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SUMMARY

Small-cell lung cancer (SCLC) methylome is understudied. Here, we comprehen-
sively profile SCLC using cell-free methylated DNA immunoprecipitation fol-
lowed by sequencing (cfMeDIP-seq). Cell-free DNA (cfDNA) from plasma of
74 patients with SCLC pre-treatment and from 20 non-cancer participants,
genomic DNA (gDNA) from peripheral blood leukocytes from the same 74 pa-
tients, and 7 accompanying circulating tumor cell-derived xenografts (CDXs)
underwent cfMeDIP-seq. Peripheral blood leukocyte methylation (PRIME) sub-
traction to improve tumor specificity. SCLC cfDNA methylation is distinct
from non-cancer but correlates with CDX tumor methylation. PRIME and
k-means consensus identified two methylome clusters with prognostic associa-
tions that related to axon guidance, neuroactive ligand�receptor interaction,
pluripotency of stem cells, and differentially methylated at long noncoding
RNA and other repeats features. We comprehensively profiled the SCLC meth-
ylome in a large patient cohort and identified methylome clusters with prog-
nostic associations. Our work demonstrates the potential of liquid biopsies in
examining SCLC biology encoded in the methylome.

INTRODUCTION

Small-cell lung cancer (SCLC) is a highly aggressive subset of lung cancer.1 While often sensitive to first-line

therapy, most patients with SCLC develop recurrent disease accompanied by therapeutic resistance.1

While SCLC genomics have been recently characterized,2–7 the epigenome has not been as extensively

profiled.8,9 Epigenetic mechanisms, specifically DNA methylation, may contribute toward SCLC oncogen-

esis, recurrence, and resistance,1 through tumorigenesis and epigenetic reprogramming.10

Two key SCLC DNAmethylome studies examined patient tissue to identify a methylation-defined differen-

tiation block9 and unique methylation-defined subtypes.8 However, progress in comprehensive methyl-

ome profiling of SCLC is impeded by lack of primary tumor tissue. Liquid biopsy using cell-free DNA

(cfDNA) presents a solution. Previous cfDNA analysis in SCLC evaluated genetic changes, demonstrating

a high tumor mutation burden, an increased mutant allele fraction in plasma cfDNA,11,12 identified drug-

gable targets,12 and prediction of disease relapse.13 These findings demonstrate the potential of liquid

biopsy analyses of SCLC tumor biology.

Here, we comprehensively profiled the methylome of plasma cfDNA from patients with SCLC to identify

novel putative biomarkers and epigenetic mechanisms of disease. For this, we conducted cell-free meth-

ylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq),14 which has previously

been applied to pancreatic,14 non-SCLC,14 renal cell,15,16 glioma,17 head and neck,18 prostate,19 and other

cancers. While cfMeDIP-seq has revolutionized the study of cancer biology, especially for cancers that have

limited conventional tissue biopsy samples, removing non-cancer from the cancer signal remains a chal-

lenge. Many of the studies used cfDNA from healthy non-cancer patients as a reference to filter out

non-cancer signal.14,15,17,18 Although a tractable approach, this does not fully account for the non-tumor

signal present within the plasma of each cancer patient.
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For our study, we developed the peripheral blood leukocyte (PBL) methylation (PRIME) subtraction algorithm

to simultaneously use PBLs acquired from the same patient and timepoint as the cfMeDIP-seq analyzed

patient blood plasma. We analyzed the methylome of 74 plasma samples of patients with SCLC enriched for

tumor-derived signal by PRIME subtraction to evaluate biological, clinical, and prognostic associations. Our

findings demonstrated the utility of liquid biopsies to examine SCLC methylome and identified by unsuper-

vised machine learning two methylation-defined clusters of patients with prognostic association.

RESULTS

SCLC cfDNA methylome reflects tumor tissue methylation and is distinct from NCC

We examined the cell-freemethylome of 74 patients with SCLC using blood samples collected prior to first-

line treatment (Figure 1A). 88% of patients (n = 66) were current or former smokers and 57% had extensive-

stage (ES) SCLC (n = 42; Figure 1A) with the remainder limited-stage (LS). We also examined the cell-free

methylomes of 20 non-cancer control (NCC) participants. NCC participants were smokers and were similar

in age and sex to the SCLC cohort (Figure 1A).The distinct clustering pattern of the NCC methylome pro-

files compared to SCLC suggests that the tumor methylome is being captured. Although a small fraction of

patients with SCLC were self-reported never smokers (8/74), by PCA, this subset of patients were distrib-

uted throughout current/former smoker patients with SCLC and did not cluster with NCC methylation.

