have

been trained on ImageNet (ILSVRC2012) [40] to assess the utility of PEP for improvements

on calibration and log-likelihoods. The results show that PEP can be used for probability

calibration on pre-trained networks such as DenseNet [17], Inception [44], ResNet [13],

and VGG [43]. Improvements in log-likelihood range from small to significant but they

are almost always observed in our experiments. To compare PEP with MCD and Deep

Ensembles, we ran experiments on classification benchmarks such as MNIST and CIFAR-10

Mehrtash et al. Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which are small enough for us to re-train and add dropout layers. We carried out an

experiment with non-Gaussian perturbations We performed further experiments to study

the relationship between over-fitting and the “PEP effect,” (the gain in log likelihood over

the baseline model) where we observe larger PEP effects for models with higher levels of

over-fitting, and finally, we showd that PEP can improve out-of-distribution detection.

To the best of our knowledge, this is the first report of using ensembles of perturbed

deep nets as an accessible and computationally inexpensive method for calibration and

performance improvement. Our method is potentially most useful when the cost of training

from scratch is too high in terms of effort or carbon footprint.

2 Method

In this section, we describe the PEP model and analyze local properties of the resulting

PEP effect (the gain in log-likelihood over the comparison baseline model). In summary

PEP is formulated in the Bayes’ network (hierarchical model) framework; it constructs

ensembles by Gaussian perturbations of the optimal parameters from training. The single

variance parameter is chosen to maximize the likelihood of ensemble average predictions

on validation data, which, empirically, has a well-defined maximum. PEP can be applied to

any pre-trained network; only one standard training run is needed, and no special training or

network architecture is needed.

2.1 Baseline Model

We begin with a standard discriminative model, e.g., a classifier that predicts a distribution

on yi given an observation xi,

p yi; xi, θ . (1)

Training is conventionally accomplished by maximum likelihood,

θ∗ ≐ argmax
θ

ℒ(θ) where the log − likelihood is: ℒ(θ) ≐ ∑
i

ln Li(θ), (2)

and Li(θ) ≐ p yi; xi, θ are the individual likelihoods. Subsequent predictions are made with

the model using θ*.

2.2 Hierarchical Model

Empirically, different optimal values of θ are obtained on different data sets; we aim to

model this variability with a very simple parametric model – an isotropic normal distribution

with mean and scalar variance parameters,

p(θ; θ, σ) ≐ N θ; θ, σ2I . (3)

The product of Eqs. 1 and 3 specifies a joint distribution on yi and θ; from this we can obtain

model predictions by marginalizing over θ, which leads to

Mehrtash et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

p yi; xi, θ, σ = Eθ ∼ N θ, σ2I p yi; xi, θ . (4)

We approximate the expectation by a sample average,

p yi; xi, θ, σ ≈ 1
m ∑

j
p yi; xi, θj where θj = 1

m
IID N θ, σ2I , (5)

i.e., the predictions are made by averaging over the predictions of an ensemble. The log-

likelihood of the ensemble prediction as a function of σ is then

L(σ) ≐ ∑
i

ln 1
m ∑

j
Li θj where θj = 1

m
IID N θ, σ2I (6)

(dependence on θ is suppressed for clarity). Throughout most of paper we will use i to index

data items, j to index ensemble of parameters, and m to indicate the size of the ensemble. We

estimate the model parameters as follows. First we optimize θ with σ fixed at zero using a

training data set (when σ 0 the θj θ), then

θ∗ = argmax
θ

∑
i

ln p yi; xi, θ , (7)

which is equivalent to maximum likelihood parameter estimation of the base model. Next we

optimize over σ, (using a validation data set), with θ fixed at the previous estimate, θ*,

σ∗ = argmax
σ

∑
i

ln 1
m ∑

θj
p yi; xi, θj where θj = 1

m
IID N θ∗, σ2I . (8)

Then at test time the ensemble prediction is

p yi; xi, θ∗, σ∗ ≈ 1
m ∑

θj
p yi; xi, θj where θj = 1

m
IID N θ∗, σ ∗ 2I . (9)

In our experiments, perhaps somewhat surprisingly, L(σ) has a well-defined maximum away

from σ = 0 (which corresponds to the baseline model). As σ grows from 0, L(σ) rises to

a well-defined peak value, then falls dramatically (Figure 1). Conveniently, the calibration

quality tends to grow favorably until the L(σ) peak is reached. It may be that L(σ) initially

grows because the classifiers corresponding to the ensemble parameters remain accurate,

and the ensemble performs better as the classifiers become more independent [6]. Figure 1

shows L(σ) for experiments with InceptionV3 [44], along with the average log-likelihoods

