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Ischemic stroke is a cerebrovascular disease with a high morbidity and mortality rate, which poses a serious challenge to human
health and life. Meanwhile, the management of ischemic stroke remains highly dependent on manual visual analysis of
noncontrast computed tomography (CT) or magnetic resonance imaging (MRI). However, artifacts and noise of the equipment
as well as the radiologist experience play a significant role on diagnostic accuracy. To overcome these defects, the number of
computer-aided diagnostic (CAD) methods for ischemic stroke is increasing substantially during the past decade. Particularly,
deep learning models with massive data learning capabilities are recognized as powerful auxiliary tools for the acute
intervention and guiding prognosis of ischemic stroke. To select appropriate interventions, facilitate clinical practice, and
improve the clinical outcomes of patients, this review firstly surveys the current state-of-the-art deep learning technology.
Then, we summarized the major applications in acute ischemic stroke imaging, particularly in exploring the potential function
of stroke diagnosis and multimodal prognostication. Finally, we sketched out the current problems and prospects.

1. Introduction

Stroke is recognized as an acute cerebrovascular disease,
leading to the second main factor of disability and death
worldwide, which resulted in a global substantial financial
burden (approximately 34 billion dollars per year) [1, 2].
Stroke can be divided into ischemic stroke (which accounted
for more than 87% of all stroke patients) and hemorrhagic
stroke [3]. The time window for treating stroke disease treat-
ment in the acute phase is generally 6 hours after onset.
Therefore, it requires rapid decisions and appropriate inter-
ventions from clinicians [2, 3]. Neuroimaging techniques
(including CT and MRI) have become an integral approach
to acute stroke detection, characterization, and prognosis
[4]. However, it is a great challenge for neuroradiologists
due to its similar intensity and shape to stroke lesions pro-
duced by artifacts in CT or MRI [5, 6]. As a new computer-
aided diagnostic method, artificial intelligence (especially

deep learning) might provide a novel approach to overcom-
ing these obstacles [7]. It enables end-to-end learning and
offers more precise medical treatment and reasonable clinical
decisions, including triage, quantification, surveillance, and
prediction of disease [5]. This review is aimed at summariz-
ing the current status of deep learning-driven acute ischemic
stroke applications and analyzing the role of deep learning on
rapid stroke lesion identification, accurate diagnoses, and
timely therapy.

Over the past decades, various machine learning tech-
niques, including logistic regression (LR) [8], linear discrim-
inant analysis (LDA) [9], support vector machines (SVM)
[10], decision trees (DT) [11], random forests (RF) [12],
and neural networks [13], have been applied. These
approaches rely largely on predefined engineered features,
such as the shape, the texture, and the distribution of pixel
intensities (histogram) obtained from computer programs.
Then, these features, identifying potential imaging-based
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biomarkers for clinical decision-making support, are uti-
lized as inputs to innovative machine learning models
[14]. SVM improved the identification of carotid athero-
sclerosis (CA) from magnetic resonance brain images
and prevented ischemic stroke patients with an ACC of
97.5% [15]. The combination of RF methods with geodesic
active contour (GAC) technology can automatically seg-
ment cerebrospinal fluid (CSF) in CT images for early
cerebral edema identification, a major medical complica-
tion after ischemic stroke [16]. The LR method for CT
angiography (CTA) lesion analysis and differentiation of
floating intraluminal thrombus and atherosclerotic plaque
is helpful for the selection of stroke treatment plan, and
the sensitivity of this method reaches 87.5% [17]. Predict-
ing the presence and laterality of a perfusion deficit on CT
perfusion scans using ANN can promote further therapy.
ACC reached 85.8% in CT perfusion images of 396
patients [18]. ML approaches were employed on various
datasets for solving various stroke problems for a better
healthcare system and further investigation [19]. However,
conventional machine learning mainly uses feature engi-
neering, requiring manual extraction and data cleaning.
Problems such as optimizing image features and being
susceptible to multimodal image interference need to be
further explored and improved [20].

