
https://doi.org/10.1093/brain/awac227 BRAIN 2022: 145; 3953–3967 | 3953

Neurofilament light-associated connectivity 
in young-adult Huntington’s disease is 
related to neuronal genes
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Upregulation of functional network connectivity in the presence of structural degeneration is seen in the premanifest 
stages of Huntington’s disease (preHD) 10–15 years from clinical diagnosis. However, whether widespread network 
connectivity changes are seen in gene carriers much further from onset has yet to be explored.
We characterized functional network connectivity throughout the brain and related it to a measure of disease pathology 
burden (CSF neurofilament light, NfL) and measures of structural connectivity in asymptomatic gene carriers, on aver
age 24 years from onset. We related these measurements to estimates of cortical and subcortical gene expression.
We found no overall differences in functional (or structural) connectivity anywhere in the brain comparing control and 
preHD participants. However, increased functional connectivity, particularly between posterior cortical areas, corre
lated with increasing CSF NfL level in preHD participants. Using the Allen Human Brain Atlas and expression-weighted 
cell-type enrichment analysis, we demonstrated that this functional connectivity upregulation occurred in cortical re
gions associated with regional expression of genes specific to neuronal cells. This relationship was validated using sin
gle-nucleus RNAseq data from post-mortem Huntington’s disease and control brains showing enrichment of neuronal- 
specific genes that are differentially expressed in Huntington’s disease.
Functional brain networks in asymptomatic preHD gene carriers very far from disease onset show evidence of upregu
lated connectivity correlating with increased disease burden. These changes occur among brain areas that show region
al expression of genes specific to neuronal GABAergic and glutamatergic cells.
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Introduction
The earliest, asymptomatic stages of neurodegenerative disease in
volve a complex interplay between the effects of pathology on brain 
structure and function. Huntington’s disease is a monogenic, 
autosomal-dominant neurodegenerative disorder where both 
grey and white matter structural brain changes occur many years 
prior to disease onset.1–4 Alongside this, functional brain changes 
also occur,5–11 which may reflect the presence of pathological 
changes in connectivity12 or compensation in the form of upregu
lated brain network activity.13–15 However, the biological basis of 
these changes is unclear. Here, we investigate Huntington’s 
disease-related functional network connectivity during very early 
premanifest Huntington’s disease (preHD) in the context of largely 
intact structural white matter networks using regional gene ex
pression and post-mortem Huntington’s disease single-nucleus 
RNA sequencing (snRNAseq) data.

Network connectivity in preHD gene carriers is upregulated 
within functional networks where structural connectivity is weak

est.12 As such, marked axonal loss may lead to upregulated func

tional network connections unaffected by structural change or 

the recruitment of extra-network functional connections in those 

around 10–15 years from disease onset.1,16–18 We have previously 

shown that there are no detectable changes in structural network 

connectivity in a young-adult preHD cohort (HD-YAS) on average 

24 years from disease onset,19,20 but there was evidence of function

al network change.11 This is consistent with considerable evidence 

of neuronal network hyperexcitability driven by glutamatergic ex

citotoxicity and/or reduced inhibitory GABAergic activity in the 

earliest stages of neurodegeneration.21–25 However, our earlier 

study focused specifically on fronto-striatal circuits associated 

with cognitive flexibility and it is not known whether such func

tional network changes are more widespread. Determining this is 

important, because the period more than 20 years from clinical 

diagnosis is a point at which therapeutic treatments could poten

tially stall or eliminate disease progression.
Gene-expression profiles underlying patterns of functional con

nectivity have been investigated in healthy controls,26 neuro
psychiatric cohorts27,28 and recently in Parkinson’s disease, where 
differential patterns of gene expression are associated with de
coupling of structural and functional networks.29 In Huntington’s 
disease, gene transcription levels for synaptic signalling (particu
larly in the caudate and motor cortex) and cellular metabolism 
are atypical in human and animal models.30,31 Regions that show 
degeneration of white matter connections in preHD, around 15 
years from disease onset, are also those that exhibit regional ex
pression of synaptic and metabolic genes, particularly those that 
show abnormal transcription in post-mortem human and animal 
Huntington’s disease models.18 It is unclear, however, if brain net
work changes very far from disease onset show the same biological 
relationships and thus share a common pathobiology with later 
stage preHD or whether they are driven by different biological 
mechanisms.

In the current study, we characterized functional network con
nectivity in a cohort of asymptomatic young adult preHD gene car
riers on average 24 years from disease onset.19 First, we sought to 
characterize pathology-related structural and functional network 
connectivity. We employed network-based statistics (NBS) to ex
plore differences in network connectivity between preHD and con
trols and then tested the extent to which any changes were 
associated with Huntington’s disease pathology in terms of elevated 
CSF neurofilament light (NfL) levels, a marker of axonal degener
ation that correlates with Huntington’s disease progression.32–34

We then investigated the possible mechanisms of any changes in 
connectivity using Allen Human Brain Atlas (AHBA) regional gene 
expression data and partial least squares regression. This provided 
ranked gene lists associated with regions that showed increased 
functional connectivity. We used these to perform gene ontology 
(GO) enrichment analyses to identify biological relationships and 
expression-weighted cell-type enrichment (EWCE) analyses to iden
tify cell-specific relationships. Finally, the regional relationships we 
observed were validated using both differential gene-expression 
data from Huntington’s disease animal models and post-mortem 
Huntington’s disease brains and cell-specific snRNAseq data from 
Huntington’s disease and healthy post-mortem brains.

Materials and methods
Participants

Sixty-four preHD and 67 control participants matched for age, sex 
and education were recruited for the Huntington’s disease–Young 
Adult Study (HD-YAS).19 PreHD participants were gene-positive 
with a CAG repeat >39, Disease Burden Score <24035 and a Unified 
Huntington’s Disease Rating Scale Total Motor Score of ≤5.36

Control participants were gene-negative family members or indivi
duals with no familial history of Huntington’s disease. Participants 
were excluded for recent drug or alcohol abuse and/or dependence, 
neurological or significant psychiatric comorbidity, brain trauma or 
contraindication to MRI. All participants underwent an extensive 
battery of cognitive and neuropsychiatric testing, clinical and med
ical history, neuroimaging, blood sampling and optional CSF collec
tion.19 The study was approved by the local Research Ethics 
Committee and all participants gave written informed consent 
prior to study entry.

Biofluid collection

Biofluids were acquired using standardized, validated conditions, 
methods and equipment.37 The NfL protein32,33 was collected 
from both CSF and blood plasma.

MRI data acquisition

MRI data were acquired on a 3 T Prisma Scanner (Siemens 
Healthcare) with a 64-channel head coil. T1-weighted images 
were acquired using a 3D magnetization prepared rapid gradient 
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echo (MPRAGE) sequence: repetition time (TR) = 2530 ms; echo time 
(TE) = 3.34 ms; inversion time (TI) = 1100 ms; flip angle = 7°; field of 
view = 256 × 256 × 176 mm3 with a resolution of 1.0 × 1.0 × 1.0 mm3. 
Diffusion weighted images were acquired using a multiband 
spin-echo echo planar imaging (EPI) sequence with TR = 3260 ms, 
TE = 58 ms, flip angle = 88°, field of view = 220 × 220 mm2. 
Seventy-two slices were collected with a resolution of 2 × 2 × 
2 mm3. The multi-shell data consisted of b-values of 0 (n = 10, one 
with reverse phase-encoding), 100 (n = 8), 300 (n = 8), 1000 (n = 64) 
and 2000 (n = 64) s/mm2. Blip reversal acquisition parameters 
(used in topup) were the same as above. Resting-state 
functional MRI (fMRI) data were collected using a standard 2D EPI 
sequence: TR = 3.36 s; TE = 30 ms; 48 slices were acquired with 
2.5 mm slice thickness with in-plane field of view of 192 × 
192 mm2 with 3 × 3 mm2 resolution with 165 volumes. Field maps 
were collected to correct for inhomogeneity in the B0 field of the 
EPI fMRI images: TR = 1020 ms; TE1 = 10 ms; TE2 = 12.46 ms, 64 slices 
were acquired with 2 mm slice thickness with in-plane field of view 
of 192 × 192 mm2 with 3 × 3 mm2 resolution. Pulsatile information 
was collected using the Nonin 8600FO pulse-oximeter and a 
Siemens breathing belt for respiratory data. Both were recorded 
along with scanner pulses using Cambridge Electronics Device 
CED Micro 1401 Mk II connected to a laptop running Spike v2.