(ln(L)) of the individual ensemble members. Note that in the figures, in the current machine

learning style, we have used averaged log-likelihoods, while in this section we use the

estimation literature convention that log-likelihoods are summed rather than averaged. We

can see that for several members, ln(L) grows somewhat initially, this indicates that the

Mehrtash et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

optimal parameter from training is not optimal for the validation data. Interestingly, the

ensemble has a more robust increase, which persists over scale substantially longer than

for the individual networks. We have observed this L(σ) “increase to peak” phenomenon in

many experiments with a wide variety of networks.

2.3 Local Analysis

In this section, we analyze the nature of the PEP effect in the neighborhood of θ*. Returning

to the log-likelihood of a PEP ensemble (Eq. 6), and “undoing” the approximation by

sample average,

L(σ) ≈ ∑
i

ln Eθ ∼ N θ∗, σ2I Li(θ) . (10)

Next, we develop a local approximation to the expected value of the log-likelihood. The

following formula is derived in the Appendix (Eq 5) using a second-order Taylor expansion

about the mean.

For x ~ N(μ, Σ)

Ex[f(x)] ≈ f(μ) + 1
2TR(Hf(μ)Σ), (11)

where Hf(x) is the Hessian of f(x) and TR is the trace. In the special case that Σ = σ2I,

Ex[f(x)] ≈ f(μ) + σ2

2 Δ f(μ) (12)

where Δ is the Laplacian, or mean curvature. The appendix shows that the third Taylor term

vanishes due to Gaussian properties, so that the approximation residual is O σ4∂4f(μ) where

∂4 is a specific fourth derivative operator.

Applying this to the log-likelihood in Eq. 10 yields

L(σ) ≈ ∑
i

ln Li θ∗ + σ2

2 Δ Li θ∗ ≈ ∑
i

ln Li θ∗ + σ2

2
Δ Li θ∗

Li θ∗ (13)

(to first order), or

L(σ) ≈ ℒ θ∗ + Bσ θ∗ , (14)

where ℒ(θ) is the log-likelihood of the base model (Eq. 2) and

Bσ(θ) ≐ σ2

2 ∑
i

ΔLi(θ)
Li(θ) (15)

Mehrtash et al. Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is the “PEP effect.” Note that its value may be dominated by data items that have low

likelihood, perhaps because they are difficult cases, or incorrectly labeled. Next we establish

a relationship between the PEP effect and the Laplacian of the log-likelihood of the base

model. From Appendix (Eq 34),

Δ ℒ(θ) = ∑
i

ΔLi(θ)
Li(θ) − ∇ ln Li(θ) 2

(16)

(here the square in the second term on the right is the dot product of two gradients) Then

Δ ℒ(θ) = 2
σ2Bσ(θ) − ∑

i
∇ ln Li(θ) 2

or

Bσ(θ) = σ2

2 Δ ℒ(θ) + ∑
i

∇ ln Li(θ) 2 . (18)

The empirical Fisher information (FI) is defined in terms of the outer product of gradients as

F(θ) ≐ ∑
i

∇ ln Li(θ)∇ ln Li(θ)T
(19)

(see [25]). So, the second term above in Eq. 18 is the trace of the empirical FI. Then finally

the PEP effect can be expressed as

Bσ(θ) = σ2

2 Δ ℒ(θ) + TR(F(θ)) . (20)

The first term of the PEP effect in Eq. 20, the mean curvature of the log-likelihood, can be

positive or negative, (we expect it to be negative near the mode), while the second term, the

trace of the empirical Fisher information, is non-negative. As the sum of squared gradients,

we may expect the second term to grow as θ moves away from the mode.

The first term may also be seen as a (negative) trace of an empirical FI. If the sum is

converted to an average it approximates an expectation that is equal to the negative of the

trace of the Hessian form of the FI, while the second term is the trace of a different empirical

FI. Empirical FI are said to be most accurate at the mode of the log-likelihood [25]. So, if θ*

is close to the log-likelihood mode on the new data, we may expect the terms to cancel. If θ*

is farther from the log-likelihood mode on the new data, they may no longer cancel.