Based on our analysis, the methylome did not correlate with smoking status; however, this current study

is underpowered to detect this effect because never smokers (n = 8) are a small proportion in our cohort

and there is a possibility of inconsistent self-reporting of smoking status20 (Figure S1). Detailed

demographic characteristics can be found in Table S1.

To assess whether cfMeDIP-seq can ascertain SCLC tumor tissue methylation, we performed a genome-

wide concordance analysis of methylome profiles (n = 8,828,974 300bp windows) of cfDNA of patients

with SCLC (n = 7) and gDNA of their respective circulating tumor cell (CTC)-derived xenograft (CDX) tumor

tissue (n = 7). Patient cfDNA was highly concordant with CDX methylation by principal component analysis

(PCA; Figure 1C) and strongly correlated by correlation analysis of normalized read counts within each win-

dow (median r = 0.92, n = 7). Thus, cfMeDIP-seq data appeared representative of tissue-level DNAmethyl-

ation. Reassuringly, this concordance between cfDNA and tumor tissue methylome has been recently re-

ported in another independent study.21However, as others have reported, patients with SCLC that

successfully engraft CDXs have increased CTCs which could increase tumor cfDNA.22 For our patients

with SCLC without a corresponding CDX (n = 67), the contribution of non-cancer cfDNA is expected to

be higher. Therefore, we assessed if cfMeDIP-seq could distinguish between SCLC and NCC methylation

through examining genome-wide cfDNA methylome profiles by PCA (Figure 1D). NCCs were distinct

from SCLC suggesting cfMeDIP-seq distinguished non-cancer methylation from cancer. Through differen-

tiallymethylated region (DMR) analysis between SCLC andNCC, 51,666 and 1,019 significantly hypermethy-

lated DMRs were identified in SCLC and NCC, respectively (p-adj < 0.05; log2FC > 1; Figure 1E). SCLC sig-

nificant DMRs were enriched in CpG islands and shores relative to NCCs, whereas NCC significant DMRs

were enriched in open-sea regions (Figure 1F). Permutation analysis revealed that CpG features were signif-

icantly enriched in SCLC cfDNA DMRs and verified that cfMeDIP-seq is tumor specific (Figure 1G).

PRIME removes non-cancer methylation using paired PBLs from same patients with SCLC

Non-tumor methylation signal in the SCLC cfDNA data was examined and quantified using

MethylCIBERSORT. This allowed us to approximate the proportion of methylation in plasma cfDNA

Figure 1. SCLC cell-free methylome reflects tissue and is distinct from non-cancer

(A) Demographics and clinical characteristics of 74 patients with small-cell lung cancer (SCLC) and non-cancer donors.

(B) Schematic of overall structure of study and major analyses done.

(C) Principal component analysis of genome-wide methylation profiles of total methylated cell-free DNA (cfDNA) from patients with SCLC (n = 7) and

methylated genomic DNA from paired circulating tumor cell-derived xenograft (CDX) models (n = 7).

(D) Principal component analysis of genome-wide methylation profiles of total methylation cfDNA from patients with SCLC (n = 74) and non-cancer donors

(n = 20).

(E) Volcano plot of differentially methylated region (DMR) analysis of patients with SCLC (n = 74) and non-cancer donors (n = 20). Each dot corresponds to a

300bp region of the genome. The horizontal line corresponds to p-adjusted = 0.05 and vertical lines correspond to log2 fold-change of +/�2. There are

51,666 hypermethylated DMRs in SCLC and 1,019 in non-cancer donors.

(F) Bar plot of significantly hypermethylated DMRs corresponding to CpG features observed in patients with SCLC (n = 51,666 DMRs) and non-cancer donors

(n = 1,019 DMRs).

(G) Permutation analysis of the hypermethylated DMRs observed in SCLC (n = 51,666 DMRs).
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from non-tumor cells. We found PBLs to be a large contributor to plasma cfDNA methylation

(Figures S2–S6).