MRI atlases

Cortical and subcortical atlases were derived from fMRI datasets 
and represent regions parcellated on this basis of their functional 
connections. For cortical regions, we used the Shaeffer cortical at
las,38 and to investigate the effects of parcellation granularity, we 
performed NBS and genetic analyses using both the 100 and 500 re
gion parcellations. For striatal regions, we used the Choi atlas39

generated by assigning each voxel in the striatum to the most 
strongly correlated cortical region on the basis of its functional con
nectivity. Both atlases were registered to standard Montreal 
Neurological Institute space and then combined into one atlas, re
sulting in 114 and 514 region atlases.

Diffusion processing

A white matter connectome was created for each participant using 
anatomically constrained tractography40 implemented in MRtrix.41

Raw diffusion images were first visually quality controlled. 
Denoising42 and Gibbs ringing artefact removal was performed43

using MRtrix. FSL eddy and topup were used to correct image dis
tortions due to eddy current- and susceptibility-induced off- 
resonance fields and subject movement.44 B1 field inhomogeneity 
correction for the diffusion weighted imaging volume series was 
then performed using the ANTS N4 algorithm.45 Voxel-wise fibre 
orientation distribution was calculated using multi-shell multi- 
tissue constrained spherical deconvolution,46 with group-averaged 
response functions estimated for white matter, grey matter and 
CSF. Intensity normalization was then performed on fibre orienta
tion distributions and probabilistic whole-brain tractography im
plemented to generate 10 million streamlines. Streamlines 
terminated when exiting the white matter. Spherical deconvolu
tion informed filtering of tractograms (SIFT2) was used to remove 
biases inherent in tractography where longer connections are over
determined, streamlines follow the straightest path and lack an as
sociated volume.47 Connectomes were constructed by combining 
streamline tractograms with each participant’s combined cortical 
(100 and 500 regions of interest)/subcortical (14 regions of interest) 

parcellation and streamlines assigned to the closest region within a 
2 mm radius of each end point. Structural connections were then 
weighted by streamline count and a cross-sectional area multiplier 
as per SIFT2.48 Connections were then combined into 114 × 114 and 
514 × 514 undirected and weighted matrices.

Functional MRI processing

Functional MRI data preprocessing and subsequent statistical ana
lyses were performed using SPM12 running under MATLAB (ver 
R.2012b). The T1-weighted scan was segmented into grey and white 
matter during this process and DARTEL deformation parameters 
were created. The first five EPI images were discarded to allow for 
steady-state equilibrium. Functional images were slice-timing cor
rected and realigned, incorporating field maps for inhomogeneity 
correction, and coregistered to the T1 image. EPI images were 
then normalized using DARTEL deformation parameters and 
smoothed using a 6 mm full-width at half-maximum Gaussian ker
nel. Functional connectivity analyses were then performed using 
the CONN toolbox.49 Smoothed, normalized EPI images were in
cluded with corresponding structural images (combined, segmen
ted grey and white matter). All EPI images were denoised using a 
bandpass filter 0.008–0.09 and linear detrending, movement para
meters and signals from both white matter and CSF as a proxy for 
physiological measures were additionally regressed. Regression 
was performed before bandpass filtering, as is the default in the 
CONN toolbox. This avoids the reintroduction of motion artefacts50

or unwanted frequency components,51 which can occur when re
gression is performed after bandpass filtering. Connections were 
then combined into 114 × 114 and 514 × 514 undirected and 
weighted matrices, matching the structural connectivity matrices. 
This approach has been used both by our group11 and others.52

Simultaneous50,51 regression and bandpass filtering were also per
formed using the ‘simult’ option in CONN.

Motion parameters in six directions were derived for each indi
vidual following the realignment step that was performed as part 
of the fMRI data preprocessing pipeline. These motion parameters 
were subsequently included as a covariate of no interest in the first- 
level analyses for each participant. The motion-corrected data were 
then used at the second level with potential differences due to mo
tion essentially removed. It should also be noted that while this was 
a movement-disordered patient group, all participants were asymp
tomatic and as such there was minimal effect of disease-related mo
tion on the scans, each of which were quality-controlled prior to any 
preprocessing or analyses. Additionally, the maximum movement 
displacement was calculated for each subject and group differences 
were explored using a two-tailed t-test.

Connectivity analyses

NBS version 1.2 (https://sites.google.com/site/bctnet/comparison/ 
nbs) was used to investigate independently group differences in 
structural and functional connectivity53 using both the 114 and 
514 parcellation matrices. Using this method, a test statistic is cal
culated for each connection independently. A primary threshold 
(P < 0.05, uncorrected) is then applied to form a set of suprathres
hold connections. Permutation testing is then used to calculate a 
family-wise error (FWE) corrected P-value for each set of supra
threshold connections or subnetwork.53 Results reaching FWE cor
rected P < 0.05 are reported as significant, with P-values relating to 
the significance of all the connections within a subnetwork as a 
whole as opposed to individual connections. For these analyses, 
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permutation testing using unpaired t-tests and 5000 permutations, 
as per the default NBS options, was performed on a general linear 
model that included age and gender as covariates. A test statistic 
was then computed for each connection and a default threshold ap
plied (t = 3.1) to produce a set of suprathreshold connections that 
displayed significant between-group connectivity differences. 
FWE-correction was applied at P = 0.05.

To focus only on functional connections that have an under
lying structural connection, the functional connectivity analysis 
was repeated constraining the functional connectome by the struc
tural. Here, the functional matrix was simply multiplied by the bi
narized structural matrix to remove any functional connections 
that do not have supporting structural connections, and the NBS 
analysis repeated. Statistically significant group differences in con
nectome density, as defined by the sum of all weighted connec
tions, were also investigated. This was performed for structural, 
functional and constrained connectomes using permutation test
ing (5000 permutations) with two-tailed t-tests including age and 
gender as covariates.

The relationship between NfL and connectivity may occur in a 
continuous manner such that higher NfL levels correlate with ab
sent or reduced connectivity. Alternatively, connectivity changes 
may occur (or be detectable) only when a certain pathological 
threshold of NfL is reached. To test these two hypotheses, we per
formed two sets of NfL analyses.

First, we investigated the role of CSF NfL on structural and func
tional connectivity, correlating CSF NfL to structural and functional 
connections by including CSF NfL as the contrast in the NBS design 
matrix for the whole cohort, preHD only and control only.