Next, we discuss two cases, in both we examine the log-likelihood of the validation data,

ℒ(θ), at θ*, the result of optimization on the training data. In general, θ* will not coincide

with the mode of the log-likelihood of the validation data. Case 1: θ* is ‘close’ to the

mode of the validation data, so we expect the mean curvature to be negative. Case 2: θ* is

‘not close’ to the mode of the validation data, so the mean curvature may be positive. We

Mehrtash et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

conjecture that case 1 characterizes the likelihood landscape on new data when the baseline

model is not overfitted, and that case 2 is characteristic of an overfitted model (where,

empirically, we observe positive PEP effect).

As these are local characterizations, they are only valid near θ*. While the analysis may

predict PEP effect for small σ, as it grows, and the θj move farther from the mode, the

log-likelihood will inevitably decrease dramatically (and there will be a peak value between

the two regimes).

There has been a lot of work recently concerning the curvature properties of the log-

likelihood landscape. Gorbani et al. point out that “Hessian of training loss … is crucial in

determining many behaviors of neural networks”; they provide tools to analyze the Hessian

spectrum and point out characteristics associated with networks trained with BN [9]. Sagun

et al. [41] show that there is a ‘bulk’ of zero valued eigenvalues of the Hessian that can be

used to analyze overparameterization, and in a related paper discuss implications that “shed

light on the geometry of high-dimensional and non-convex spaces in modern applications”

[42]. Goodfellow et al. [11] report on experiments that characterize the loss landscape by

interpolating among parameter values, either from the initial to final values or between

different local minima. Some of these demonstrate convexity of the loss function along

the line segment, and they suggest that the optimization problems are less difficult than

previously thought. Fort et al. [7] analyze Deep Ensembles from the perspective of the loss

landscape, discussing multiple modes and associated connectors among them. While the

entire Hessian spectrum is of interest, some insights may be gained from the avenues to

characterizing the mean curvature that PEP provides.

3 Experiments

This section reports performance of PEP, and compares it to temperature scaling [12], MCD

[8], and Deep Ensembles [26], as appropriate. The first set of results are on ImageNet

pre-trained networks where the only comparison is with temperature scaling (no training

of the baselines was carried out so MCD and Deep Ensembles were not evaluated). Then

we report performance on smaller networks, MNIST and CIFAR-10, where we compare to

MCD and Deep Ensembles as well. We also show that the PEP effect is strongly related to

the degree of overfitting of the baseline networks.

Evaluation metrics:

Model calibration was evaluated with negative log-likelihood (NLL), Brier score [3] and

reliability diagrams [34]. NLL and Brier score are proper scoring rules that are commonly

used for measuring the quality of classification uncertainty [36, 26, 8, 12]. Reliability

diagrams plot expected accuracy as a function of class probability (confidence), and perfect

calibration is achieved when confidence (x-axis) matches expected accuracy (y-axis) exactly

[34, 12]. Expected Calibration Error (ECE) is used to summarize the results of the reliability

diagram. Details of evaluation metrics are given in the Supplementary Material (Appendix

B).

Mehrtash et al. Page 8

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.1 ImageNet experiments—We evaluated the performance of PEP using large scale

networks that were trained on ImageNet (ILSVRC2012) [40] dataset. We used the subset of

50,000 validation images and labels that is included in the development kit of ILSVRC2012.

From the 50,000 images, 5,000 images were used as a validation set for optimizing σ in

PEP, and temperature T in temperature scaling. The remaining 45,000 images were used

as the test set. Golden section search [35] was used to find the σ* that maximizes L(σ).
The search range for σ was 5×10−5 −5×10−3, ensemble size was 5 (m = 5), and number

of iterations was 7. On the test set with 45,000 images, PEP was evaluated using σ* and

with ensemble size of 10 (m = 10). Single crops of the center of images were used for

the experiments. Evaluation was performed on six pre-trained networks from the Keras

library[4]: DenseNet121, DenseNet169 [17], InceptionV3 [44], ResNet50 [13], VGG16,

and VGG19 [43]. For all pre-trained networks, Gaussian perturbations were added to the

weights of all convolutional layers. Table 1 summarizes the optimized T and σ values, model

calibration in terms of NLL, Brier score, and classification errors. For all the pre-trained

networks, except VGG19, PEP achieves statistically significant improvements in calibration

compared to the baseline and temperature scaling. Note the reduction in top-1 error of

DenseNet169 by about 1.5 percentage points, and the reduction in all top-1 errors. Figure 2

shows the reliability diagram for DenseNet169, before and after calibration with PEP with

some corrected misclassification examples.