To increase specificity of the SCLC signal to non-cancer noise ratio, we implemented a novel approach uti-

lizing paired PBL gDNA collected from the same plasma source material of patient with SCLC at identical

timepoints (Figure 2A). Comparison of total plasma cfDNA to PBL gDNA by PCA revealed that PBLs ex-

hibited a distinct methylation signal (Figure 2B). Next, we examined the methylome of SCLC total plasma

cfDNA alone (Figure 2C), and after applying our novel algorithmic filter, PRIME, to reduce PBL methylation

signals (Figure 2D). In brief, we started with whole-genome windows (n = 9,603,445), removed ENCODE-

blacklist regions, and then selected windows hypomethylated across PBLs (median beta per window

<0.2). Within these PBL-hypomethylated windows, we further selected for windows with a CG-density

threshold >= 5 to account for the functionality of the 5-methylcytosine antibody.18 Thus, PRIME filtered

out non-tumor noise in the cfDNA, reducing 9,603,445 whole-genome windows to 196,582 SCLC-specific

windows. By PCA, PRIME increased the variance explained by methylation in PC1 from 40% (Figures 2C) to

57% (Figure 2D) and decreased the variance in PC2 from 7% (Figure 2C) to 4% (Figure 2D). PRIME also iden-

tified two distinct PCA groups (Figure 2D), refined our cfDNA methylation, and increased cfMeDIP-seq

SCLC-specificity.
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Figure 2. Filtering out non-cancer methylation signal from plasma cfDNA

(A) Overall schematic outlining our approach to first compare SCLC total cfDNA and SCLC PBL gDNA methylome (2B),

SCLC total cfDNA methylome (2C), and PRIME-filtered cfDNA methylome (2D).

(B) Principal component analysis (PCA) of methylation profiles of 74 patients with SCLC comparing total plasma cfDNA

methylation to PBL gDNA methylation. For each patient, plasma cfDNA and PBL gDNA are extracted using peripheral

blood samples collected prior to starting first-line chemotherapy. Genome-wide methylation profiles are examined in this

PCA plot (8,828,974 300bp windows). Red filled circles correspond to cfDNA samples and blue triangles are PBL samples.

(C) PCA of total plasma cfDNA methylation profiles of the 74 patients with SCLC. Genome-wide methylation profiles are

examined in this PCA plot (8,828,974 300bp windows). Red filled circles correspond to cfDNA samples.

(D) PCA of PRIME filtered plasma cfDNA methylation profiles of the 74 patients with SCLC. In this PCA, methylation

profiles for 196,582 300bp windows are examined.
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Identifying methylation-defined prognostic clusters and examining differentially methylated

pathways and features

Our goal was to determine what we can understand about underlying SCLC biology using only the meth-

ylome. As such, we decided on using a non-supervised approach to determine if there are any intrinsic

methylome-defined subgroups in SCLC. To define potential SCLC methylome subgroups, we applied

k-means consensus clustering on the PRIME-filtered cfDNA methylome profiles for all 74 patients with

SCLC. We determined 2 methylation-defined clusters were the optimal number (Figure S7), which we

designated as Clusters A and B (Figure 3A).

To examine biologic differences in Clusters A and B, we conducted a DMR analysis (Figure 3B). This analysis

identified 174 significantly hypermethylated DMRs in Cluster A (p-adj < 0.5 and log2FC < -1) and 9,037 in

Cluster B (p-adj < 0.05 and log2FC > 2). To understand methylation differences in terms of biological path-

ways, a KEGG pathway analysis was performed on the significantly hypermethylated DMRs (Figure 3C). In

Cluster A, 174 significant DMRs corresponded to 137 genes whereas in Cluster B, 9,037 DMRs corre-

sponded to 2,131 genes. Pathways corresponding to axon guidance or phospholipase D signaling

pathway, or non-small-cell lung cancer, were enriched in Cluster A (Figure 3C). On the other hand, Cluster

B had several pathways like neuroactive ligand�receptor interaction, immune chemokine signaling, and

pathways regulating pluripotency of stem cells (Figure 3C).

In order to understand clinical relevance of these intrinsic methylome-defined clusters, we performed an

overall survival (OS) analysis on patients in Cluster A and B. Patients in these clusters had significantly

different OS (HR = 2.02, p = 0.014; Figure 3D and Table S2) where Cluster B had a median OS of 13 months

compared to 21 in Cluster A. With respect to clinical stage, interestingly, Cluster A had a predominance of

patients with LS-SCLC (n = 21, 68% of 31 Cluster A patients), whereas Cluster B had a greater proportion of
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Figure 3. Identifying prognostic clusters and examining differentially methylated pathways and features

(A) Consensus clustering done on PRIME-filtered SCLC methylated cfDNA identified two clusters, A and B.