Next, to investigate whether preHD participants with CSF NfL 
above a pathological threshold showed differences in structural 
or functional connectivity compared to preHD participants with 
normal CSF NfL, a subgroup analysis was performed where the 
preHD group was split in two on the basis of the CSF NfL results 
in the study. The low group had CSF NfL values within the 95th per
centile of controls (<951 pg/ml), whereas the high group had CSF 
NfL values above this. This resulted in 24 gene carriers in the low 
group and 22 in the high group. The 95th percentile of controls 
was defined as the pathological threshold, in keeping with previous 
analyses using this cohort.19

Gene expression analysis

Mapping gene expression data to MRI space

Gene expression microarray data were sourced from the Allen 
Human Brain Atlas (AHBA)54 to examine gene expression under
lying the relationship between NfL and functional connectivity, as 
we identified significant association in our primary connectivity 
analyses. This contains gene expression data of 20 737 genes 
sampled across the adult brain. This atlas is based on data from 
six post-mortem human brains with no known neuropsychiatric 
or neuropathological history. Five donors were male and one was 
female with a mean age of 42.5 years. Three were Caucasian, two 
were African-American and one was Hispanic. AHBA data are freely 
available to download from the Allen Institute of Brain Science 
(AIBS, http://human.brain-map.org/static/download). The Abagen 
toolbox (https://github.com/rmarkello/abagen) was used to map 
gene expression data on to the combined cortex and striatum 114 
regions of interest atlas. This toolbox follows optimized preproces
sing steps previously reported.55 In brief, each tissue sample was 
assigned to one of the 114 regions of interest using AHBA MRI 

data for each donor. Data were pooled between homologous cor
tical regions (to ensure adequate bi-hemispheric coverage), with a 
2 mm distance threshold on the cortical surface between samples. 
Probes with expression measures above background in over 50% of 
samples were selected, and a representative probe per gene was 
chosen based on highest intensity. Gene expression data were 
then normalized, leading to 15 633 genes included in the final 
gene dataset. In the AHBA, data for the left hemisphere were avail
able for all donors, while two donors included right hemisphere 
data. Previous studies have used mirroring, were the left hemi
sphere data are mirrored on the right hemisphere in order to ac
count for this.56 We opted not to perform mirroring, as this 
approach has a differential impact on statistical estimates in re
gional gene expression analyses.57

Statistical analysis: partial least squares regression

All statistical analysis was performed in MATLAB R2018b. Partial 
least squares (PLS) regression was used to reveal the biological 
and cell-specific mechanisms underlying the relationship between 
CSF NfL and functional connectivity. PLS regression is a multivari
ate technique used to identify associations between response and 
predictor variables. In our case, the predictor variable was a 114 re
gions of interest × 15 633 gene matrix.

Two complimentary approaches were used to generate the re
sponse variable, a partial correlation analyses in the preHD group 
only and a mixed linear model with a focus on the NfL × Group 
interaction. For the partial correlation analysis, graph theory 
strength was calculated, which equates to the sum of functional 
connectivity for each region of interest. Spearman rank partial cor
relations were then performed with NfL, controlling for age and 
gender. The partial correlations for each region of interest were 
then used as the response variable for the PLS. In this context, the 
focus is not on which correlations are significant but rather the 
spectrum of correlations across cortical regions of interest; similar 
approaches have been used in the literature to relate age, cortical 
thickness and regional gene expression.58 Strength was selected 
as a graph theory metric, as it is calculated by the sum of weighted 
connections to each region of interest. This allows comparison with 
the NBS analysis, which uses weighted connections as an input in 
the form of a connectivity matrix. While there is no current consen
sus within the literature as to the optimal graph theory metric for 
use in resting-state fMRI analyses, graph theory strength has higher 
test–retest reliability, as measured by interclass correlation coeffi
cient, than other commonly used metrics such as clustering coeffi
cient, betweenness centrality, local efficiency and degree.59

To explore the interaction between NfL and group, the following 
mixed linear model was used: region of interest functional connect
ivity strength ∼1 + Age + Gender + Group × NfL. The Group × NfL esti
mate for each region of interest was used as the response variable 
for the PLS. A mixed linear model was used as this is the most appro
priate approach when including dependent variables, such as Group 
and NfL. In this context the focus is not on which model estimates 
are significant but rather the spectrum of negative and positive esti
mates across cortical regions of interest; similar approaches have 
been used in the literature to relate age, cortical thickness, magnet
ization transfer ratio and regional gene expression.60

Partial correlations, model estimates and spatial patterns of the 
weights of the PLS components were visualized using the BrainNet 
viewer (https://www.nitrc.org/projects/bnv) for combined cortical 
and subcortical visualizations and ggseg (https://github.com/ 
ggseg/ggsegSchaefer) for visualizations of cortical surface only.

http://human.brain-map.org/static/download
https://github.com/rmarkello/abagen
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We performed spatial permutation testing to assess whether PLS 
results explained a significantly higher proportion of variance for 
each of our chosen response variables (partial correlation in the 
preHD group and group × NFL interaction, assessed separately) 
than expected by chance. To do this, we reordered the predictor ma
trix in terms of regions of interest based on sphere rotations61 and 
repeated the PLS regression using this predictor variable; this pro
cess was repeated for 1000 random permutations to construct a spa
tially correlated null distribution of PLS weights in keeping with the 
literature.29,61,62 P-values for PLS components have been calculated 
based on the explained variance in the observed data relative to the 
variance explained in the null model. To quantify the spatial topog
raphy of PLS weights and enable comparison between the 114 and 
514 region of interest atlases, Spearman rank correlations were per
formed between the MRI coordinates (left to right, A: posterior to an
terior, S: inferior to superior) and PLS weights, for the 114 and 514 
region of interest NfL partial correlation analyses.

As the greatest amount of variance was explained by the first PLS 
component (PLS1), genes were ranked based on their contribution to 
this component. Permutation testing was used to assess whether 
genes were weighted higher or lower than expected by chance, cor
recting for FWE. Similar to the NBS implementation, the one-sided 
FWE-corrected P-value (q-value) for a gene is estimated as the pro
portion of permutations for which the weighting of this gene is high
er than the 95th percentile or lower than the 5th percentile of the 
spatially correlated null distribution. Only genes with weights sig
nificantly higher or lower than expected by chance (q < 0.05) were in
cluded in the subsequent GO enrichment analysis. Genes with 
negative (downweighted) and positive (upweighted) PLS weightings 
were ranked separately. There are several previous studies that 
used PLS for the large gene-expression datasets from the 
AHBA.18,29,63

Gene ontology enrichment analysis

To investigate the genetic basis underlying the CSF NfL and func
tional connectivity associations, we performed enrichment ana
lysis for GO, Kyoto Encyclopedia of Genes and Genomes pathway, 
Reactome and CORUM terms using g:Profiler to identify GO terms 
that were significantly enriched in the top (upweighted) and bottom 
(downweighted) genes from the PLS1 ranked gene list. Only genes 
that were significantly more up- or downweighted than expected 
by chance (against a spatially correlated null distribution) were in
cluded in this analysis. A Benjamini–Hochberg correction for mul
tiple comparisons was used with a significance threshold of 0.05, 
as implemented in g:Profiler. To aid interpretation, we removed 
general GO terms by excluding those with greater than 1000 genes 
in their classification in keeping with other studies in the litera
ture.63,64 This allowed us to focus on specific gene sets as opposed 
to GO terms encompassing thousands of genes covering a range 
of processes.

Expression-weighted cell-type enrichment analysis

To investigate whether specific cell types were associated with CSF 
NfL and functional connectivity, we performed EWCE.65 The top 
(upweighted) and bottom (downweighted) 10%, 20% and 30% of 
genes from the PLS1 ranked gene list were used as target lists. 
Incremental thresholds were chosen to identify the most signifi
cant cell-type association for each target list. Each was run with 
100 000 bootstrap lists, controlling for transcript length and GC con
tent, which can bias genetic enrichment analyses,66 using only 
major cell-type classes (e.g. ‘astrocyte’, ‘microglia’, etc.). The 

Benjamini–Hochberg method was used for correction of multiple 
comparisons as is the default in EWCE software. Single-cell tran
scription data were used from the AHBA (https://portal.brain- 
map.org/atlases-and-data/rnaseq) containing data from the middle 
temporal gyrus.67 To ensure that our results were not dependent on 
the dataset used, we replicated our EWCE analysis with the same 
parameters (100 000 bootstrap lists, Benjamini–Hochberg correc
tion) using a different human-derived dataset from Habib et al.68; 
this is a comprehensive human derived post-mortem dataset, con
taining data from five donors and 19 550 cells from both the hippo
campus and the prefrontal cortex. The EWCE package is freely 
available from https://github.com/NathanSkene/EWCE.