3.2 MNIST and CIFAR experiments—The MNIST handwritten digits [27] and fashion

MNIST [47] datasets consist of 60,000 training images and 10,000 test images. The

CIFAR-10 and CIFAR-100 datasets [24] consists of 50,000 training images and 10,000

test images. We created validation sets by setting aside 10,000 and 5,000 training images

from MNIST (handwritten and fashion) and CIFAR, respectively. For the handwritten

MNIST dataset, the predictive uncertainty was evaluated for two different neural networks: a

Multilayer Perception (MLP) and a Convolutional Neural Network (CNN) similar to LeNet

[29] but with smaller kernel sizes. The MLP is similar to the one used in [26] and has 3

hidden layers with 200 neurons each, ReLu non-linearities, and BN after each layer. For

MCD experiments, dropout layers were added after each hidden layer with 0.5 dropout rate

as was suggested in [8]. The CNN for MNIST (handwritten and fashion) experiments has

two convolutional layers with 32 and 64 kernels of sizes 3 × 3 with stride size of 1 followed

by two fully connected layers (with 128 and 64 neurons each) with BN after both types

of layers. Here, again for MCD experiments, dropout was added after all layers with 0.5

dropout rate, except the first and last layers. For the CIFAR-10 and CIFAR-100 dataset,

the CNN architecture has 2 convolutional layers with 16 kernels of size 3 × 3 followed

by a max-pooling of 2 × 2; another 2 convolutional layers with 32 kernels of size 3 × 3

followed by a max-pooling of size 2 × 2 and a dense layers of size 128, and finally, a dense

layer of 10 for CIFAR-10 and 100 for CIFAR-100. BN was applied to all convolutional

layers. For MCD experiments, dropout was added similar to CNN for MNIST experiments.

Each network was trained and evaluated 25 times with different initializations of parameters

(weights and biases) and random shuffling of the training data. For optimization, stochastic

gradient descent with the Adam update rule [22] was used. Each baseline was trained for

15 epochs. The training was carried out for another 25 rounds with dropout for MCD

experiments. Models trained and evaluated with active dropout layers were used for MCD

Mehrtash et al. Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

evaluation only, and baselines without dropout were used for the rest of the experiments.

The Deep Ensembles method was tested by averaging the output of the 10 baseline models.

MCD was tested on 25 models and the performance was averaged over all 25 models.

Temperature scaling and PEP were tested on the 25 trained baseline models without dropout

and the results were averaged.

Table 2 compares the calibration quality and test errors of baselines, PEP, temperature

scaling [12], MCD [8], Stochastic Weight Averaging (SWA) [19], and Deep Ensembles [26].

The averages and standard deviation values for NLL, Brier score, and ECE% are provided.

For all cases, it can be seen that PEP achieves better calibration in terms of lower NLL

compared to the baseline. Deep Ensembles achieves the best NLL and classification errors

in all the experiments. Compared to the baseline, temperature scaling and MCD improve

calibration in terms of NLL for all three experiments.

Non-Gaussian Distributions

We performed limited experiments to test the effect of of using non-Gaussian distributions.

We tried perturbing by a uniform distribution with MNIST (MLP) and observed similar

performance to a normal distribution. Further tests with additional benchmarks and

architectures are needed for conclusive findings.

Effect of Overfitting on PEP effect

We ran experiments to quantify the effect of overfitting on PEP effect, and optimized σ
values. For the MNIST and CIFAR-10 experiments, model checkpoints were saved at the

end of each epoch. Different levels of overfitting as a result of over-training were observed

for the three experiments. σ* was calculated for each epoch and PEP was performed and

the PEP effect was measured. Figure 3 (a), shows the effect of calibration and reducing

NLL for CIFAR-10 models. Figures 3 (b–d) shows that PEP effect increases with overfitting.

Furthermore, we observed that the σ* values also increase with overfitting, meaning that

larger perturbations are required for more overfitting.

Out-of-distribution detection

We performed experiments similar to Maddox et al. [32] for out-of-distribution detection.

We trained a WideResNet-28x10 on data from five classes of the CIFAR-10 dataset and then

evaluated on the whole test set. We measured the symmetrized Kullback–Leibler divergence

(KLD) between the in-distribution and out-of-distributions samples. The results show that

using PEP, KLD increased from 0.47 (baseline) to 0.72. In the same experiment temperature

scaling increased KLD to 0.71.