(B) Volcano plot of differentially methylated region (DMR) analysis between cluster A and B. The horizontal line

corresponds to p-adjusted = 0.05 and vertical lines correspond to log2 fold-change of +2 and �1. There are 174

hypermethylated DMRs in cluster A and 9,037 in cluster B.

(C) KEGG pathway analysis of hypermethylated DMRs in cluster A and cluster B.

(D) Kaplan-Meier survival analysis on cluster A and B identified by consensus clustering (p = 0.013).
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Figure 4. Understanding differentially methylated biological features in Cluster A and B

(A) Bar plots of significantly hypermethylated DMRs observed in Cluster A (n = 174) and Cluster B (n = 9,037) corresponding to CpG features.

(B) Bar plots of significantly hypermethylated DMRs observed in Cluster A (n = 174) and Cluster B (n = 9,037) corresponding to repeats features.

(C) Bar plots of significantly hypermethylated DMRs observed in Cluster A (n = 174) and Cluster B (n = 9,037) corresponding to long noncoding RNA (lncRNA).

(D) Overall schematic of analyzing biological features of interest in PRIME-filtered hypermethylated 300bp windows.
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patients with ES-SCLC (n = 32, 74% of 43 Cluster B patients) (Figure S8). Therefore, after adjusting for stage

with the smaller sample size per stage, Clusters A and B were no longer significant for OS suggesting these

SCLC methylome clusters and associated aggressive biology has some correlation with clinical stage or

disease burden. Interestingly, after we stratified stage by cluster (Table S3), Cluster B consistently had

worse OS in either stage, which was more apparent in LS-SCLC (Figure S9).

To further examine stage-specific methylome associations, we performed supervised machine learning on

an 80:20 training:test split of the 74 samples. We developed a cross-validated elastic-net penalized regres-

sion model to classify patients with LS vs. ES. Our model demonstrated a balanced accuracy of 85%

(Table S4). After performing DMR analysis of LS vs. ES, KEGG pathway analysis of ES revealed pathways

similar to Cluster B (Figure S10). Our dual unsupervised and supervised machine learning approaches of

methylome analysis of SCLC samples reveal distinct methylation patterns associated with either aggressive

biology (Cluster B; k-means consensus) or worse clinical stage (ES; elastic net), respectively.

Taken together, cfMeDIP-seq may be identifying a more aggressive SCLC biological phenotype that is

partially associated with stage but may also have some stage-independent value that the current study

is underpowered to detect. However, future larger studies are needed to determine molecular prognostic

methylome features that may supplement or refine clinical stage.

Hypermethylation of biological features in methylation-defined prognostic clusters A and B

To interrogate the differences detected by k-means consensus algorithm, we then examined DMRs that

associated with Cluster A or Cluster B. Both clusters had similar hypermethylated DMR proportions among

all CpG features (Figure 4A). Interestingly, approximately 40% of all significantly hypermethylated DMRs in

both Cluster A and B also corresponded to non-protein coding features such as short interspersed nuclear

elements (SINEs), long interspersed nuclear elements (LINEs), long terminal repeats (LTRs), retrotranspo-

sons, and satellites (Figure 4B). Strikingly, 65% of significantly hypermethylated DMRs in Cluster A corre-

sponded to long noncoding RNA (lncRNA) windows compared to 38% in Cluster B (Figure 4C) suggesting

loss of methylation at some lncRNAs may be associated with more aggressive biology. This change in hy-

permethylation, which was observed for lncRNAs only, suggested some underlying role of lncRNAs in

mediating the aggressiveness of SCLC. For most features, a similar proportion of windows (Figures 4A

and 4B) were observed suggesting different LINEs, SINEs, LTRs, or CpG features were differentially

hypermethylated in Cluster A and B.

To better understand which differentially hypermethylated features are contributing to the segregation of

Cluster A versus B, we subset our PRIME-filtered data to various features including protein coding genes

(promoters, exons; Figure S11), non-protein coding genes (lncRNA, miRNA; Figure S11), and repeats re-

gions (LINEs, SINEs, LTRs, etc.; Figures 4D and S11). Our goal was to identify specific methylome features

that would account for the differences between Cluster A and B. For each feature, we correlated the num-

ber of windows associated with such feature with PC1 variance (Figure 4E). We subset the 196,582 PRIME-

filtered windows to correspond specifically to promoters (11,702 PRIME-filtered windows), transcription

factors (1,626 windows), microRNA (65 windows), lncRNA (80,236 windows), SINEs (64,027 windows),

LINEs (59,901 windows), LTRs (25,917 windows), satellites (1,000 windows), clinically actionable SNVs

(919 windows), exons (34,042 windows), and CTCF-sites (10,715 windows) (Figure S11). After subsetting

for each of the respective features and performing clustering analysis, we observed that three features,

lncRNA (Figure 4F), SINEs (Figure 4G), and LINEs (Figure 4H), have a PC1 variance of 58% (Figure 4E) iden-

tical to the original clustering (Figure 3A). This suggested that differential hypermethylation of lncRNAs,

LINEs, and SINEs may explain the underlying biological difference between Cluster A and B. Our data sug-

gest the possible role of hypermethylation of noncoding elements like lncRNAs and repeat regions like

LINEs/SINEs in mediating the prognostic associations identified in Cluster A and B.

Figure 4. Continued

(E) Correlating the number of PRIME-filtered hypermethylated 300bp windows corresponding to specific methylomic features with principal component 1

(PC1) variance.

(F) Principal component analysis (PCA) plot of 300bp PRIME-filtered windows subset to lncRNA (80,236/196,582 windows).

(G) Principal component analysis (PCA) plot of 300bp PRIME-filtered windows subset to SINEs (64,027/196,582 windows).

(H) Principal component analysis (PCA) plot of 300bp PRIME-filtered windows subset to LINEs (59,901/196,582 windows).
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DISCUSSION

Our study demonstrated the utility of the cfMeDIP-seq assay in studying the methylome of SCLC and

demonstrated that plasma methylation is representative of tissue (Figure 1C) and is enriched in regions

that are cancer specific (Figures 1D and 1E).23 We report one of the largest studies to comprehensively

examine the DNA methylation of patients with SCLC by whole-genome analysis alongside a contempora-

neously published study that demonstrates the value of liquid biopsy assays.21 In contrast to prior tissue-

based studies,8,9 our genome-wide approach profiled methylated DNA loci beyond 450K/EPIC array

probes and identified hypermethylated noncoding and repeat elements (e.g. LINE, SINE, lncRNA, etc.).

In addition, our available clinical annotation with these treatment naive patient blood samples allowed

us to correlate tumor methylation with clinical outcomes.

Previous liquidbiopsy studies haveobservedPBLbeingmajor contributors to thecfDNAsignal.24,25 In ourdata,

we quantified this non-cancer signal using MethylCIBERSORT underscoring the need to filter the non-cancer

contribution to plasma cfDNA. Currently, most liquid biopsy studies do not control for PBL cfDNA and this

may affect the tumor specificity of the resultantmethylome analysis and impact certain application goals. Using

PRIME, a bespoke PBL algorithmic to refine SCLC-specific methylome signal using paired PBLs from the same

patients’ blood sample, we greatly increased tumor specificity of our resultant cfMeDIP-seq data (Figure 2D).

Using our PRIME approach, we opted to doour analysis on 196,582windows. This approach is a trade-off as we

sacrifice sensitivity of other interesting methylated regions; however, we gain specificity of calling and identi-

fying the tumor methylome in plasma. Our MethylCIBERSORT analysis (Figures S2, S3, and S6) identified the

presence of immune cell cfDNA in plasma.While some of these immune cells may constitute the tumor micro-

environment, the vastmajority of immune cell cfDNA is expected to be non-tumor related and it wouldbe diffi-

cult to discriminate between these two immune cell populations in plasma. Therefore, to increase tumor spec-

ificity in our analysis, we opted to removemethylation from the immune cells by PRIME. Nonetheless, with the

recent incorporation of immunotherapy into the SCLC treatment paradigm,26–28 the tumor-immune microen-

vironment is of great interest and future work with tumor tissue and immune infiltrate will be required to more

directly interrogate the role of epigenetics in affecting immunotherapy response.

We identified two Clusters, A (better OS) and B (worse OS) by unsupervised machine learning with prognostic

association suggests that methylation may be contributing to cancer progression and metastasis. These find-

ings highlight the need to unravel SCLC biology that is mediated by epigenetic mechanisms. Moreover, DMR

analysis of these clusters identified noncoding repeat features such as LINEs/SINEs and lncRNAand chromatin

architecture binding sites not previously comprehensively characterized in the SCLCmethylome. Methylation

of these regions may implicate them in epigenetically mediating biological pathways in SCLC and may eluci-

date novel biologic insights worthy of future investigation. These findings are especially important as they

suggest the potential difference in aggressiveness and patient outcomes in LS-SCLC and ES-SCLC may in

fact be mediated by a combination of hypermethylation of noncoding and chromatin architecture elements.

Here, we show that cfMeDIP-seq allows interrogation of the SCLC methylome in a non-invasive, compre-

hensive manner.

For future applications, this liquid biopsy assay can be applied longitudinally to interrogate the SCLC

methylome using pre-, on-, and post-treatment samples at a scale and accessibility not possible by invasive

tissue collectionmethods. Therefore, in addition to definingmethylome biology at diagnosis, cfMeDIP-seq

can also be used to identify treatment-induced changes in SCLC that may be contributing to therapeutic

resistance. By unraveling the biology of these potential epigenetic oncogenic and resistance mechanisms,

we hope to continually improve the outcomes of our patients with SCLC.

Limitations of the study

A limitation of this current study is the lack of tumor fraction data for the patients with SCLC. However, SCLC

has high disease burden and multiple liquid biopsy studies have reported 15%–87%11,12 of plasma cfDNA as

being tumor derived. Due to our sample size, we limited our cluster and differential methylation analysis to

discovery-based examination; future additional samples for a validation cohort would be necessary to

confirm these findings. Valuable future directions would be to examine the tumor fraction content from this

cohort of patients with SCLC and to validate these associations by functional experiments and independent

cohorts.
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KEY RESOURCES TABLE

REAGENT OR RESOURCE SOURCE IDENTIFIER

Biological samples

All SCLC patients and non-cancer

donors are detailed in Table S1.

Princess Margaret Cancer Centre,

University Health Network (UHN)

N/A

Circulating tumour cell derived

xenograft models

Princess Margaret Cancer Centre,

University Health Network (UHN)

N/A

Critical commercial assays

QIAamp Circulating Nucleic Acid Kit Qiagen Cat. no. 55114

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat. no. Q32851

l DNA Thermo Fisher Scientific Cat. no. SD0011

QIAquick PCR Purification Kit Qiagen Cat. no. 28106

Kapa Hyper Prep Kit Roche Cat. no. 07962363001

KAPA HiFi HotStart ReadyMix Roche Cat. no. 07958935001

Agencourt AMPure XP beads Beckman Coulter Cat. no. A63881

MagMeDIP Kit Diagenode Cat. no. C02010021; RRID: AB_442823

DNA methylation control package Diagenode Cat. no. C02040012

IPure Kit v2 Diagenode Cat. no. C03010015

Sigma-Aldrich DNA Isolation Kit for

Mammalian Blood

Roche Cat. no. 11667327001

Deposited data

cfMeDIP-seq data (SCLC patients, CDX

models, non-cancer donors)

This paper Zenodo: https://doi.org/10.5281/zenodo.

7235989

Software and algorithms

Original code used in study This paper CodeOcean: https://doi.org/10.24433/CO.

7544854.v1

R (version 3.6) https://www.r-project.org/

RStudio N/A https://www.rstudio.com/

R package MeDEStrand (version 0.0.0.9000) Xu et al.29 https://github.com/jxu1234/MeDEStrand

R package DESeq2 (version 1.30.1) Love et al.30 http://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

R package annotatr (1.16.0) Cavalcante and Sartor31 https://bioconductor.org/packages/release/

bioc/html/annotatr.html

R package clusterprofiler (version 3.16.1) Yu et al.32 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

R package ConsensusClusterPlus Wilkerson and Hayes33 https://bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html

R package ggplot2 https://ggplot2.tidyverse.org/

SAMtools (version 1.12) Li et al.34 https://github.com/samtools/samtools/

releases

Burrows-Wheeler Alignment tool

(BWA; version 0.7.17)

https://github.com/lh3/bwa

Human genome (hg19) Genome Reference Consortium

Human Build36

genome.ucsc.edu

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Requests for additional information and resources should be directed to the lead contact, Benjamin H. Lok

(Benjamin.Lok@rmp.uhn.ca).

Materials availability

This study did not generate unique reagents.

Data and code availability

d All original code has been deposited at Code Ocean and is publicly available as of the date of publica-

tion. DOI is listed in the key resources table.

d Deidentified patient and CDX methylation cfMeDIP-seq counts data have been deposited at Zenodo

and are publicly available as of the date of publication. DOI is listed in the key resources table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient recruitment & sample acquisition

All patients and donors provided written informed consent, and all samples were obtained upon approval

of the institutional ethics committee and Research Ethics Board from the Princess Margaret Cancer Centre,

University Health Network (UHN). SCLC patients and healthy donors were recruited, and peripheral blood

was collected.