Deep learning is a subset of machine learning and an
innovative application of artificial intelligence (AI), owning
partly to its algorithm characteristics that automatically cap-
ture the hierarchical and complex features from raw input
data [21-23]. Multilayer deep neural networks exert a posi-
tive function on huge challenging task solutions through
mimicking the perception of the human brain and trans-
forming “low level” into “high level,” especially in imaging
classification, natural language process, or bioinformatics
[24, 25]. Recently, the medical image process has developed
into a hot research field of deep learning, involving multiple
tasks of disease classification [26], lesion localization and
segmentation, and imaging reconstruction [27]. As a conse-
quence, deep learning has been widely applied to the diagno-
sis and management of stroke, for instance, the prediction of
clinical outcomes of AIS patients [28]. In contrast to conven-
tional machine learning methods, deep CNN learning is not
relying on hand-crafted features. Complex features from
data are extracted and expressed automatically by DL when
locating the stroke lesion core in CT or MRI [29]. Deep
learning not only saves time and effort but also captures
the pixel-level information of the lesion, which is beneficial
to improve the accuracy of diagnosis and prognosis [30].
As shown in Figure 1, the analysis of many typical deep
learning models and applications of deep learning in ische-
mic stroke imaging is presented.

The rest of this paper is organized as follows. In Section
2, we exhibit the historical development of deep learning,
including convolutional neural network (CNN), recurrent
neural network (RNN), autoencoder (AE), restricted Boltz-
mann machine (RBM), transformer, and transfer learning
(TL). Section 3 discusses the applications of deep learning
to stroke management in five main areas. Finally, we present
outlook in Section 4.
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2. Deep Learning Models

Deep learning (DL), derived from artificial neural networks
(ANNSs), mimics human brain intelligence in increasingly
sophisticated and independent ways [31]. In 1989, LeCun
et al. originally applied the CNN model for image recogni-
tion of handwritten characters, consisting of four parts (a
convolutional layer, a pooling layer, an activation function,
and a fully connected layer) [32]. In 2012, AlexNet won
the championship in the ImageNet competition far sur-
passed second place, and since then, CNN has developed
promptly along with the emergence of many typical CNN
architectures [33], for example, VGGNet [34], GoogLeNet
[35], and ResNet [36]. At present, CNN has become a rela-
tively extensive network structure in medical imaging [37].

Recurrent neural network (RNN) is a special memory-
based deep neural network, which is different from CNN,
not only considering the network’s input at the previous
moment but also memorizing it for transmission to the next
moment [38]. Considering chronological tasks, the RNN
application is more extensive. To solve the gradient explo-
sion or disappearance problem when RNN is backpropa-
gated, long short-term memory (LSTM) was proposed
[39]. The core of LSTM is adding three important gating
units to the recurrent layer, including the input gate, forget
gate, and output gate. Choi et al. [40] invented CNN-
Bidirectional LSTM to predict stroke on raw EEG data, with
an accuracy of 0.94. Additionally, Do et al. developed a
recurrent residual convolutional neural network (RRCNN)
combined with VGG16 and ResNet for the binary classifica-
tion of Alberta Stroke Program Early Computed Tomo-
graphic Score (ASPECTS) using DWI in acute ischemic
stroke patients, with an accuracy of 87.3% and AUC of
0.941 [41].

Autoencoder, a typical unsupervised deep learning
model, is separated into encoding and decoding parts
(encoder and decoder) [42]. The former can learn the hid-
den features of the input data, while the latter can recon-
struct the original input data with the learned new
features. Common applications of autoencoder contain
image denoising and dimensionality reduction [30], for
instance, denoising autoencoder (DAE) [43], sparse autoen-
coder (SAE) [44], variational autoencoder (VAE) [45], and
contractive autoencoder (CAE) [46]. In ischemic stroke
lesion analysis, Praveen et al. proposed a stacked sparse
autoencoder (SSAE) architecture for accurate segmentation
of ischemic lesions from MR images and performed per-
fectly on the publicly available Ischemic Stroke Lesion Seg-
mentation (ISLES) 2015 dataset, with an average precision
of 0.968, average Dice coefficient (DC) of 0.943, and the
accuracy of 0.904 [47].

Restricted Boltzmann machine (RBM) is a random gen-
erative neural network that learns probability distributions
from input datasets. The connections between neurons are
bidirectional and symmetrical presented in Figure 2(d). This
means that information flows in both directions during
training and use of the network and that the weights are
the same with the information. It can be used for dimension-
ality reduction, feature extraction, and collaborative filtering
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FiGure 2: (a) CNN, (b) RNN, (c) autoencoder, (d) RBM, and (e) transformer.

[48]. The RBM neurons are all binarized; that is to say, there
are only two states, including activation and inactivation (0
and 1). In ischemic stroke lesion analysis, Pinto et al. used
RBM to extract features from lesions and blood flow infor-
mation from different MRI images to predict the final stroke
lesion. On the publicly available ISLES 2017 test dataset, they
evaluated their model and achieved a Dice score of 0.38, a
Hausdorff distance of 29.21 mm, and a mean symmetric sur-
face distance of 5.52 mm [49].