4 Conclusion

We proposed PEP for improving calibration and performance in deep learning. PEP

is computationally inexpensive and can be applied to any pre-trained network. On

classification problems, we show that PEP effectively improves probabilistic predictions

in terms of log-likelihood, Brier score, and expected calibration error. It also nearly always

provides small improvements in accuracy for pre-trained ImageNet networks. We observe

Mehrtash et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that the optimal size of perturbation and the log-likelihood increase from the ensemble

correlates with the amount of overfitting. Finally, PEP can be used as a tool to investigate the

curvature properties of the likelihood landscape.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Research reported in this publication was supported by NIH Grant No. P41EB015898, Natural Sciences and
Engineering Research Council (NSERC) of Canada and the Canadian Institutes of Health Research (CIHR).

References

[1]. Amodei Dario, Olah Chris, Steinhardt Jacob, Christiano Paul, Schulman John, and Mané Dan.
Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

[2]. Bellprat Omar, Kotlarski Sven, Lüthi Daniel, and Schär Christoph. Exploring perturbed physics
ensembles in a regional climate model. Journal of Climate, 25(13):4582–4599, 2012.

[3]. Brier Glenn W. Verification of forecasts expressed in terms of probability. Monthly weather
review, 78(1):1–3, 1950.

[4]. Chollet François et al. Keras. https://keras.io, 2015.

[5]. Corbière Charles, Thome Nicolas, Bar-Hen Avner, Cord Matthieu, and Pérez Patrick. Addressing
failure prediction by learning model confidence. In Advances in Neural Information Processing
Systems, pages 2898–2909, 2019.

[6]. Dietterich Thomas G. Ensemble methods in machine learning. In International workshop on
multiple classifier systems, pages 1–15. Springer, 2000.

[7]. Fort Stanislav, Hu Huiyi, and Lakshminarayanan Balaji. Deep ensembles: A loss landscape
perspective. arXiv preprint arXiv:1912.02757, 2019.

[8]. Gal Yarin and Ghahramani Zoubin. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059,
2016.

[9]. Ghorbani Behrooz, Krishnan Shankar, and Xiao Ying. An investigation into neural net
optimization via hessian eigenvalue density. arXiv preprint arXiv:1901.10159, 2019.

[10]. Goodfellow Ian, Bengio Yoshua, and Courville Aaron. Deep Learning. MIT Press, 2016. http://
www.deeplearningbook.org.

[11]. Goodfellow Ian J, Vinyals Oriol, and Saxe Andrew M. Qualitatively characterizing neural
network optimization problems. arXiv preprint arXiv:1412.6544, 2014.

[12]. Guo Chuan, Pleiss Geoff, Sun Yu, and Weinberger Kilian Q. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1321–1330. JMLR.org, 2017.

[13]. He Kaiming, Zhang XRSSJ, Ren S, and Sun J. Deep residual learning for image recognition.
eprint. arXiv preprint arXiv:0706.1234, 2015.

[14]. Hendrycks Dan and Gimpel Kevin. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In 5th International Conference on Learning Representations, ICLR
2017, 2017.

[15]. Hendrycks Dan, Lee Kimin, and Mazeika Mantas. Using pre-training can improve model
robustness and uncertainty. arXiv preprint arXiv:1901.09960, 2019.

[16]. Huang Gao, Li Yixuan, Pleiss Geoff, Liu Zhuang, Hopcroft John E., and Weinberger Kilian
Q.. Snapshot ensembles: Train 1, get M for free. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

Mehrtash et al. Page 11

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://keras.io
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://JMLR.org
http://OpenReview.net

[17]. Huang Gao, Liu Zhuang, Van Der Maaten Laurens, and Weinberger Kilian Q. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[18]. Ioffe Sergey and Szegedy Christian. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456, 2015.

[19]. Izmailov Pavel, Podoprikhin Dmitrii, Garipov Timur, Vetrov Dmitry, and Wilson Andrew
Gordon. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

[20]. Jeddi Ahmadreza, Shafiee Mohammad Javad, Karg Michelle, Scharfenberger Christian, and
Wong Alexander. Learn2perturb: an end-to-end feature perturbation learning to improve
adversarial robustness. arXiv preprint arXiv:2003.01090, 2020.

[21]. Khan Mohammad Emtiyaz, Nielsen Didrik, Tangkaratt Voot, Lin Wu, Gal Yarin, and Srivastava
Akash. Fast and scalable bayesian deep learning by weight-perturbation in adam. arXiv preprint
arXiv:1806.04854, 2018.

[22]. Kingma D and Ba J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23]. Kristiadi Agustinus, Hein Matthias, and Hennig Philipp. Being bayesian, even just a bit, fixes
overconfidence in relu networks. arXiv preprint arXiv:2002.10118, 2020.