Enrichment analysis of striatal and cortical genes showing 
abnormal transcription in Huntington’s disease

We then investigated whether striatal and cortical genes showing 
abnormal transcription in human and animal models of 
Huntington’s disease were enriched greater than by chance in the 
ranked gene list of the PLS1. Huntington’s disease gene lists were 
obtained from Langfelder et al.,69 which consists of genes that 
show consistent differences in Huntington’s disease compared to 
controls both in the Huntington’s disease knockout mouse allelic 
series69 and human Huntington’s disease post-mortem data from 
the caudate nucleus70 and cortical regions Brodmann areas 4 and 
9,31 prefrontal and visual cortices.71 To test whether these gene lists 
were enriched greater than by chance in the PLS1, we performed a 
permutation test of the normalized bootstrap weight of each gene 
in the PLS1 summed over all genes for each gene list. The approach 
has been used previously,18,63 and the code is freely available at 
https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2016/ 
blob/master/SCRIPTS/PLS_candidate_genes.m.

Enrichment analysis of cell-specific genes showing 
abnormal transcription in snRNAseq in Huntington’s 
disease

To relate cell-specific CSF NfL–fMRI relationships to Huntington’s 
disease pathology, we utilized data from a study analysing 
snRNAseq data in post-mortem Huntington’s disease brains rela
tive to controls.72 Single nucleus RNAseq can be applied to frozen 
post-mortem brain tissue and thus overcomes limitations of single- 
cell (sc)RNAseq approaches, which cannot be applied to frozen tis
sue. This enables the identification of cell-specific genes that show 
abnormal transcription in Huntington’s disease. Al-Dalahmah 
et al.72 analysed snRNA seq data from samples of the anterior cingu
late cortex frozen at post-mortem in four cases (two Huntington’s 
disease and two controls) from the New York Brain Bank. In doing 
so, they provided lists of neuron- and astrocyte-specific genes 
that signify different levels of transcription in Huntington’s disease 
relative to controls. We tested whether these gene lists were en
riched greater than by chance in the PLS1 from the above gene 
CSF NfL-functional connectivity analysis using the permutation 
test described above. See Fig. 1 for a summary of the methodical 
approach.

Data and code availability

Anonymized, derived data supporting the findings of this study are 
available from the corresponding author on request. Code used to 
implement analyses in this study is freely available at https:// 
github.com/AngelikaZa/YAS_HD.

https://portal.brain-map.org/atlases-and-data/rnaseq
https://portal.brain-map.org/atlases-and-data/rnaseq
https://github.com/NathanSkene/EWCE
https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2016/blob/master/SCRIPTS/PLS_candidate_genes.m
https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2016/blob/master/SCRIPTS/PLS_candidate_genes.m
https://github.com/AngelikaZa/YAS_HD
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Results
Demographic and clinical data

There were no significant differences in age [t(85) = 0.7, P = 0.49] be
tween controls (mean = 28.61, SD = 5.68) and gene carriers (mean = 
29.46, SD = 5.62), sex (χ2, P = 0.67) between controls (females = 23, 
males = 18) and gene carriers (female = 23, male = 23) or 
International Standard Classification of Education (χ2, P = 0.45). 
However, CSF NfL levels were significantly different [t(85) = 4.2, P = 
0.0001] between controls (mean = 354, SD = 261) and gene carriers 
(mean = 767, SD = 585).

Structural and functional connectivity

There were no significant between-group differences in structural 
or functional connectivity (with and without constraining by struc
tural connectome) for either the 114 or 514 parcellation analyses 
(Table 1). No connectome density group differences were observed 
for structural (114 regions of interest, P = 0.52; 514 regions of inter
est, P = 0.66), functional (114 regions of interest, P = 0.65; 514 regions 
of interest, P = 0.64) or constrained connectomes (114 regions of 
interest, P = 0.58; 514 regions of interest, P = 0.83). For resting-state 

fMRI, there was no significant difference (P = 0.096) in maximum 
movement displacement between preHD (mean = 0.75, SD = 0.49) 
and controls (mean = 0.62, SD = 0.24).

Relationship between CSF NfL and structural and 
functional connectivity in preHD

A three-way ANOVA was performed to compare structural and 
functional connectivity using 114 parcellations between three 
groups: controls, preHD with normal CSF NfL and preHD with high
er CSF NfL. No significant differences were found for either struc
tural (PFWE = 0.25) or functional (PFWE = 0.97) connectivity.

For structural connectivity, there were no significant correla
tions between CSF NfL for controls and preHD combined or preHD 
only for the 114 parcellation. There were significant negative corre
lations for both controls and preHD combined (PFWE = 0.028) and 
preHD only (PFWE = 0.023) for the 514 parcellation (Supplementary 
Figs 1 and 2).

For functional connectivity, there were significant positive cor
relations between CSF NfL and functional connectivity for both 
the combined (PFWE = 0.034) and preHD group only (PFWE = 0.019) 
for the 114 parcellation (Table 1 and Fig. 2) and for both the com
bined (PFWE = 0.04) and preHD group only (PFWE = 0.027) for the 514 

Figure 1 Summary of analysis pipeline. Diffusion MRI and resting-state fMRI underwent preprocessing and were parcellated using the Shaefer cortical 
atlas38 and the Choi subcortical atlas.39 Structural and functional connectomes were then created based on weighted streamlines between brain re
gions and temporal fMRI time-series correlations between regions, respectively. Correlations were performed between CSF NfL and brain networks 
using NBS. An NfL–fMRI correlation matrix was also used to investigate associations with regional gene expression using the AHBA. PLS regression 
produced a ranked gene list of those genes most strongly associated with NfL–fMRI hyperconnectivity. GO and EWCE were then used to investigate 
biological and cell-specific associations. Finally these results were validated using snRNAseq72 from post-mortem Huntington’s disease (HD) and con
trol brains.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
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parcellation (Supplementary Figs 1 and 2). The connections of the 
subnetwork that showed a positive correlation with NfL were lo
cated predominantly in the posterior cortex, with very few anterior 
regions affected. Of the 164 connections in the preHD group-only 
subnetwork, 6% were cortico-striatal, 49% interhemispheric and 
45% intrahemispheric (Table 2 and Supplementary Table 2). There 
were no significant negative correlations between CSF NfL and 
functional connectivity (Table 1).

No significant correlations were seen between NfL and either 
structural or functional connectivity for the control group only 
(Supplementary Table 1), suggesting the absence of a physiological 
relationship between NfL and brain networks. Replication of the 
significant fMRI analyses using the CONN ‘simult’ processing op
tion did not reveal significance and may be related to less specificity 
with this processing option (Supplementary Table 1).

Region of interest partial correlation, mixed linear 
model and PLS analyses

For the partial correlation of 114 regions of interest analysis, one 
brain region showed false discovery rate (FDR)-corrected signifi
cance (q), left DorsAttn_Post_6 (rho = 0.38, q = 0.031). A further seven 
nodes from the dorsal attention and visual networks showed un
corrected (P < 0.05) significance, all with positive correlations. See 
Supplementary Table 3 and Supplementary Figs 3–5 for visualiza
tions of correlations. Using the region of interest correlations as 
an input into the PLS analysis, the first component explained the 
largest amount of variance at 22.5%, P < 1 × 10−10 [2nd, 8% (P = 
0.49); 3rd, 15.4% (P = 0.005); 4th, 10.1% (P = 0.24); 5th, 9% (P = 0.36)]. 