METHOD DETAILS

cfDNA extraction

Peripheral blood collected in EDTA tubes was first spun down at 4000 3 g at 4 degrees Celsius for 10 min.

Subsequently, the top plasma layer was transferred to 15mL Falcon tubes and spun again at 160003 g at 4

degrees Celsius for 10 min. The supernatant was then transferred to 1.5mL Eppendorf tubes and stored

at �80 degrees Celsius. For cfDNA extraction, approximately 3mL of the processed plasma was used

with the QIAamp Circulating Nucleic Acid Kit (Qiagen, cat. no. 55114) as described in this protocol.35 Con-

centration of extracted cfDNA was quantified using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scien-

tific, cat. no. Q32851).

Peripheral blood leukocyte (PBL) DNA extraction

Peripheral blood collected in EDTA tubes was first spun down at 4000 3 g at 4 degrees Celsius for 10 min.

Subsequently, the buffy coat layer was transferred to a 1.5mL Eppendorf and stored at �80 degrees

Celsius. Genomic DNA was extracted using the Sigma-Aldrich DNA Isolation Kit for Mammalian Blood

(Roche, cat. no. 11667327001) and then sonicated to 150bp using the Covaris M220 Focused-ultrasonicator.

Sonicated DNA was then size selected using Agencourt AMPure XP beads (Beckman Coulter, cat. no.

A63881) using a 0.83 ratio.

CDX generation

Circulating tumour cells (CTCs) were extracted from one EDTA tube of peripheral blood. The blood was

first incubated with 50ul RosetteSepTM (cat. no. 15705) per mL of patient blood for 20 min in a rotator at

room temperature. After 20 min, blood was diluted with equal volume of wash buffer (WB; 10% HITES me-

dia in HBSS) and layered on top of 15 mL of Ficol-Plaque Plus in a 50 mL SepMateTM tube (cat. no. 85450),

Continued

REAGENT OR RESOURCE SOURCE IDENTIFIER

TrimGalore! (version 0.6.5) Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/

Fastqc https://github.com/s-andrews/FastQC

UCSC RepeatMasker (version:

2021-09-03)

UCSC https://genome.ucsc.edu/cgi-bin/hgTrackUi?

g=rmsk
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followed by centrifugation at 1200g for 10 min. Contents above plastic insert of SepMateTM tube were

collected in fresh 50mL tube, 30 mL of WB was added, followed by another centrifugation at 300g for

10 min. The supernatant was discarded, and the pellet was resuspended in 3 mL of 13 StemCell Technol-

ogies’ RBC lysis buffer (cat. no. 20120) and incubated for 10 min at room temperature. Subsequently, 10 mL

of WB was added, followed by centrifugation at 300g for 10 min. Finally, the supernatant was removed, and

the pellet was resuspended in 100ul of 50% of Matrigel (cat. no. 354230) in HITES media. CTCs in HITES/

Matrigel mixture were injected subcutaneously into flank of 6 –16-week immunocompromised (NSG) mice.

CDX gDNA extraction

CDX tumour tissue gDNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, cat. no. 69504). Up

to 25mg of tumour tissue was used. The extracted gDNA was then sonicated and size-selected in an iden-

tical manner as described in the ‘‘peripheral blood leukocyte (PBL) DNA extraction’’ section.

cfMeDIP library preparation

cfMeDIP libraries were made using either extracted cfDNA or processed genomic DNA according to the

protocol outlined by Shen/Burgener et al.35 For all samples, 10ng sample DNA as input and 90ng of meth-

ylated/unmethylated lambda filler DNA was used.

Next-generation sequencing

cfMeDIP-seq libraries were sequenced on an Illumina NovaSeq 6000 instrument (2 3 100 bp paired-end

reads) according to the manufacturer’s recommendations using NovaSeq 6000 SP Reagent Kit v1.5.

(Illumina, San Diego, CA, USA). All cfMeDIP-seq libraries were sequenced to 100 million reads.

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing sequenced reads

Fastq files were processed as follows. First, terminal adaptor sequences were removed using TrimGalore!

(version 0.6.5) and aligned to the reference human genome (hg19) using Burrows-Wheeler Alignment tool

(BWA; version 0.7.17). Resulting SAM files were then indexed, and duplicate reads removed using SAM-

tools (version 1.12).

PRIME filter

For all PBL MeDIP libraries, sequenced reads were binned into 300bp windows spanning the entire human

genome, excluding ENCODE blacklisted regions. For each 300bp window, beta-value was estimated using

the R package MeDEStrand (version 0.0.0.9000). PBL windows with a median beta-value of less than 0.2

(across all PBL samples). Within these windows, CG density per window greater than or equal to

five were selected to account for the functionality of the 5-methylcytosine antibody.18 These windows

(n = 196,582) are referred to as PRIME-filtered windows.

Differentially hyper-methylated regions (DMR) analysis

DMR analysis was done using the R package DESeq2 (version #1.30.1). For any DMR analysis, samples of

interest were divided up into two groups. Sequenced reads were binned into 300bp windows covering

the entire human genome. For each window, a normalization factor was applied where read counts for

each sample was divided by the mean read count of all samples (Normalization Factor = sample count/

Mean of all samples). Bayesian statistical approaches were used to minimize within sample variation and

bring extreme values close to the mean, per window. Subsequently, for each window, a general linear

model was fitted using the negative binomial distribution.

Principal component analysis (PCA)

PCA was done using the built-in plotPCA() function of DESeq2 on counts data from processed samples. For

whole-genome methylation profile analysis, 300bp windows corresponding to ENCODE blacklist regions

were removed and the remaining windows (n = 8,828,974) were examined by PCA. For PRIME-filtered

methylation profile analysis, counts data was subset to windows corresponding to PRIME-filtered windows

(n = 196,582). Subsequently, counts data was transformed by variance stabilizing transformation to produce

transformed data on the log2 scale and this was normalized with respect to library size. The transformed

counts data were visualized by PCA using plotPCA().
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Annotation of genomic regions

The R package annotatr (1.16.0) was used to annotate genomic regions (300bp windows). Specifically,

annotatr was used to annotate CpG features, i.e. if a window falls in a CpG island/shelf/shore/open-sea

region or gene features (i.e. promoter, 3’/50 UTR, exon). ENSEMBL release-104 was used to annotate

non-coding gene features such as lncRNA. UCSC RepeatMasker (version: 2021-09-03) was used to annotate

repeats features such as LINEs, SINEs, LTRs, retrotransposons, and satellites features.

Consensus clustering

To identify methylation-defined biologically relevant subtypes of SCLC, consensus clustering was applied

to sequenced read data in the following manner. For each sample, read data was subset to PRIME-filtered

windows. The median absolute deviation was calculated for each window, and the top 5000 most deviant

windows were selected. Consensus clustering was performed on these top 5000 windows. Consensus clus-

tering was done for k values of 2 to 20, with 1000 resamplings.

Permutation analysis

To calculate significance of CpG feature enrichment, permutation analysis was done. First, the human

genome was segmented into 300bp windows spanning the entire genome (except sex chromosomes).

51,666 windows were randomly sampled (because this is the number of hypermethylated DMRs observed

in SCLC) and the occurrence of CpG feature (i.e. CpG island) was calculated. This was repeated 1000 times.

Subsequently, the 10003 calculated frequencies were converted into Z-scores and a null distribution was

determined. The observed CpG feature frequency was converted into a Z-score and statistical analysis

was done.

KEGG pathway analysis

The R package clusterprofiler (version 3.16.1) was used to perform pathway analysis on methylated regions.

Gene symbols corresponding to significantly hypermethylated 300bp windows were determined using an-

notatr. Subsequently, clusterprofiler function enrichKEGG() was run on the gene symbols list.

Patient clinical/demographics and Kaplan-Meier survival analysis

The clinical-demographic features were summarized descriptively, using median and IQR and for contin-

uous variables, and counts and percentages for ordinal/categorical variables. p-values were obtained

via fisher’s exact test for categorical/ordinal variables and Kruskal Wallis H test for continuous variables.

Overall survival (OS) was defined as the time from small-cell lung cancer diagnosis until death from any

cause or censored at last follow-up. Kaplan-Meier curves and log-rank tests were used to visualize survival

differences between groups. The association between cluster and overall survival stratified by VA stage at

diagnosis was explored using Cox proportional-hazard model. Hazard ratios (HRs) were reported with 95%

confidence intervals. The proportionality assumption was met via assessing Schoenfeld residuals against

time. Statistical analyses were performed using R software (version 3.6).
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