[24]. Krizhevsky Alex and Hinton Geoffrey. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[25]. Kunstner Frederik, Hennig Philipp, and Balles Lukas. Limitations of the empirical Fisher
approximation for natural gradient descent. In Advances in Neural Information Processing
Systems 32, pages 4156–4167. Curran Associates, Inc., 2019.

[26]. Lakshminarayanan Balaji, Pritzel Alexander, and Blundell Charles. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, pages 6402–6413, 2017.

[27]. LeCun Yann. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/,
1998.

[28]. LeCun Yann, Bengio Yoshua, and Hinton Geoffrey. Deep learning. nature, 521(7553):436, 2015.
[PubMed: 26017442]

[29]. LeCun Yann, Bottou Léon, Bengio Yoshua, Haffner Patrick, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[30]. Lee Stefan, Purushwalkam Senthil, Cogswell Michael, Crandall David, and Batra Dhruv. Why
M heads are better than one: Training a diverse ensemble of deep networks. arXiv preprint
arXiv:1511.06314, 2015.

[31]. Liang Shiyu, Li Yixuan, and Srikant R. Enhancing the reliability of out-of-distribution image
detection in neural networks. In 6th International Conference on Learning Representations, ICLR
2018, 2018.

[32]. Maddox Wesley J, Izmailov Pavel, Garipov Timur, Vetrov Dmitry P, and Wilson Andrew Gordon.
A simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems, pages 13153–13164, 2019.

[33]. Murphy J, Clark R, Collins M, Jackson C, Rodwell M, Rougier JC, Sanderson B, Sexton D,
and Yokohata T. Perturbed parameter ensembles as a tool for sampling model uncertainties and
making climate projections. In Proceedings of ECMWF Workshop on Model Uncertainty, pages
183–208, 2011.

[34]. Naeini Mahdi Pakdaman, Cooper Gregory F., and Hauskrecht Milos. Obtaining well calibrated
probabilities using Bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 2901–2907, 2015.

[35]. Press William H, Teukolsky Saul A, Vetterling William T, and Flannery Brian P. Numerical
recipes 3rd edition: The art of scientific computing. Cambridge university press, 2007.

[36]. Quinonero-Candela Joaquin, Rasmussen Carl Edward, Sinz Fabian, Bousquet Olivier, and
Schölkopf Bernhard. Evaluating predictive uncertainty challenge. In Machine Learning
Challenges Workshop, pages 1–27. Springer, 2005.

Mehrtash et al. Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://yann.lecun.com/exdb/mnist/

[37]. Raghu Maithra, Blumer Katy, Sayres Rory, Obermeyer Ziad, Kleinberg Bobby, Mullainathan
Sendhil, and Kleinberg Jon. Direct uncertainty prediction for medical second opinions. In
Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 5281–5290, Long Beach, California, USA,
09–15 Jun 2019. PMLR.

[38]. Ritter Hippolyt, Botev Aleksandar, and Barber David. A scalable laplace approximation for
neural networks. In 6th International Conference on Learning Representations, ICLR 2018-
Conference Track Proceedings, volume 6. International Conference on Representation Learning,
2018.

[39]. Rohekar Raanan Yehezkel, Gurwicz Yaniv, Nisimov Shami, and Novik Gal. Modeling
uncertainty by learning a hierarchy of deep neural connections. In Advances in Neural
Information Processing Systems, pages 4246–4256, 2019.

[40]. Russakovsky Olga, Deng Jia, Su Hao, Krause Jonathan, Satheesh Sanjeev, Ma Sean, Huang
Zhiheng, Karpathy Andrej, Khosla Aditya, Bernstein Michael, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[41]. Sagun Levent, Bottou Leon, and LeCun Yann. Eigenvalues of the hessian in deep learning:
Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016.

[42]. Sagun Levent, Evci Utku, Guney V Ugur, Dauphin Yann, and Bottou Leon. Empirical analysis of
the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

[43]. Simonyan Karen and Zisserman Andrew. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[44]. Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jonathon, and Wojna Zbigniew.
Rethinking the inception architecture for computer vision. arxiv 2015. arXiv preprint
arXiv:1512.00567, 1512, 2015.

[45]. Teye Mattias, Azizpour Hossein, and Smith Kevin. Bayesian uncertainty estimation for batch
normalized deep networks. In International Conference on Machine Learning, pages 4914–4923,
2018.