The transformer predisposed by Google provides a par-
allelized way of processing sequential data based on the
attention mechanism (AM), which is much faster than
CNN and RNN structures and very good at handling long-
term dependencies [50]. Therefore, transformers have
become the innovative deep learning model. As shown in
Figure 2(e), the model mainly consists of multiple encoders
and multiple decoder layers superimposed. Recently, trans-
formers have accomplished impressive results in medical



image segmentation tasks [51]. Based on the U-Net struc-
ture, Cao et al. progressed the SWIN-Unit transformer algo-
rithm, superior to U-Net and other models in multiorgan
and heart segmentation tasks, with a DSC value of 0.9 [52].
In ischemic stroke lesion analysis, the model, including
CNN and transformer for encoding and the multihead
cross-attention (MHCA) module for decoding, leads to
stroke lesion morphology and edges with a Dice of 73.58%
[53]. Transformers can be introduced to process data with
different scanner models or multimodal data. Tang et al.
proposed a novel unsupervised approach to fuse multimodal
medical images via a multiscale adaptive transformer termed
MATR and extended the method to address other biomedi-
cal image fusion issues, obtaining satisfying fusion results
and generalization capability [54]. Karimi et al. proposed a
convolution-free transformer network architecture that out-
performs FCN-like architecture in both the task of segment-
ing multimodal 3D medical images (T2 MRI and MRI) and
the task of pretrained networks augmented with unlabeled
images [55]. Jiang et al. proposed SwinBTS, a new 3D med-
ical picture segmentation approach, which combines a trans-
former, CNN, and encoder-decoder structure to define the
3D brain tumor semantic segmentation job and achieves
excellent segmentation results on the public multimodal
brain Tumor datasets of 2019-2021 (include T1,T1-
ce,T2,T2-Flair) [56]. A novel network O-Net combining
CNN and transformer for segmentation and classification
of medical images was proposed by Wang et al. On the syn-
aptic multiorgan CT dataset and the ISIC 2017 challenge
dataset, the model realizes competitive performance and
good generalization ability [57].

Transfer learning (TL) is a popular method of deep
learning that is widely used in medicine [58]. The princi-
ple of the method is to reapply a pretrained model to
another task. Transfer learning offers a suitable framework
to take previously learned correlated knowledge and
applies it to solve a new problem, particularly suitable
for small data issue [59]. For example, to predict the risk
degree of developing stroke disease with patient history
(e.g., hypertension and diabetes mellitus), Chen et al.
designed a multi-input hybrid transfer learning network
structure. In addition, this method could overcome the
limitations of label imbalance [60]. Zhang et al. proposed
an intradomain task-adaptive transfer learning method to
predict the time after stroke onset (TSS) in patients. The
results showed a predictive AUC of 0.74 for TSS less than
4.5h, indicating potential therapeutic implications for
patients with unknown TSS [61].

3. Clinical Applications of Deep Learning in AIS

3.1. Early Stroke Diagnosis/ Time from Onset. Stroke manage-
ment highly depends on the NCCT and MR images. Inclu-
sion criteria for acute ischemic stroke are as follows: first,
patients with suspected ischemic stroke should undergo an
NCCT scan to exclude the intracranial hemorrhage possibil-
ity [62]. Due to the low sensitivity of NCCT for hyperacute
AIS, the sensitivity for hemorrhage is very high. Meanwhile,
within the 90-minute time window after the onset of middle
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cerebral artery (MCA) occlusion, both the high-density
MCA sign and the Sylvian MCA point sign are obvious signs
of NCCT and are among the earliest visible signs of ischemia
[63]. MRI can identify abnormal lesions in the acute stage of
ischemic stroke [64]. DWI is gradually being recognized as
the gold standard for the diagnosis of acute ischemic stroke,
with a sensitivity of 73%-92% for hyperacute ischemic stroke
detection within 3 hours of onset, and it detects deficiency
beyond 6 hours after onset [48]. The sensitivity of hemor-
rhagic stroke had already reached 100%, while DWI com-
bined with PWI can increase the diagnostic sensitivity of
acute ischemic stroke (about 97.5%) and provide physiolog-
ical information such as ischemic penumbra [65].