The spatial patterns of the weights of the PLS1 are visualized in 
Supplementary Figs 6–8. The spatial topography analysis revealed 
correlations between PLS weights and R (left to right): rho = 0.02, P 
= 0.83, A (posterior to anterior): rho = −0.35, P = 0.0004, S (inferior 
to superior): rho = 0.42, P = 1.3 × 10−5.

For the mixed linear model analysis uncorrected significance for 
the group× NfL interaction was seen for right Default_pCunPCC_2 
(β= −0.008, P= 0.013), right Limbic_TempPole_1 (β=0.008, P =0.027) 
and right Vis_7 (β=0.01, P=0.031). See Supplementary Table 4 and 
Supplementary Figs 9–11 for visualizations of model estimates. Using 
the region of interest Group ×NfL interaction estimate as an input 
into the PLS analysis, the first component explained the largest amount 
of variance at 24.7%, P=0.047 [2nd, 6.1% (P=0.29); 3rd, 8.9% (P= 0.41); 
4th, 8.6% (P=0.4); 5th, 10.1% (0.47)]. The spatial patterns of the weights 
for the PLS1 are visualized in Supplementary Figs 12 and 14.

For the partial correlation of 514 regions of interest analysis, no 
brain regions showed FDR-corrected significance. Ninety-seven 
nodes from the dorsal attention, visual, somatomotor, limbic and 
default mode, salient ventral attention and control networks 
showed uncorrected (P < 0.05) significance (91 positive correlations 
and six negative correlations). Consistent with the 114 regions of 
interest analysis, dorsal attention and visual regions of interest 
were among the most significant. See Supplementary Table 5 and 
Supplementary Fig. 15 for visualizations of correlations.

Using the region of interest correlations as an input into the PLS 
analysis, the first component explained the largest amount of vari
ance at 13.03%, P = 0.014. Downweighted but no upweighted genes 
were identified in the first component; therefore, the second com
ponent was also investigated in subsequent analyses. The spatial 
pattern of the weights for the first PLS component are visualized 
in Supplementary Fig. 16. The spatial topography analysis revealed 
correlations between PLS weights and R (left to right): rho = 0.18, 
P = 5.5 × 10−5, A (posterior to anterior): rho = −0.42, P = 2.2 × 10−16, S 
(inferior to superior): rho = 0.43, P = 2.2 × 10−16.

The second component explained 9.14% of the variance, P = 0.014 
[3rd, 2.98% (P = 0.41); 4th, 7.92% (P = 0.036); 5th, 5.86% (P = 0.12)]. The 
spatial pattern of the weights for the second PLS component (PLS2) 
are visualized in Supplementary Fig. 17. The spatial topography ana
lysis revealed correlations between PLS weights and R (left to right): 
rho = −0.21, P = 1.2 × 10−6, A (posterior to anterior): rho = −0.35, P = 
5.8 × 10−16, S (inferior to superior): rho = 0.23, P = 2.2 × 10−7. Based on 
spatial topography, correlations for both 114 and 514 regions of inter
est analyses showed higher PLS weights in posterior and superior 
cortical regions of interest (Supplementary Figs 18–20). To  facilitate 
comparisons between the 114 and 514 regions of interest across 
NBS, GO, EWCE and Huntington’s disease gene enrichment analyses, 
Supplementary Table 13 summarizes the results across the analyses.

Gene ontology enrichment analysis

For the results using the ranked gene list from the partial correlation 
of 114 regions of interest PLS, the five most significant ontology 
terms for upweighted genes included presynapse (P = 4.84 × 10−9), 
somatodendritic compartment (P = 6.85 × 10−9), synaptic membrane 
(P = 1.75 × 10−9), potassium ion transmembrane transporter activity 
(P = 2.11 × 10−8) and presynaptic membrane (P = 3.93 × 10−8) (see 
Table 3). For downweighted genes, the five most significant ontology 
terms included cell morphogenesis involved in differentiation (P = 
0.0003), I band (P = 0.003), phosphatidylinositol-4,5-bisphosphate 
binding (P = 0.004), camera-type eye development (P = 0.006) and 
cell morphogenesis involved in neuron differentiation (P = 0.007) 
(see Table 3).

Table 1 Network-based statistics results

Group t-test PreHD 
< Controls

Cont 
< PreHD

Functional (114 ROIs) 0.672 0.6046
Structural (114 ROIsr) 0.3447 0.2384
Functional (structural constrained) 114 ROIsr 0.6072 0.5792
Functional (514 ROIsr) 0.4296 0.5976
Structural (514 ROIsr) 0.1504 0.4613
Functional (structural constrained) 514 ROIsr 0.2603 0.7998

Correlations Positive Negative

NFL–fMRI correlation (whole group) 114 ROIsr 0.0304* 1
NFL–fMRI correlation (preHD) 114 ROIsr 0.019* 0.6633
NFL–structural correlation (whole group) 114 

ROIsr
0.191 0.391

NFL–structural correlation (preHD) 114 ROIsr 0.2523 0.1818
NFL–fMRI correlation (whole group) 514 ROIsr 0.0398* 0.6615
NFL–fMRI correlation (preHD) 514 ROIsr 0.027* 0.6478
NFL–structural correlation (whole group) 514 

ROIsr
0.3177 0.0284*

NFL–structural correlation (preHD) 514 ROIsr 0.2919 0.023*

For these analyses, permutation testing using unpaired t-tests and 5000 

permutations was performed on a general linear model that included age and sex as 
covariates. A test statistic was then computed for each connection and a default 

threshold applied (t = 3.1) to produce a set of suprathreshold connections that 

displayed significant between-group connectivity differences. *FWE-correction was 

applied at P = 0.05. Due to the high false positive rates in fMRI connectivity analyses73

the functional connectivity analysis was repeated, constraining the functional 

connectome by the structural. Here, the functional matrix was simply multiplied by 

the structural matrix to remove any functional connections that do not have 

supporting structural connections, and the NBS analysis repeated. ROIs = regions of 
interest.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
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Results using the ranked gene list from the Group × NfL inter
action for downweighted genes were similar were similar to the up
weighted ontology terms for the partial correlation analysis. The 
five most significant ontology terms for downweighted genes in
cluded presynapse (P = 2.13 × 10−14), axon (P = 3.07 × 10−9), antero
grade trans-synaptic signalling (P = 3.31 × 10−9), chemical synaptic 
transmission (P = 3.31 × 10−9) and trans-synaptic signalling (P = 5.36 
× 10−9). The five most significant ontology terms for upweighted 
genes included microtubule organizing centre (P = 0.0008), plasma 
membrane-bounded cell projection assembly (P = 0.001), cell projec
tion assembly (P = 0.002), centrosome (P = 0.003) and cilium organ
ization (P = 0.004) (see Table 3).

For the results using the ranked gene list from the partial correl
ation of 514 regions of interest PLS, for the PLS1, there were no up
weighted genes; therefore, we included upweighted genes from the 
second component. Significant ontology terms for upweighted genes 
(component 2) included overlap with terms reported in for up
weighted genes in the partial correlation of 114 regions of interest 
PLS analyses; these included potassium ion transmembrane trans
porter activity (P = 1.03 × 10−8), presynapse (P = 6.12 × 10−6) and soma
todendritic compartment (P = 9.49 × 10−5). Significant ontology terms 
for downweighted genes (component 1) included similar synaptic 
and ion channel gene terms, such as presynapse (9.17 × 10−6), trans- 
synaptic signalling (P = 2.59 × 10−5) and ion transmembrane transport
er activity (P = 1.54 × 10−5). GO lists for the 50 most significant terms, 
for all analyses, are included in Supplementary Table 6.

Cell-specific enrichment analysis

For the cell enrichment analyses, we focused on the top and bottom 
10% of genes. Results were consistent across databases [AIBS 2019 
and DRONC (droplet-based single-nucleus RNA sequencing)] and 
10–30% gene lists (Supplementary Tables 6 and 12).

For results using the ranked gene list from the partial correlation 
of 114 regions of interest analysis, upweighted genes were signifi
cantly associated with neuronal cell types, while downweighted 
genes were significantly associated with glial cell types. For 10% up
weighted, AIBS 2019 showed significance for glutamatergic (P < 1 × 
10−10) and GABAergic cells (P = 2 × 10−5), while 10% downweighted 
showed significance for astrocytes (P < 1 × 10−10) (Table 4 and 
Fig. 3). The neuronal and glial cell split between up- and down
weighted genes was replicated using the DRONC database. Full re
sults are included in Supplementary Tables 7 and 8.

Results using the ranked gene list from the Group × NfL interaction 
for downweighted genes were similar to the upweighted gene results 

for the partial correlation analysis. Downweighted genes were signifi

cantly associated with neuronal cell types, while upweighted genes 

were significantly associated with glial cell types. For 10% down

weighted, AIBS 2019 showed significance for glutamatergic cells (P < 
1 × 10−10) and GABAergic (P = 1 × 10−4), while 10% upweighted showed 

significance for pericyte (P = 0.04) (Table 4 and Fig. 3). The neuronal 

and glial cell split between up- and downweighted genes was repli

cated using the DRONC database (Supplementary Tables 9 and 10).

Figure 2 Resting-state fMRI brain subnetwork showing significant (P< 0.05 FWE-corrected) positive correlation with CSF NfL across Huntington’s dis
ease gene expansion carriers. Analysis performed using NBS. (A) Circular graph depicting significant subnetwork. (B) Left sagittal view. (C) Axial view. 
(D) Coronal view. (E) Right sagittal. (F) Colour scheme for brain figures. Spheres indicate brain regions; lines indicate fMRI connections that correlate 
with NfL between brain regions. LH = left hemisphere; RH = right hemisphere.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
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Table 2 Network-based statistics subnetwork showing significant correlation with CSF NfL for preHD gene carriers

Connection 1 Connection 2 T-stat

Cortical–striatal 7Networks_RH_Cont_PFCl_3 R_Ventral_attention 4.06
7Networks_LH_SalVentAttn_PFCl_1 L_Dorsa_lattention 3.95
7Networks_RH_DorsAttn_Post_4 R_Somatomotor 3.88
7Networks_RH_Cont_pCun_1 R_Ventral_attention 3.51
7Networks_RH_DorsAttn_Post_4 L_Somatomotor 3.44
7Networks_RH_DorsAttn_Post_1 L_Somatomotor 3.42
7Networks_RH_Cont_PFCl_3 L_Dorsal_attention 3.27
7Networks_RH_DorsAttn_Post_5 R_Frontoparietal 3.24
7Networks_LH_Vis_7 R_Somatomotor 3.18
7Networks_RH_DorsAttn_Post_4 R_Ventral_attention 3.15

Interhemispheric 7Networks_LH_Default_Temp_1 7Networks_RH_DorsAttn_Post_5 5.24
7Networks_LH_Cont_pCun_1 7Networks_RH_SomMot_6 5.13
7Networks_LH_DorsAttn_Post_5 7Networks_RH_Limbic_TempPole_1 4.9
7Networks_LH_Default_Par_1 7Networks_RH_Vis_2 4.79
7Networks_LH_Cont_pCun_1 7Networks_RH_SomMot_2 4.76
7Networks_LH_DorsAttn_FEF_1 7Networks_RH_Limbic_TempPole_1 4.74
7Networks_LH_Default_PFC_1 7Networks_RH_DorsAttn_Post_5 4.71
7Networks_LH_Limbic_TempPole_1 7Networks_RH_DorsAttn_Post_5 4.65
7Networks_LH_Cont_pCun_1 7Networks_RH_SomMot_5 4.64
7Networks_LH_SomMot_6 7Networks_RH_Limbic_TempPole_1 4.58

Intrahemispheric 7Networks_RH_SomMot_6 7Networks_RH_DorsAttn_Post_1 6.78
7Networks_LH_DorsAttn_Post_6 7Networks_LH_Default_Temp_1 4.86
7Networks_RH_Vis_2 7Networks_RH_SomMot_8 4.84
7Networks_LH_Vis_7 7Networks_LH_Limbic_TempPole_1 4.64
7Networks_RH_DorsAttn_Post_5 7Networks_RH_Limbic_TempPole_1 4.53
7Networks_RH_SomMot_8 7Networks_RH_DorsAttn_Post_1 4.51
7Networks_LH_DorsAttn_Post_6 7Networks_LH_Limbic_TempPole_1 4.5
7Networks_LH_DorsAttn_Post_3 7Networks_LH_Limbic_TempPole_1 4.49
7Networks_LH_SomMot_6 7Networks_LH_Default_PFC_6 4.41
7Networks_LH_Vis_3 7Networks_LH_Limbic_TempPole_1 4.39

Connections classified as cortico-striatal, interhemispheric, intrahemispheric and ranked based on test statistic. Top 10 connections based on test statistic (T-stat) displayed for 

each connection type. 

Table 3 Top 5 significant GO terms for upweighted and downweighted genes from the partial correlation analysis (Pcor) and the 
mixed linear model (Group × NfL) interaction analysis

Term name Term ID Source P-value

Upweighted (Pcor)
Presynapse GO:0098793 GO:CC 4.84 × 10−9

Somatodendritic compartment GO:0036477 GO:CC 6.85 × 10−9

Synaptic membrane GO:0097060 GO:CC 1.75 × 10−8

Potassium ion transmembrane transporter activity GO:0015079 GO:MF 2.11 × 10−8

Presynaptic membrane GO:0042734 GO:CC 3.93 × 10−8

Downweighted (Pcor)
Cell morphogenesis involved in differentiation GO:0000904 GO:BP 0.0002733
I band GO:0031674 GO:CC 0.0028901
Phosphatidylinositol-4,5-bisphosphate binding GO:0005546 GO:MF 0.0036894
Camera-type eye development GO:0043010 GO:BP 0.0055427
Cell morphogenesis involved in neuron differentiation GO:0048667 GO:BP 0.0066415

Upweighted (Group × NfL)
Microtubule organizing centre GO:0005815 GO:CC 0.0008331
Plasma membrane-bounded cell projection assembly GO:0120031 GO:BP 0.0012018
Cell projection assembly GO:0030031 GO:BP 0.0018766
Centrosome GO:0005813 GO:CC 0.0029856
Cilium organization GO:0044782 GO:BP 0.0040246

Downweighted (Group × NfL)
Presynapse GO:0098793 GO:CC 2.13 × 10−14

Axon GO:0030424 GO:CC 3.07 × 10−9

Anterograde trans-synaptic signalling GO:0098916 GO:BP 3.31 × 10−9

Chemical synaptic transmission GO:0007268 GO:BP 3.31 × 10−9

Trans-synaptic signalling GO:0099537 GO:BP 5.36 × 10−9

GO:BP = gene ontology biological process; GO:CC = gene ontology cellular component; GO:MF = gene ontology molecular function; REAC = reactome.
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For results using the ranked gene list from the partial correlation 
of 514 regions of interest analysis 10% upweighted, AIBS 2019 
showed significance for GABAergic (P < 1 × 10−10) and glutamatergic 
cells (P < 1 × 10−10), while 10% downweighted showed significance 
for astrocyte (P < 1 × 10−10) and GABAergic cells (P = 0.002). Full re
sults are included in Supplementary Tables 11 and 12.

Enrichment analysis of striatal and cortical genes 
showing abnormal transcription in Huntington’s 
disease

For the partial correlation analysis, genes which showed abnormal 
transcription in the cortex in human Huntington’s disease and ani
mal models were significantly enriched in the ranked gene list from 
the PLS1 (P < 1 × 10−10). However, genes that showed abnormal tran
scription in the striatum were not significantly enriched (P = 0.99; 
Fig. 4). This suggests that CSF NfL-related increases in functional 

connectivity are predominantly related to cortical and not striatal 
Huntington’s disease pathology. Neither striatal (P = 0.16) nor cor
tical genes (P = 0.8) were enriched in the ranked gene list from the 
PLS1 of the Group × NfL analysis. Consistent with the 114 regions 
of interest partial correlation analysis, the 514 regions of interest 
partial correlation analysis showed enrichment of cortex genes 
(PLS1, P = 0.003; PLS2, P = 2 × 10−4) but not striatal genes (PLS1, P = 
0.98; PLS2, P = 0.86).

Enrichment analysis of cell-specific genes showing 
abnormal transcription in snRNAseq in Huntington’s 
disease

For the partial correlation analysis, neuronal (P < 1 × 10−10) and 
microglia (P = 0.03, uncorrected) genes that showed abnormal tran
scription in Huntington’s disease post-mortem brains were signifi
cantly enriched in the ranked gene list from the PLS1. Astrocyte 
genes abnormally transcribed in Huntington’s disease were not sig
nificantly enriched (P = 1), suggesting the cortical pathology asso
ciated with CSF NfL functional connectivity increases is 
associated with neuronal Huntington’s disease-related changes 
(Fig. 4). Neither neuronal (P = 1), astrocytic genes (P = 0.87) nor 
microglia (P = 0.97) were enriched in the ranked gene list from the 
PLS1 of the Group × NfL analysis. Consistent with the 114 regions 
of interest partial correlation analysis, the 514 regions of interest 
partial correlation analysis showed enrichment of neuronal genes 
for PLS2 (P < 1 × 10−10) but not PLS1 (P = 0.09). No significant enrich
ment was seen for astrocytic or microglia genes in PLS1 1 or PLS2.

Discussion
We characterized functional brain networks in asymptomatic preHD 
gene carriers very far from disease onset and related these networks 
to measures of white matter organization, disease burden and gene 
expression. Despite there being no differences in functional or struc
tural connectivity comparing controls and preHD participants, we 
identified a significant positive correlation, predominantly in poster
ior regions, between functional connectivity and disease burden as 
measured by CSF NfL, a fluid biomarker of axonal degeneration, de
tectable in those many years from Huntington’s disease clinical diag
nosis. Using data from the AHBA and performing cell-enrichment 
analysis, we demonstrated that those regions that showed increased 
functional connectivity were also those with regional expression of 
genes specific to neuronal GABAergic and glutamatergic cells. This re
lationship was validated using snRNAseq data from post-mortem 
Huntington’s disease and healthy control brains, where increased 
functional connectivity was associated with neuronal genes abnor
mally transcribed in Huntington’s disease.

Studies have shown that functional connectivity differs be
tween preHD and controls5,9,10,12 in cohorts where gene carriers 
were more advanced, i.e. they showed subtle symptoms and were 
on average 10–15 years from clinical diagnosis when cognitive 
changes tend to become evident.74,75 Here, in asymptomatic 
preHD gene carriers, on average 24 years from disease onset with 
normal cognitive behaviour,19 we found no functional connectivity 
differences when compared to controls, even when constrained by 
the structural connectome. However, we did identify a positive as
sociation between functional connectivity and CSF NfL, indicating 
that connectivity changes relate to disease pathology burden rather 
than being characteristic of asymptomatic preHD per se.

As there were no differences in white matter organization in our 
previous analyses19,20 and a limited number of white matter 

Table 4 EWCE analysis

Cell type P-value Fold change SD from mean

Upweighted 10% (Pcor)
Glutamatergic <1 × 10−10 2.89657 16.33697
GABAergic 0.00002 1.53571 4.95972
Non-neuronal: pericyte 0.39915 1.03437 0.20818
OPC 0.85648 0.87782 −1.04623
Microglia 0.98576 0.71634 −1.98875
Non-neuronal: VLMC 0.99380 0.57872 −2.21417
Endothelial cell 0.99947 0.57450 −2.78966
Astrocyte 0.99999 0.56620 −3.54350
Oligodendrocyte 1.00000 0.49659 −3.80922

Downweighted 10% (Pcor)
Astrocyte <1 × 10−10 1.90801 7.21517
Non-neuronal: pericyte 0.29683 1.08003 0.49469
Non-neuronal: VLMC 0.33726 1.07361 0.37335
Microglia 0.46827 1.00395 0.02779
OPC 0.52067 0.98585 −0.12059
Endothelial cell 0.80142 0.86733 0.86733
GABAergic 0.84056 0.89153 −0.99208
Oligodendrocyte 0.99660 0.69286 −2.32499
Glutamatergic 0.99942 0.67336 −2.82282

Upweighted 10% (Group × NfL)
Non-neuronal: pericyte 0.03905 1.28857 1.85843
Microglia 0.06393 1.21547 1.59846
GABAergic 0.06428 1.16696 1.58190
Non-neuronal: VLMC 0.06945 1.26748 1.52874
Endothelial cell 0.24742 1.09724 0.65320
Oligodendrocyte 0.77574 0.90052 −0.78095
Glutamatergic 0.87605 0.87073 −1.13485
OPC 0.97856 0.79741 −1.84178
Astrocyte 0.99049 0.74715 −2.08759

Downweighted 10% (Group × NfL)
Glutamatergic <1 × 10−10 2.832749 15.3434863
GABAergic 0.0001 1.4754347 4.27832
OPC 0.20687 1.0899718 0.7888829
Non-neuronal: VLMC 0.98562 0.6028899 −1.9850374
Endothelial cell 0.98776 0.6848202 −2.026815
Non-neuronal: pericyte 0.99747 0.5892623 −2.454821
Astrocyte 0.99978 0.6348877 −2.9696604
Oligodendrocyte 0.9999 0.6004525 −2.9841701
Microglia 0.99993 0.5594399 −3.0422093

Results for top 10% upweighted and downweighted genes using AHBA 2019 

cell-specific gene classification. 

OPC = oligodendrocyte precursor cells; Pcor = corrected significance; SD = standard 

deviation; VLMC = vascular leptomeningeal cells.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac227#supplementary-data
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connections showing significant negative correlation with CSF NfL 
(only for the 514 atlas) in this study, this suggests that large-scale 
functional changes precede those of microstructure in 
Huntington’s disease gene carriers furthest from disease onset. It 
is important to note that as a marker of axonal degeneration, CSF 
NfL increases indicate some degree of underlying molecular 
change. The limited change in structural connectivity measures 
suggests that diffusion-weighted measures lack sensitivity at the 
very earliest stages of Huntington’s disease and changes in these 
measures can only be detected after a certain threshold of cumula
tive change at the molecular level. Nevertheless, with currently 
feasible in vivo measures, functional connectivity appears to 
change prior to structural connectivity.

Our findings are consistent with our earlier work focusing exclu
sively on fronto-striatal connectivity.11 In that earlier work, 
fronto-striatal connectivity related to cognitive flexibility (posterior 
regions were not interrogated as part of these analyses) differed in 
preHD participants, while connections from the striatum to both 
frontal and posterior cortical regions showed higher connectivity 
with evidence of compensatory activity to support maintained per
formance (in review). In the present work, we went beyond our earlier 
study to now identify positive associations between CSF NfL and func
tional connectivity in posterior cortical regions. This is of particular 
interest, given that in our previous work we demonstrated a clear 

anterior–posterior gradient of functional connectivity upregulation.12

However, this was in gene carriers 10–15 years from clinical diagnosis. 
Thus, one possibility is that there is a shift in compensatory functional 
connectivity changes, from posterior to anterior, as pathology be
comes more significant in the earliest preHD stages. This should be in
vestigated further in future longitudinal studies.

To understand the basis of the NfL-related increases in functional 
connectivity that we found, we investigated how brain areas where 
functional connectivity increased might relate to regional gene ex
pression determined from the AHBA. GO showed an association 
with biological processes involving synaptic transmission, while 
EWCE analysis indicated specificity to GABAergic and glutamatergic 
neuronal cells, which was further supported using independent 
snRNAseq data from post-Huntington’s disease and healthy control 
brains. There is significant evidence to suggest that upregulated func
tional connectivity in neurodegeneration is associated with both glu
tamate excitotoxicity from pyramidal cells76,77 and loss of GABAergic 
inhibition from interneurons in both mouse models78 and human 
cells,79,80 which seems to be located within the cortex rather than 
the striatum.22,23,78–82 Furthermore, there is a dissociation in terms 
of the way in which degeneration of cortical interneurons relates to 
the main presenting symptom in Huntington’s disease. Reduced in
terneurons in the anterior cingulate cortex, for example, are 
associated with a predominant mood phenotype, while the primary 

Figure 3 EWCE analysis using AHBA 2019 cell-specific gene annotation. (A) Top 10% upweighted genes for the partial correlation analysis. (B) Top 10% 
downweighted genes for the partial correlation analysis. (C) Top 10% downweighted genes for the Group × NfL analysis. (D) Top 10% upweighted genes 
for the Group × NfL analysis. *Corrected significance. OPC = oligodendrocyte precursor cells; VLMC = vascular leptomeningeal cells.
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motor cortex is associated with a motor phenotype.79–81 Interestingly, 
genes showing abnormal transcription in Huntington’s disease cortex 
were enriched in our analysis, while those showing abnormal tran
scription in the striatum were not. These findings, however, must 
be considered with the caveat that the AHBA gene expression data re
flect gene expression determined in participants without any neuro
logical disease; post-mortem brain data for Huntington’s disease gene 
expansion carriers very far from onset are not currently available.

Gene enrichment results for upweighted genes in the partial 
correlation analysis were similar to downweighted genes in the 
NfL × Group interaction analysis. While the direction of effect in 
the partial correlation analysis is intuitive, such that a positive cor
relation indicates higher functional connectivity is associated with 
higher NfL, the interpretation of the NfL × Group interaction is more 
difficult. Furthermore, the absence of a relationship between NfL 
and functional connectivity in the control group suggests the possi
bility that the inclusion of the control group in the model could 
introduce noise and reduce the pathobiological signal of the 
preHD NfL relationship. Indeed, this may explain the borderline sig
nificance for the PLS1 and absence of enrichment for any gene set in 
the NfL × Group interaction analysis. This is in contrast to the par
tial correlation analyses for both 114 and 514 regions of interest, 
which showed significance for PLS components and enrichment 
for cortical and neuronal gene sets.

There are some limitations to the current study. There are no 
gene expression post-mortem brain data in far from onset pre
manifest Huntington’s disease gene carriers currently available. 
Here we show that the spatial distribution of NfL–functional con
nectivity correlations are associated with neuronal genes impli
cated in Huntington’s disease pathogenesis. The manifest 
Huntington’s disease post-mortem data are used to demonstrate 
that neuronal genes that show differential expression in post- 
mortem Huntington’s disease brains relative to controls are en
riched in the ranked gene list from our PLS analysis. However, we 
postulate that while the underlying pathobiology of Huntington’s 
disease remains consistent across the lifetime of the disease, 
how this emerges at the brain network levels differs across the dis
ease spectrum; for example, while functional connectivity in 
far-from-onset gene carriers may increase in the context of increas
ing disease burden, this may then reduce once a critical level of 
pathology is reached, such that hyperexcitability or compensatory 
mechanisms become overwhelmed. This is consistent with our 
previous work.12,14

The cohort of 64 preHD gene expansion carriers and 67 controls 
described here is limited when compared to the larger Track-HD 
and Predict-HD studies. However, recruiting preHD gene-expan
sion carriers very far from onset is challenging for a number of rea
sons. The uptake of genetic testing in this age group is much lower 

Figure 4 Validation using snRNAseq of the cingulate cortex in control and Huntington’s disease. (A) Experimental scheme from Al-dalahmah et al.72. 
First, cingulate cortex was dissected, nuclei were extracted and visualized using DAPI nuclear stain under a fluorescence microscope to ascertain mem
brane integrity. The nuclei were subjected to 10× chromium scRNAseq workflow involving encapsulation of nuclei in oil droplets along with enzymes 
and barcoded beads, followed by cDNA synthesis and library preparation, and finally, sequencing. (Reproduced from Al-Dalahmah et al.72 under the 
terms of the Creative Commons CC BY licence.) (B) P-values for analysis testing enrichment of Huntington’s disease striatum and cortex genes 
from Langfelder et al.69 and Huntington’s disease cell-specific neuronal, astrocyte and microglia genes from Al-Dalahmah et al.72
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than in those closer to onset83 and this group is much less likely to 
attend Huntington’s disease clinics regularly, if at all, when com
pared to preHD gene carriers within 10 years from onset. Tattoos 
were more common in this age group and both tattoo location 
and size could result in exclusion from MRI scanning. Finally, this 
study required participants to agree to undergo lumbar puncture, 
an invasive procedure.

While there is no clear optimal atlas for connectomics84 we se
lected the Schaefer cortical resting-state fMRI atlas, which is based 
on 1489 healthy participants and provides parcellation schemes 
ranging from 100 to 1000 nodes. We performed NBS and genetic 
analyses both on the 100 and 500 parcellations to replicate our find
ings on coarse- and fine-grained atlases. We opted not to use 
schemes above 500 nodes as connectome reliability decreases con
siderably, particularly for diffusion MRI-derived structural connec
tomes, at denser parcellation schemes.73 Both the rsfMRI brain 
parcellation atlas and the AHBA are derived from the brains of 
healthy controls. When considering the application of these in 
our very-far-from-onset preHD gene expansion carrier cohort we 
must emphasize that detailed multimodal neuroimaging analysis 
in this cohort has demonstrated that the brain structure is largely 
normal.19 Furthermore, with respect to regional levels of gene ex
pression and the application of the AHBA atlas, to date, transcrip
tomic changes in human Huntington’s disease have been 
demonstrated in post-mortem brains, which are typically at the 
end stage of the disease, or Huntington’s disease rodent models85

and have upwards of 100 CAG repeats—more representative of 
the juvenile Huntington’s disease variant.86

This study has characterized functional brain networks in 
asymptomatic preHD gene carriers very far from disease onset, 
showing evidence of upregulated functional network connectivity 
related to disease burden in the presence of normal white matter 
brain networks. This relationship was found between brain areas 
that show regional expression of genes specific to neuronal 
GABAergic and glutamatergic cells following cell-enrichment ana
lysis; a finding that was supported by snRNAseq data from post- 
mortem Huntington’s disease and healthy control brains that 
showed an association with neuronal genes abnormally tran
scribed in Huntington’s disease. In sum, those furthest from 
Huntington’s disease disease onset display pathology-related func
tional connectivity changes that are likely characterized by 
GABAergic inhibition and glutamatergic excitotoxicity.
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