[46]. Thulasidasan Sunil, Chennupati Gopinath, Bilmes Jeff A, Bhattacharya Tanmoy, and Michalak
Sarah. On mixup training: Improved calibration and predictive uncertainty for deep neural
networks. In Advances in Neural Information Processing Systems, pages 13888–13899, 2019.

[47]. Xiao Han, Rasul Kashif, and Vollgraf Roland. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Mehrtash et al. Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6

Broader Impact

Training large networks can be highly compute intensive, so improved performance and

calibration by ensembling approaches that use additional training, e.g., deep ensembling,

can potentially cause undesirable contributions to the carbon footprint. In this setting,

PEP can be seen as a way to reduce training costs, though prediction time costs are

increased, which might matter if the resulting network is very heavily used. Because it is

easy to apply, and no additional training (or access to the training data) is needed, PEP

provides a safe way to tune or improve a network that was trained on sensitive data, e.g.,

protected health information. Similarly, PEP may be useful in competitions to gain a mild

advantage in performance.

Mehrtash et al. Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Parameter Ensembling by Perturbation (PEP) on pre-trained InceptionV3 [44]. The rectangle

shaded in gray in (a) is shown in greater detail in (b). The average log-likelihood of the

ensemble average, L(σ), has a well-defined maximum at σ = 1.85 × 10−3. The ensemble

also has a noticeable increase in likelihood over the individual ensemble item average

log-likelihoods, (ln(L)) and over their average. In this experiment, an ensemble size of 5 (M

= 5) was used for PEP and the experiments were run on 5000 validation images.

Mehrtash et al. Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Improving pre-trained DenseNet169 with PEP (M=10). (a) and (b) show the reliability

diagrams of the baseline and the PEP. (c) shows examples of misclassifications corrected

by PEP. The examples were among those with the largest PEP effect on the correct class

probability. (c) Top row: brown bear and lampshade changed into Irish terrier and boathouse;

Middle row: band aid and pomegranate changed into sandal and strawberry; Bottom row:

bathing cap and wall clock changed into volleyball and pinwheel. The histograms at the right

of each image illustrate the probability distribution of ensemble. Vertical red and green lines

show the predicted class probabilities of the baseline and the PEP for the correct class label.

(For more reliability diagrams see Supplementary Material.)

Mehrtash et al. Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
The relationship between overfitting and PEP effect. (a) shows the average of NLLs on test

set for CIFAR-10 baselines (red line) and PEP L (black line). The baseline curve shows

overfitting as a result of overtraining. The degree of overfitting was calculated by subtracting

the training NLL (loss) from the test NLL (loss). PEP reduces the effect of overfitting and

improves log-likelihood. The PEP effect is more substantial as the overfitting grows. (b), (c),

and (d) show scatter plots of overfitting vs PEP effect for CIFAR-10, MNIST(MLP), and

MNIST(CNN), respectively.

Mehrtash et al. Page 17

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mehrtash et al. Page 18

Table 1:

ImageNet results: For all models except VGG19, PEP achieves statistically significant improvements in

calibration compared to baseline (BL) and temperature scaling (TS), in terms of NLL and Brier score. PEP

also reduces test errors, while TS does not have any effect on test errors. Although TS and PEP outperform

baseline in terms of ECE% for DenseNet121, DenseNet169, ResNet, and VGG16, the improvements in ECE%

is not consistent among the methods. T* and σ* denote optimized temperature for TS and optimized sigma

for PEP, respectively. Boldfaced font indicates the best results for each metric of a model and shows that the

differences are statistically significant (p-value<0.05).

σ* Negative log-likelihood Brier score ECE% Top-1 error %

Model T* ×10−3 BL TS PEP BL TS PEP BL TS PEP BL PEP

DenseNet121 1.10 1.94 1.030 1.018 0.997 0.357 0.356 0.349 3.47 1.52 2.03 25.73 25.13

DenseNet169 1.23 2.90 1.035 1.007 0.940 0.354 0.350 0.331 5.47 1.75 2.35 25.31 23.74

IncepttionV3 0.91 1.94 0.994 0.975 0.950 0.328 0.328 0.317 1.80 4.19 2.46 22.96 22.26

ResNet50 1.19 2.60 1.084 1.057 1.023 0.365 0.362 0.350 5.08 1.97 2.94 26.09 25.18

VGG16 1.09 1.84 1.199 1.193 1.164 0.399 0.399 0.391 2.52 2.08 1.64 29.39 28.83

VGG19 1.09 1.03 1.176 1.171 1.165 0.394 0.394 0.391 4.77 4.50 4.48 28.99 28.75

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mehrtash et al. Page 19

Table 2:

MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100 results. The table summarizes experiments described in

Section 3.2.