Especially, multiple studies have reported the potential
of deep learning systems for the rapid and automated diag-
nosis and identification of ischemic stroke. The Al-based
approach can exert synthesized function on clinical data,
including clinical symptoms, medical history, family history,
and neuroimaging features [66]. Deep learning has been
extensively applied for early stroke diagnosis analysis
(Table 1). Litjens et al. exhibited a 3D CNN and extracted
contralateral features and anatomical atlas information to
identify MCA, achieving an AUC of 0.996 and a precision-
recall AUC of 0.563 in a voxel-level evaluation. Although
the results are not yet at a level for routine clinical use, they
are still encouraging [67]. It is exciting to see Lisowska et al.
making further progress; they developed a deep convolu-
tional neural network (DCNN) model to identify hyper-
dense middle cerebral artery sign (HMCAS) on CT, and
the results proved that the model was compared with the
diagnostic performance of neuroradiologists with the AUC
of 0.869 [68]. Furthermore, Shinohara et al. developed an
ANN model to identify and differentiate acute cerebral
ischemia (ACI) and stroke mimics from patients within 4.5
hours of symptom onset. This method got great perfor-
mance for the ACI diagnosis and differentiate ACI from
SM cases with a precision of 92% [69]; however, this method
presented limited generality. Researchers also proposed a
deep symmetric 3D convolutional neural network (Deep-
Sym-3D-CNN) based on the symmetry property of the
human brain to learn diffusion-weighted imaging (DWI)
and apparent diffusion coefficient (ADC) difference features
for automatic diagnosis of ischemic stroke disease with an
AUC of 0.850 [70]. This deep learning method is novel that
exploited the symmetry of the human brain, but with a small
amount of DWI data. As discussed above, future studies
exploring stroke diagnosis on thin-section CT or MR could
provide the DL algorithm with more valid features of the
lesion and contribute to improving the sensitivity of the Al
for automatic diagnosis. In addition, external validation
should be enhanced by using more external data to validate
the generalization capabilities of the models.

3.2. Automated ASPECTS Calculation. In the early time win-
dow after stroke onset (i.e., within 6 hours), it is difficult to
discern the boundaries of the lesion on CT, particularly in
white matter where the signal-to-noise ratio is poor. There-
fore, a semiquantitative approach such as Alberta Stroke
Program Early Computed Tomography Score (ASPECTS)
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TaBLE 1: Overview of papers using deep learning techniques for early stroke diagnosis.

Study Date DL-based Optimal e o
References objective published approaches results Clinical implications Limitation
Not separate patients with
- posterior circulation
. Recognize acute Precision-0.92; Recognltlon'ofn ACl and from anterior circulation
Shinohara . . L differentiation of .
cerebral ischemia 2017 ANN sensitivity-0.80; . stroke; not calculate precision
et al. [69] P ACI from stroke mimics
(ACI) specificity-0.86 R A based on stroke type or
at the initial examination . .
possible stroke pathogenesis;
lack generalizability
. AUC-0.996; .
Litjens Identify MCA 2017 3DCNN precision-recall Not yetata .level for Small sample data sizes 'and
et al. [67] routine clinical use lack of external validation
AUC-0.563
Lisowska Sensitivity-0.82,  For reference and improve
et al. [68] Identify HMCAS 2020 DCNN specifcity-0.81, and  the accuracy of detecting No thin-slice CT
) AUC-0.869 HMCAS
. AIS diagnosis
Cui et al. . DeepSym- Early acute stroke .
[70] via DWI and 2021 3D-CNN AUC-0.850 diagnosis Small sample data sizes

ADC images

is necessary for assessing the extent of infarct-related alter-
ations in a rapid and reproducible fashion in MCA ischemic
stroke patients [71]. The ASPECTS plays an important role
in the early prediction of infarct core for middle cerebral
artery (MCA) territory ischemic strokes and the suitability
for reperfusion therapy [72]. It assesses 10 regions
(Figure 3) within the MCA territory for early signs of ische-
mia, and the result score ranges from 0 to 10, where 0 indi-
cates ischemic involvement in all 10 regions, while 10
indicates no early signs of ischemia. The guideline of
AHA/ASA (American Heart Association/American Stroke
Association) has incorporated ASPECTS > 6 in their recom-
mendations for the selection of patients for endovascular
thrombectomy [73]. Hence, the score is currently a key com-
ponent in evaluating the appropriateness of receiving endo-
vascular thrombectomy. Unfortunately, the assessment of
ASPECTS is more dependent on the experience of the
radiologist.

Several AI software offerings which perform automated
ASPECTS evaluation have been assessed in clinical settings.
It helps physicians diagnose ischemia and offer a more con-
sistent interpretation. Until now, two of them using machine
learning algorithms are commercially available, for example,
e-ASPECTS software (Brainomix, Oxford, UK) and RAPID-
ASPECTS (Siemens Healthcare GmbH, USA) [74]. Studies
have displayed the feasibility of software such as e-
ASPECT and RAPID-ASPECTS to assess CT images. In
recent years, the software has achieved a similar or even bet-
ter diagnosis than radiologists. Nagel et al. compared
RAPID-ASPECTS and e-ASPECTS to 2 experienced radiol-
ogists, finding that e-ASPECTS exhibited a better correlation
with expert consensus [75]. Goebel et al. compared 3 neuro-
radiologists with e-ASPECTS, finding that the neuroradiolo-
gists had a better correlation with infarct core that was
judged on subsequent imaging than the software [76].
Guberina et al. compared RAPID-ASPECTS (iSchemaView)
to 2 neuroradiologists, finding that the software showed a
higher correlation with expert consensus than each neurora-

diologist [77]. However, traditional machine learning-based
algorithms are limited because appropriate discriminating
features must be defined by human developers and require
to be manually extracted. Recently, end-to-end deep
learning-based algorithms have presented a promising per-
formance in medical image analysis tasks [78]. Deep learn-
ing has been extensively used for automated ASPECTS
calculation (Table 2).

In 2021, Naganuma et al. conducted a study on auto-
matic ASPECTS calculation of ischemic stroke using non-
contrast computed tomography (CT). In this study, they
compared a deep learning-based algorithm (3D-BHCA) to
5 stroke neurologists, finding that the region-based and
score-based analyses of 3D-BHCA model were superior or
equal to those of stroke neurologists overall [79]. This study
has achieved good classification outcomes than conventional
approaches. However, the study lacks external validation
and reperfusion effect studies, as well as patients with old
cerebral infarction and cerebral hemorrhage, which may
interfere with the classification outcomes of the model.

DWI-ASPECTS is derived from CT-ASPECTS as a tool
to semiquantify early ischemic alterations [41, 80, 81]. Inno-
vatively, using diffusion-weighted imaging (DWI), Do et al.
developed recurrent residual convolutional neural network
(RRCNN) algorithm for the automatic binary classification
of the ASPECTS in acute stroke patients with an AUC of
94.1%, indicating that the performance is better than
3DCNN. However, this study presents a global estimation
of DWI-ASPECTS rather than a classification of individual
DWI-ASPECTS regions [41]. Cheng et al. developed a deep
learning-based automatic software tool (eDWI-ASPECTS)
which was equivalent to the diagnostic efficiency of senior
neuroradiologists in the evaluation of 10 individual
ASPECTS regions, although there are uncertainties in the
scoring rules of DWI-ASPECTS. Compared to CT, the ini-
tial description of the score is not yet clear [81]. In conclu-
sion, the criteria for DWI-ASPECTS evaluation will be
necessary for the future.
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FiGuRre 3: The MCA territory is divided into 10 ASPECTS regions, including caudate (C), insular ribbon (I), internal capsule (IC), lentiform
nucleus (L), anterior inferior frontal cortex (M1), anterior temporal cortex lateral to the insular ribbon (M2), posterior temporal cortex
(M3), anterior superior frontal cortex (M4), posterior frontal cortex (M5), and parietal cortex (M6). The M4, M5, and M6 are the MCA

territories superior to the M1, M2, and M3 regions, respectively.

3.3. Detection of Large Vessel Occlusion. Most cases of ische-
mic stroke are caused by acute intracranial arterial thrombo-
embolism. Currently, intravenous tissue plasminogen
activator (IV-tPA) combined with endovascular thrombec-
tomy (EVT) is the standard therapeutic scheme for patients
with AIS induced by large vessel occlusion (LVO) [82].
Although LVO accounts for up to 38% of AIS, it is respon-
sible for 60% of stroke-related disabilities and 90% of

stroke-related deaths [83]. EVT has been demonstrated to
considerably improve prognosis within 6h from symptom
onset [84, 85]; however, only 27% of patients who are eligi-
ble for thrombectomy receive EVT. Additionally, each of
delayed 30min in EVT decreases favorable outcomes by
11% [86]. Thus, systems for automatical and prompt detec-
tion of LVO have the potential to improve the rates of EVT
and promote the chance of receiving appropriate reperfusion
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TaBLE 2: Overview of documents using deep learning techniques for automated ASPECTS calculation.

Study Date DL-based . e e
References objective published approaches Optimal results Clinical implications Limitation
. . Lack external validation;
Automatic Sensitivity (0.98), specificity Evaluation of stroke old brain infarction and
Naganuma  ASPECTS (0.92), and accuracy (0.97) of xpansion to determin ld brain hemorrh
asanuma : 2021  3D-BHCA dichotomized ASPECTS »>5 ~ SXPansion to determine —01¢ brain hemorrhage
et al. [79] calculation . . suitability for reperfusion disturb results; not
using CT analysis and the intraclass therapy. consider reperfusion
correlation coefficient (0.90) '
treatment.
Automatic Larger number of datasets
Do et al. ASPECTS 2020 RRCNN AUC (94.1%) Not Yet at'a .level for .should be considered to
[41] calculation routine clinical use. improve the performance
using DWI of the model.
ICC coefficients between eDWI-ASPECTS has the
Automatic interraters and between potential to improve . L
Chengetal. ASPECTS 2020 DCNN junior raters and automated standardization and IrxglglE(é?CSriz tr1eorils (folt)vg_
[81] calculation scores were 0.954 and 0.923 provides valuable reference clear Y
using DWI between senior raters and for less-experienced '

automated scores were 0.939

readers.

therapy in AIS patients, thereby contributing to neurological
recovery.

The most critical application of CT angiography (CTA)
is to detect large vessel occlusions (LVO). Several documents
involving the Automated Large Arterial Occlusion Detection
in Stroke Imaging (ALADIN) trial have been published by
using AI algorithms with CTA datasets for identifying
LVO (Table 3). For example, Amukotuwa et al. used Rapid
CTA to detect intracranial anterior circulation LVOs with
high diagnostic sensitivity (0.94) and NPV (0.98), as well
as moderately high specificity (0.76) [87]. Furthermore, a
CNN has been reported to be possibly used for detection
of the head and neck CTAs, which indicates an 82% sensitiv-
ity and 94% specificity in a study with 650 persons. In prac-
tice, this can offer the possibility of early alerting a senior
physician to help with task prioritization [88]. Shaham and
R L R proposed a DeepSymNet model for automatic detec-
tion of ischemic stroke lesion areas in CTA, inspired by
the Siamese network, with AUC 0.914 (CI0.88-0.95) and
AUC 0.899 (CI 0.86-0.94) for original cerebral CTA volumes
and brain tissue images, respectively [89]. The network is
sensitive to symmetric alterations in blood vessels and brain
structures, which can detect AIS lesions by effectively learn-
ing the contralateral lesion-free cerebral hemisphere from
CTA images [90]. Yu et al. firstly established a three-tier
diagnostic tool using machine learning and deep learning
that was based on the structured clinical data with nonstruc-
tured NCCT imaging data for LVO diagnosis, which
achieved superior performance with the AUC of 0.847,
potentially improving the prehospital triage systems for
AIS [91]. Nevertheless, the NCCT brain scans are thick-
cut, and lacking prospective validation and angiogram
within the acute setting is the main shortcoming of this
study.

Multiple commercial software platforms are available for
the automatic detection of LVO on CTA, such as Brainomix
e-CTA (Brainomix Ltd.), Rapid CTA, Rapid LVO (iSchema-
View), and Viz LVO (Viz.ai, California, USA). Brainomix e-

CTA and Viz LVO utilize CNNs to analyze CTAs for LVO
detection, while Rapid LVO indirectly detects LVO based
on the asymmetry of CTA collateral blood vessel density
[5]. These software tools also analyze CT/MRI perfusion,
generating perfusion maps to estimate the stroke core and
penumbra. In 2021, McLouth et al. validated a commercially
available deep learning-based tool that performed well in the
LVO cohort, with an accuracy of 98.1% [92]. Despite these
technological innovations, there is still a dearth of studies
involving rigorous comparison or validation for LVO detec-
tion tools. Thus, it is necessary to detect LVO by combining
angiogram with thin-cut scans, as well as establish prospec-
tive validation in the future.

3.4. Utilizing Deep Learning for Evaluation of Ischemic Core
and Penumbra/Prognosis. The volumes in the ischemic core
(irreversibly damaged tissue) and penumbra (potentially sal-
vageable ischemic tissue) are of great significance for the
outcomes in AIS patients. However, the manual segmenta-
tion of the ischemic core and penumbra is a time-
consuming and laborious mission, with inconsistency across
raters [64]. Both the ischemic core and the penumbra area
are irregular in shape due to the time from symptom onset,
vessel occlusion site, and collateral status. There is a lot of
noise related to lesion signals, such as leukoaraiosis and T2
shine-through effects; besides, tissue defects may further
hamper lesion segmentation [93]. Therefore, it is challenging
for radiologists to manually annotate the lesion area at the
pixel level.

For clinical diagnosis and treatment, MRI and CTP are
usually used to evaluate the ischemic core and penumbra.
Compared to CT, magnetic resonance imaging (MRI) with
diffusion-weighted imaging (DWI) sequence is much more
sensitive for early ischemia detection [94]. Threshold-based
approaches are widely used internationally to determine
ischemic core with apparent diffusion coefficient (ADC) <
600 x 10°® mm?/s and penumbra regions with specific time
to maximum (Tmax) > 65s. The perfusion parameters have
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TaBLE 5: Overview of documents using deep learning techniques for prediction of functional outcomes.
I Date Optimal .
References Study objective published DL-based approaches results Imaging tool
Heo et al. [108] Predicting mRS score 2019 Deep neural network AUC of 0.888 MR (DWT)
CNN with integrated
Kim et al. [109] Predicting mRS score 2020 modified Brunnstrom AUC of 0.891 Corona radiata (CR)
algorithm
Ding et al. [110] Predicting functional outcome 2021 CNNs AUC of 0.975 Infarct volume, DWI

neuroimaging features

been outlined in the DEFUSE III trial [95], defining inclusion
criteria as core volume < 70 mL, mismatch ratio (MMR) >
1.8, and mismatch volume (MM Vol) > 15 mL.

Several kinds of commercial software mainly use seg-
mentation threshold to predict core infarct area and ische-
mic penumbra, for example, Rapid, F-stroke, E-stroke, and
Vitra [96]. However, Koopman et al. have noted that CTP
maps are unreliable in about 13% of cases when using Rapid,
and most maps are not reliable for patients with erroneous
Tmax calculations, some cases showing bihemispheric pen-
umbra. The comparative analysis of these software results
in significant differences in calculation outcomes due to dif-
ferent basic algorithms [97]. Furthermore, these threshold-
based approaches fail to capture the complexity of infarct
evolution in stroke. Currently, decision-making in acute
ischemic stroke is mainly based on the time domain, which
does not take into account the biological differences among
patients.

The approach based on deep learning can automatically
extract the lesion features at the pixel level and then classify
and segment them. It has become a potential technique for
segmenting core infarct and penumbra at home and abroad.
Of course, it is an increasingly important part of decision
support and shows some promising results. Deep learning
has been applied to many aspects of the ischemic core and
penumbra, and the literature is summarized in Table 4.
Chen et al. utilized CNNs composed of MUSCLE Net and
EDD Net in a study of segmenting stroke lesions automati-
cally in 741 subjects by DWI, and the performance is com-
parable to manual segmentation [98]. Ho et al. developed
an autoencoder structure model, which could extract high-
dimensional imaging features from PWI image data, and
used machine learning classifiers to locate stroke regions,
achieving an AUC of 0.68, which is 10% better than the cur-
rent traditional clinical method with AUC of 0.58 [99].
Sheth et al. designed a deep symmetry-sensitive convolu-
tional neural network (DeepSymNet) based on the maxi-
mum likelihood method to evaluate the volume of large
vessel occlusion with AUC of 0.88 and determined infarct
core as defined by CTP-RAPID from the CTA with AUC
of 0.88 and 0.90 (ischemic core <30 mL and <50 mL). The
advantage of this method is that it does not require any prior
knowledge, which greatly reduces data workload preprocess-
ing in the early stage [100].Oman et al. detected AIS using
3D-CNN from CTA source images of 60 patients. This is
the first study applying 3D CNN to CTA source images for

ischemic stroke detection and achieving high sensitivity
and specificity [101].

More recently, Nielsen et al. developed SegNet-based
CNNdeep to predict the final infarct volume by using 9 dif-
ferent biomarkers as input, with an AUC of 0.88 [102]. Nishi
et al. designed a 3D U-Net to extract features of DWI from
LVO patients, finding that the features could be known as
a clinically useful prognostic biomarker [103]. Yu et al.
trained a 2.5D U-Net model using initial presentation-
(baseline-) acquired magnetic resonance images (MRIs) to
predict 3- to 7-day final infarct lesions without reperfusion
information, with a median AUC of 0.92, proving that this
method would be valuable as a starting point for fine-
tuning models for specific reperfusion subgroups [104].

Lacking sufficient labeled data is one of the key chal-
lenges that has limited the progress of deep learning
approaches in this domain. At present, deep learning-
based models have shown great potential in a small num-
ber of datasets, making up for the lack of cumbersome
processing steps of learning algorithms on a traditional
machine. However, the current large-scale development
of deep learning is limited by the size of the dataset, and
the model has trouble of overfitting, making it difficult
to exert the optimal performance of the deep learning
model. Therefore, sufficient labels and model performance
are key to solving the problem.

3.5. Deep Learning for Prediction of Imaging Functional
Outcomes. Functional outcomes after acute ischemic stroke
are of great concern for patients and their families, as well
as physicians making clinical decisions. It can guide clini-
cians in advising patients and relatives about possible out-
comes. The modified Rankin scale (mRS) is usually
assessed within 90 days after stroke onset and has repre-
sented final clinical outcomes in several clinical trials [105].
It is often used to evaluate the prognosis of stroke and to
determine the curative effect of the functional disability of
patients during rehabilitation. Zero is asymptomatic and 5
is severely disabled [106].

Since 2014, lots of machine learning methods have
emerged to predict the prognosis of AIS patients [28, 107].
Until 2019, there have been studies on the DL-based method
predicting functional outcomes. An overview of ML-based
automated algorithms for the prediction of stroke outcomes
is provided in Table 5. A study developed 3 machine learn-
ing models (deep neural network, random forest, and
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logistic regression) and compared their predictability of pre-
dicting modified Rankin scale (mRS) score (0-2 vs. 3-6) at 90
days, with an AUC of 0.888. This study demonstrated that
the use of deep learning models can accurately predict
long-term outcomes and record a significantly higher AUC
than the ASTRAL score [108]. Kim et al. developed an inte-
grated modified Brunnstrom algorithm to predict the hand
function and the ambulatory outcomes of a patient with
corona radiata (CR) at 6 months after onset, using clinical
parameters and brain magnetic resonance images as input,
with an AUC of 0.891 [109]. Ding et al. employed CNNs
to predict the functional outcomes at 3 months poststroke
with acute brainstem infarction using clinical features, labo-
ratory features, conventional imaging features (infarct vol-
ume and number of infarctions), and DWI neuroimaging
features from 1482 patients, which achieved an extremely
high AUC of 0.975 [110].

As discussed above, it can be challenging to obtain a
detailed reflection of the various neurologic symptoms after
ischemic stroke, such as dysarthria-clumsy hand, ataxic
hemiparesis, and pure sensory stroke. In particular, there
may be a discrepancy between the measured functional
scores and the discomfort of the symptoms felt by the
patient with these subtypes. However, a common feature of
these studies is lacking sample size and external validation
of DL algorithms. Future research should expand the data-
set, optimize model performance, and reduce model overfit-
ting [1, 3]. The final result is obtained through external
validation of the different hospital datasets.

4. Outlook

Deep learning technology comes from the way the human
brain works, and it is a learning process that uses deep neu-
ral networks to solve feature presentations. Compared to tra-
ditional techniques, DL has certain advantages [3]. First, the
technology dramatically shortens the treatment duration.
Second, it improves the satisfaction and comfort of the
patients, enabling patients to enjoy the convenience brought
by personalized therapeutic and precision medicine. Third,
it greatly improves the work efficiency of clinicians. At pres-
ent, it is widely used in various fields of medical imaging. If a
deep learning-based decision support system is consistent
with and correlated with individual outcomes of the patients,
it has great potential to be accurate, fast, and widely accessi-
ble [4].

Rapid detection and treatment of stroke are critical to
reducing morbidity and mortality. The existing application
of Al in this field allows for vast opportunities to increase
therapeutic options and clinical outcomes by assisting in
all parts of the diagnostic and treatment settings, including
detection, triage, and outcome prediction. However, deep
learning still faces many challenges for stroke diagnosis.
First, most analytical documents use retrospective data,
and the sample size typically fluctuates from 20 to a few
hundred. There is an obvious need for a larger and particu-
larly prosperous market [5]. Second, due to the confidential-
ity of hospital data, most studies lack the process of external
validation, resulting in low model generalization. Up-to-
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date, these techniques are still confined to research settings
and hospitals. Future studies validating AI techniques are
needed to allow for more widespread use in various practice
conditions. Third, deep learning approaches still lack inter-
pretability, and many radiologists still possess skepticism
on deep learning algorithms and lack confidence in
software-assisted diagnosis [7]. Currently, most attention
focuses on improving the accuracy of predictions, giving
AT solutions the ability to interpret their predictions that
may contribute to better clinical applicability and accep-
tance. Using Al to identify novel disease mechanisms, as well
as unrealize the links between imaging and clinical out-
comes, will allow AI to accelerate the management of
patients and increase safety. It can also serve as a means of
hypothesis generation, paving the way for true deep learning
and understanding of acute ischemic stroke.
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