Experiment Baseline PEP Temp. Scaling MCD SWA Deep Ensembles

NLL

MNIST (MLP) 0.096 ± 0.01 0.079 ± 0.01 0.074 ± 0.01 0.094 ± 0.00 0.067 ± 0.00 0.044 ± 0.00

MNIST (CNN) 0.036 ± 0.00 0.034 ± 0.00 0.032 ± 0.00 0.031 ± 0.00 0.028 ± 0.00 0.021 ± 0.00

Fashion MNIST 0.360 ± 0.01 0.275 ± 0.01 0.271 ± 0.01 0.218 ± 0.01 0.277 ± 0.01 0.198 ± 0.00

CIFAR-10 1.063 ± 0.03 0.982 ± 0.02 0.956 ± 0.02 0.798 ± 0.01 0.827 ± 0.01 0.709 ± 0.00

CIFAR-100 2.685 ± 0.03 2.651 ± 0.03 2.606 ± 0.03 2.435 ± 0.03 2.314 ± 0.02 2.159 ± 0.01

Brier

MNIST (MLP) 0.037 ± 0.00 0.035 ± 0.00 0.035 ± 0.00 0.040 ± 0.00 0.032 ± 0.00 0.020 ± 0.00

MNIST (CNN) 0.016 ± 0.00 0.015 ± 0.00 0.015 ± 0.00 0.014 ± 0.00 0.013 ± 0.00 0.010 ± 0.00

Fashion MNIST 0.137 ± 0.01 0.127 ± 0.01 0.126 ± 0.00 0.111 ± 0.00 0.121 ± 0.00 0.096 ± 0.00

CIFAR-10 0.469 ± 0.01 0.450 ± 0.01 0.447 ± 0.01 0.381 ± 0.01 0.373 ± 0.00 0.335 ± 0.00

CIFAR-100 0.795 ± 0.01 0.786 ± 0.01 0.782 ± 0.01 0.768 ± 0.01 0.723 ± 0.00 0.695 ± 0.00

ECE %

MNIST (MLP) 1.324 ± 0.16 0.528 ± 0.12 0.415 ± 0.10 2.569 ± 0.17 0.536 ± 0.08 0.839 ± 0.08

MNIST (CNN) 0.517 ± 0.07 0.366 ± 0.08 0.259 ± 0.06 0.832 ± 0.06 0.282 ± 0.04 0.287 ± 0.05

Fashion MNIST 5.269 ± 0.22 1.784 ± 0.54 1.098 ± 0.18 1.466 ± 0.30 3.988 ± 0.11 0.942 ± 0.13

CIFAR-10 11.718 ± 0.72 4.599 ± 0.82 1.318 ± 0.26 7.109 ± 0.62 8.655 ± 0.29 8.867 ± 0.23

CIFAR-100 9.780 ± 0.69 5.535 ± 0.50 2.012 ± 0.31 12.608 ± 0.59 7.180 ± 0.48 11.954 ± 0.29

Classification Error %

MNIST (MLP) 2.264 ± 0.22 2.286 ± 0.24 2.264 ± 0.22 2.452 ± 0.14 2.082 ± 0.10 1.285 ± 0.05

MNIST (CNN) 0.990 ± 0.13 0.990 ± 0.12 0.990 ± 0.13 0.842 ± 0.06 0.868 ± 0.06 0.659 ± 0.03

Fashion MNIST 8.420 ± 0.32 8.522 ± 0.34 8.420 ± 0.32 7.692 ± 0.34 7.734 ± 0.11 6.508 ± 0.10

CIFAR-10 33.023 ± 0.68 32.949 ± 0.74 33.023 ± 0.68 27.207 ± 0.66 26.004 ± 0.36 22.880 ± 0.21

CIFAR-100 64.843 ± 0.69 64.789 ± 0.69 64.843 ± 0.69 60.772 ± 0.58 58.092 ± 0.42 53.917 ± 0.30

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 November 21.

	Abstract
	Introduction
	Method
	Baseline Model
	Hierarchical Model
	Local Analysis

	Experiments
	Evaluation metrics:
	ImageNet experiments
	MNIST and CIFAR experiments

	Non-Gaussian Distributions
	Effect of Overfitting on PEP effect
	Out-of-distribution detection

	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:
	Table 2:

