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Introduction
Highly effective therapies for relapsing-remitting mul-
tiple sclerosis (RRMS) such as natalizumab abolish 
relapses and magnetic resonance imaging (MRI) activ-
ity in most patients, particularly after the first year of 
treatment.1,2 Despite highly effective therapy, ongoing 
(so-called “silent”) disease progression is observed in 
a substantial portion of patients.3 In explaining the 
underlying mechanisms, studies that focus on long-
term brain atrophy as a marker of MRI-derived neuro-
degeneration in larger natalizumab-treated cohorts are 

currently lacking.4,5 Blood-based biomarkers that 
accurately reflect neurodegenerative processes are 
highly relevant for improved prediction of treatment 
response in light of both disease progression and brain 
atrophy.6

Serum neurofilament-light (sNfL) has become a well-
established biomarker for neuro-axonal damage in 
MS, and the previous studies have shown that it has 
predictive value for disability, as well as brain and 
spinal atrophy in both relapsing and progressive 
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MS.7,8 However in our previous work, sNfL failed to 
capture disability progression in natalizumab-treated 
patients with RRMS.9 Similar findings have been 
recently reported from the ASCEND cohort of sec-
ondary progressive MS patients treated with natali-
zumab.10 While sNfL is known to be a powerful tool 
to detect axonal loss related to acute inflammation, its 
prognostic value for MRI-derived neurodegeneration 
during highly effective therapy remains unclear.11

Contactin-1 (CNTN1) is a cellular adhesion molecule 
involved in axo–glial interaction, is thought to be 
released into the cerebrospinal fluid (CSF) and blood 
after axonal injury, and could therefore be an alterna-
tive marker for disease progression in MS. In the pre-
vious work, we have found a significant association 
with long-term disability progression in the same 
cohort12 and positive correlations of CSF CNTN1 
level with normalized brain volume in secondary pro-
gressive multiple sclerosis (SPMS).13 With regard to 
the role of MRI scanning in explaining disease pro-
gression, earlier work has mostly focused on whole-
brain atrophy.5 More recent work has shown the 
power of regional atrophy of especially deep gray 
matter (DGM) structures like the thalamus, which has 
been proposed as an important driving factor of dis-
ease progression across MS phenotypes.14 So far, only 
one relatively small cohort reported ongoing DGM 
atrophy in relation to disease progression in natali-
zumab-treated RRMS.15

In this study, we aim to bridge this knowledge gap and 
investigate the predictive value of sNfL and serum 
contactin-1 (sCNTN1) levels for long-term brain and 
thalamus atrophy, and ventricular growth in an obser-
vational cohort of closely monitored natalizumab-
treated patients with RRMS.

Methods

Participants
Patients were selected from an ongoing prospective 
observational natalizumab-treated RRMS cohort, ini-
tiated in 2006 at Amsterdam UMC, location VU 
Medical Center. The selection was performed in 
November 2020, after which the database was closed 
for this study. As previously described, inclusion cri-
teria were an age of 18 years or older at the time of 
natalizumab initiation and a minimum follow-up 
duration of 3 years.12 Natalizumab initiation was con-
sidered the baseline time point, and the last visit 
before natalizumab discontinuation or database clo-
sure for this project in November 2020 was consid-
ered the last follow-up time point. Clinical assessments 

were performed at baseline and continued on a yearly 
basis, and included relapse history and “EDSS-plus” 
assessments: a combination of the Expanded 
Disability Status Scale (EDSS), Timed 25-Foot Walk 
Test (T25FW), and 9-Hole Peg Test (9HPT).12 
“EDSS-plus status” was determined for each subject 
between Year 1 and last follow-up visit, correcting for 
disability changes due to residual inflammation or 
anti-inflammatory effects of natalizumab (disability 
improvement) in the first year of treatment.2,16 
Furthermore, EDSS-plus assessments within 1 year of 
a relapse were excluded. The EDSS-plus status was 
defined as “progressor” for subjects with significant 
worsening of either EDSS, 9HPT, or T25FW, which 
had to be confirmed by at least one subsequent visit. 
Thresholds were a 1.5, 1, or 0.5 point increase in case 
of a reference EDSS of 0, 1–5, or ⩾5.5, respectively, 
and 20% change in 9HPT or T25FW.17 Subjects who 
did not comply with these criteria were defined as 
“non-progressor.”

sNfL and serum CNTN1 measurement
Blood samples were collected at baseline before the 
first natalizumab infusion and every 3 months 
onwards and processed at the Amsterdam UMC MS 
biobank. Centrifugation (1800g, 10 minutes at 
room temperature) was performed within 2 hours 
and serum samples were stored at −80°C. For this 
study, the following five time points were selected: 
baseline (prior to the first natalizumab dose), 
3 months after the first dose (as less inflammation-
driven re-baseline), Year 1 and Year 2 of treatment, 
and last follow-up under natalizumab treatment. 
We used the same methodologies as employed in 
the previous studies.9,12 In brief, sNfL was meas-
ured by the Simoa NF-light® Advantage Kit 
(Quanterix, Billerica, MA, USA), and sCNTN1 
was measured on a Luminex platform (Human con-
tactin-1 Magnetic Luminex Assay, R&D systems, 
Minneapolis, MN, USA).

MRI
MRI scans (including T1-, and PD/T2-weighted 
images) were collected on a yearly basis after the ini-
tial baseline scan (within 3 months of natalizumab 
initiation) or every 3 months in John-Cunningham 
(JC) virus seropositive patients, following the 
Magnetic Resonance Imaging in Multiple Sclerosis 
(MAGNIMS) expert panel guidelines.18 Radiological 
disease activity was defined as new/enlarged T2 
hyperintense lesions and/or T1 gadolinium-enhanced 
(T1GE) lesions by neuroradiologists blinded to the 
clinical data.
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MRI image processing
As MRI data were obtained in clinical practice, subjects 
were scanned on multiple MRI scanners and with mul-
tiple imaging protocols. Screening of the data revealed 
that PD/T2-weighted images were most consistently 
available (in 98% of the data sets) (see Supplemental 
eTable 1 and eFigure 1 for details on availability).

Because of the variation in imaging protocols, brain 
tissue segmentation was performed with the 
MS-specific longitudinal version of the Sequence 
Adaptive Multimodal Segmentation (SAMSEG) 
method, recently provided in the open-source neuro-
imaging package FreeSurfer 7.1.1 (Figure 1).19,20 The 
longitudinal pipeline of SAMSEG is specifically 
designed for handling data from different origins by 
adapting to the different MRI protocols and making 
use of the shared information across repeated scans of 
the same subject.20 In addition, the MS version of the 

pipeline automatically segments white matter lesion 
along with other brain structures, such that lesion fill-
ing is not required.

SAMSEG requires all input images to be co-regis-
tered to the same image space. Therefore, an average 
PD/T2-weighted template was created across all time 
points for each subject with FSL midtrans (part of the 
functional MRI of the brain (FMRIB) Software 
Library (FSL; version 5.0.4, http://fsl.fmrib.ox.ac.
uk)) and all PD/T2-weighted images were rigidly reg-
istered to this average subject-specific template. To 
ensure a consistent voxel size and orientation across 
subjects, the average template was constructed in 
standard 1 mm Montreal Neurological Institute brain 
template (MNI) space.

After running SAMSEG on the standardized images, 
total brain volume, lateral ventricle volume, thalamic 

Figure 1. Example of longitudinal brain segmentation on 2D PD/T2-weighted images with sequence-adaptive 
segmentation method (SAMSEG).
red: cortex; white: white matter; purple: ventricle; green: thalamus; dark purple: putamen; orange: lesions.
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volume, and white matter lesion volume were derived. 
Volumes were expressed as fractions of mean intrac-
ranial volume (ICV) across all time points, resulting 
in brain parenchymal fraction (BPF), lateral ventricle 
fraction (VF), thalamus fraction (TF), and lesion frac-
tion (LF), respectively.

Annualized percentage brain volume change (PBVC) 
was determined for each subject by performing linear 
regression on the measurement results of all time 
points between Year 1 and the last visit. Measurements 
in the year after treatment initiation were not taken 
into account to rule out the potential effects of pseudo-
atrophy.21,22 The same procedure was followed to cal-
culate annualized ventricle volume change (VVC) 
and thalamus volume change (TVC).

Statistical analyses
Statistical analyses were performed with IBM SPSS 
Statistics Version 26.0 (IBM Corp., Armonk, NY, 
USA) and R statistical software version 4.0.3. As pre-
viously described, clinical and radiological character-
istics were compared between EDSS-plus progressors 
and non-progressors using chi-square test for categori-
cal variables (gender, occurrence of relapse(s), or radi-
ological disease activity) and Mann–Whitney U test to 
compare the non-normally distributed continuous 
variables (age, disease duration, number of relapses, 
T1GE lesion numbers, EDSS, 9HPT, and T25FW).12

A linear mixed-effects model was used to investigate 
the longitudinal associations between MRI volumes 
(BPF, VF, TF, and LF, respectively) and blood bio-
marker levels (sNfL and sCNTN1). Time points 
included in the linear mixed-effects model for both bio-
marker levels and MRI volumes were Year 1, Year 2, 
and last follow-up. For all linear mixed-effects models, 
time, interaction of time with MRI volume, and disease 
duration were included as fixed effects, and subject as 
random-effect to adjust for the within-subject effect of 
repeated measures. To account for non-normal distri-
bution, blood biomarker levels were log-transformed 
and disease duration was square root transformed.

For the design of prediction models for future PBVC, 
VVC, and TVC, the first step was to identify the best can-
didate predictors by carrying out univariate regression 
analyses including three categories (1) clinical and radio-
logical disease activity variables during the first year of 
treatment (to identify possible inflammation-driven pre-
dictors of neurodegeneration), (2) Year 1 disability and 
MRI volume measures and (3) the cross-sectional bio-
marker levels at baseline, 3 months, and Year 1.

Candidate predictors that showed significant associa-
tions in the univariate analyses were subsequently 
included in a step-wise multivariate regression analysis. 
Forward selection (p-value < 0.05) was used to deter-
mine the best possible prediction model for PBVC, 
VVC, and TVC. All statistical analyses were corrected 
for sex and age at baseline. A p-value of <0.05 was con-
sidered statistically significant for all analyses.

Ethical considerations
The Institutional Review Board (Medical and Biobank 
Ethics Committee of Amsterdam UMC, location 
VUmc) approved the use of routine medical files for 
research purposes (registration no. 2016.554). All 
subjects gave written informed consent for the collec-
tion and use of medical data and biological fluids for 
research purposes. This study adhered to the ethical 
principles of the Declaration of Helsinki.

Data availability
Anonymized data not published within this article 
will be made available upon reasonable request from 
a qualified investigator.

Results

Baseline and follow-up characteristics
Based on our inclusion criteria, a total of 89 natali-
zumab-treated RRMS patients were selected as pre-
viously described.12 One patient was excluded 
because of MRI artifacts complicating volume 
measurement, resulting in a total number of 88 
patients included in the current follow-up study (age 
36 ± 8.6 years, 75% female) with a median follow-
up duration of 5.2 years (interquartile range 
(IQR) = 4.3–6.8). Other baseline and follow-up clini-
cal and radiological characteristics, and sNfL and 
sCNTN1 levels are summarized in Table 1 and 
Figure 2. With regard to disease activity measures, at 
baseline, median relapse rate 1-year pre-baseline 
was 1 (IQR = 1–2), and 65% of patients had MRI 
activity at baseline (median number of T1GE lesions 
of 2 (IQR = 0–6)). During Year 1 of follow-up, 15% 
of patients experienced a relapse, and 30.2% showed 
evidence of radiological activity on the Year 1 brain 
MRI scan. Between Year 1 and last follow-up, 9.1% 
of patients experienced a relapse and 8.0% of 
patients showed radiological disease activity.

Progression in EDSS scores was found in 30% of 
patients. According to EDSS-plus criteria (i.e. also 
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Table 1. Baseline and follow-up clinical and radiological characteristics, sNfL, and sCNTN1 levels.

Baseline and follow-up characteristics Total (n = 88)

Females (%) 75

Age at baseline (years) 36.8 ± 8.6

Disease duration at baseline (years) 7.4 (3.8–12.1)

Time between baseline and last follow-up (years) 5.2 (4.3–6.8)

Clinical disability measures, Year 1a

 EDSS 3.5 (2.5–5.0)

 9HPT (seconds) 21.6 (19.8–26.2)

 T25FW (seconds) 4.9 (3.9–7.2)

EDSS-plus progression, Year 1—last follow-up

 Yes (%) 48

 No (%) 52

Relapses

 1-Year pre-baseline (number) 1 (1–2)

 Baseline—Year 1 (%) 15

 Year 1—FU (%) 9.1

MRI activityb

 Baseline (%)/T1GE lesions (number) 65/2 (0–6)

 Baseline—year 1 (%) 30.2

 Year 1—FU (%) 8.0

sNfL (pg/mL)

 Baseline 15.0 (10.12–27.70)

 3 months 11.2 (8.43–16.13)

 12 months 8.1 (5.95–11.02)

 24 months 7.9 (5.74–10.54)

 Last follow-up 8.8 (5.58–11.26)

sCNTN1 (ng/mL)

 Baseline 10.9 (8.68–12.92)c

 3 months 9.8 (8.09–13.07)

 12 months 10.4 (8.66–12.37)

 24 months 10.8 (8.83–12.55)

 Last follow-up 9.6 (7.29–11.86)

Volumes at baseline (mL)

 Lesions 8 (3.3–16)

 Whole brain 1011 ± 112

 Ventricles 40.5 ± 12.4
 Thalamus 10.7 ± 1.6

including T25FW and 9HPT), disability progression 
was established in 42 patients (i.e. progressors, 48%).

Disability progressors versus non-progressors
Clinical and radiological characteristics (Table 1) were 
compared between EDSS-plus progressors and non-
progressors. Relapse rates and MRI activity at baseline, 
in the first year of treatment, and between Year 1 and 
last follow-up visits showed no significant differences 
between these groups. With regard to the biomarkers, 
only baseline CNTN1 level was significantly lower in 

EDSS-plus progressors (9.71 ng/mL, IQR = 8.12–12.08, 
p = 0.025) compared to non-progressors (11.58 ng/mL, 
IQR = 9.87–13.64), as previously described.9,12 With 
regard to the MRI volumes at baseline and annualized 
volume changes, no significant differences were found 
between progressors and non-progressors.

Longitudinal biomarker levels versus MRI volume 
changes
Taking into account differences between subjects and 
follow-up duration, linear mixed-effects models 

 (Continued)
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Baseline and follow-up characteristics Total (n = 88)

Fraction of intracranial volume Year 1 (%)d

 BPF 72 ± 3.3

 VF 2.9 ± 0.9

 TF 0.8 ± 0.1

 LF 0.8 ± 0.09

Annualized change (%), baseline—Year 1

 Whole brain −0.58 ± 2.3

 Ventricles 1.9 ± 5.7

Annualized change (%), Year 1—FU

 Whole brain −0.22 ± 1.1

 Ventricles 0.25 ± 1.9
 Thalamus −0.27 ± 1.3

EDSS: Expanded Disability Status Scale; 9HPT: 9-Hole Peg Test; T25FW: Timed 25-Foot Walk Test; FU: follow-up; MRI: magnetic 
resonance imaging; sNfL: serum neurofilament-light; sCNTN1: serum contactin-1; T1GE: T1 gadolinium-enhancement; BPF: brain 
parenchymal fraction; VF: ventricle fraction; TF: thalamus fraction; LF: lesion fraction.
Mean values are presented with ±standard deviation and median values with (interquartile range).
aYear 1 clinical disability measures are displayed instead of baseline, to take into account the disability improvement in the first year 
after natalizumab initiation due to anti-inflammatory effects.
bMRI activity was defined as new/enlarged T2 lesions and/or T1 gadolinium-enhancing (T1GE) lesions.
cComparing all characteristics between EDSS-plus progressors (n = 42) and non-progressors (n = 46), only baseline sCNTN1 level 
was significantly lower in progressors compared to non-progressors (p = 0.025).
dNormalized measurements of FreeSurfer are given as unit-less tissue fractions of intracranial volume (ICV) in percentages (%).

Table 1. (Continued)

showed that, next to longer disease duration at base-
line (p = 0.005), an increase in sNfL level over time 
(p = 0.005) between Year 1 and last follow-up was 
associated with a decrease in whole-brain volume in 
the same period (Table 2 and Supplemental eFigure 
3). An increase in sNfL level was also significantly 
associated with a decrease in thalamus volume 
(p = 0.031). Ventricular and lesion volume did not 
show any longitudinal associations with sNfL or 
sCNTN1 levels.

Univariate relationships between  
blood biomarker levels and MRI volume  
changes
The univariate models to identify candidate predictors 
of annualized PBVC, VVC, and TVC between year 1 
and last follow-up MRI scan are shown in Figure 3 
and Supplemental eTable 2. High year 1 sNfL level 
was a predictor of worse PBVC (standardized (std.) 
β = −0.257, p = 0.016), worse TVC (std. β = −0.259, 
p = 0.016), and worse VVC (std. β = 0.338, p = 0.001). 

Figure 2. Median serum NfL and serum CNTN1 levels for the total cohort (n = 88) at each time point. Natalizumab 
initiation is regarded baseline time point, followed by 3, 12 (Year 1) and 24 months (Year 2) of treatment, and last follow-
up (median = 5.2 years (4.3–6.8)). Interquartile ranges are presented by the vertical bars.
NfL: neurofilament-light; CNTN1: contactin-1.
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Table 2. Linear mixed-effects models and parameter estimates for brain parenchymal fraction (BPF), ventricle fraction (VF), thalamus fraction 
(TF), and lesion fraction (LF).

Brain parenchymal fraction

AIC = 537 AIC = 546

Effects Std. β p-value Effects Std. β p-value

Age −0.09 (−0.29 to 0.11) 0.389 Age −0.09 (−0.28 to 0.11) 0.383

Female sex 0.13 (−0.28 to 0.54) 0.527 Female sex 0.16 (−0.24 to 0.56) 0.436

Disease duration −0.29 (−0.49 to −0.09) 0.005 Disease duration −0.28 (−0.48 to −0.09) 0.005

Log sNfL 0.05 (−0.07 to 0.17) 0.444 Log sCNTN1 0.05 (−0.03 to 0.13) 0.242

Time −0.19 (−0.26 to −0.12) <0.001 Time −0.22 (−0.29 to −0.15) <0.001

Log sNfL × time −0.09 (−0.16 to −0.03) 0.005 Log sCNTN1 × time −0.04 (−0.12 to 0.03) 0.252

Ventricular fraction

AIC = 217 AIC = 224

Effects Std. β p-value Effects Std. β p-value

Age 0.11 (−0.12 to 0.34) 0.364 Age 0.10 (−0.13 to 0.33) 0.371

Female sex −0.13 (−0.61 to 0.34) 0.574 Female sex −0.14 (−0.61 to 0.33) 0.560

Disease duration 0.22 (−0.01 to 0.46) 0.060 Disease duration 0.22 (−0.01 to 0.46) 0.060

Log sNfL −0.01 (−0.06 to 0.04) 0.790 Log sCNTN1 −0.01 (−0.04 to 0.02) 0.511

Time 0.03 (0.01 to 0.05) 0.014 Time 0.03 (0.01 to 0.05) 0.010

Log sNfL × time 0.02 (−0.01 to 0.04) 0.147 Log sCNTN1 × time −0.01 (−0.04 to 0.01) 0.428

Thalamus fraction

AIC = 319 AIC = 332

Effects Std. β p-value Effects Std. β p-value

Age 0.12 (−0.1 to 0.34) 0.289 Age 0.13 (−0.09 to 0.35) 0.245

Female sex 0.22 (−0.24 to 0.68) 0.343 Female sex 0.24 (−0.21 to 0.7) 0.289

Disease duration −0.36 (−0.59 to −0.14) 0.002 Disease duration −0.35 (−0.57 to −0.13) 0.002

Log sNfL 0.08 (0.01 to 0.15) 0.020 Log sCNTN1 0.02 (−0.02 to 0.06) 0.280

Time −0.10 (−0.13 to −0.06) <0.001 Time −0.09 (−0.12 to −0.06) <0.001

Log sNfL × time −0.01 (−0.04 to 0.02) 0.645 Log sCNTN1 × time 0.00 (−0.03 to 0.04) 0.774

Lesion fraction

AIC = 350 AIC = 346

Effects Std. β p-value Effects Std. β p-value

Age 0.01 (−0.22 to 0.23) 0.956 Age 0.01 (−0.2 to 0.24) 0.891

Female sex 0.29 (−0.16 to 0.74) 0.209 Female sex 0.28 (−0.17 to 0.73) 0.219

Disease duration 0.28 (0.05 to 0.5) 0.016 Disease duration 0.27 (0.05 to 0.5) 0.018

Log sNfL 0.02 (−0.05 to 0.1) 0.588 Log sCNTN1 −0.01 (−0.05 to 0.03) 0.676

Time −0.06 (−0.1 to −0.03) <0.001 Time −0.06 (−0.1 to −0.03) <0.001

Log sNfL × time −0.01 (−0.05 to 0.02) 0.500 Log sCNTN1 × time 0.00 (−0.04 to 0.03) 0.794

AIC: Akaike information criteria; sNfL: serum neurofilament-light; sCNTN1: serum contactin-1; Std. β: standardized β.
For both biomarker levels and MRI volumes, time points included in the models were Year 1, Year 2, and last follow-up. A p-value of <0.05 was considered 
statistically significant and indicated in bold. An increase in sNfL level over time between Year 1 and last follow-up was associated with a decrease in BPF 
in the same period (p = 0.005). Higher sNfL level was also significantly associated with a lower TF (p = 0.020). VF and LF did not show any longitudinal 
associations with sNfL or sCNTN1 levels.
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Baseline sNfL was not associated with volume 
change, while sNfL level at 3 months only showed a 
weak association with VVC (std. β = 0.22, p = 0.04). 
In other words, Year 1 sNfL level (not baseline or 
3 months levels) predicted annualized whole-brain, 
thalamus, and ventricular volume changes. For 
sCNTN1, only the 3 months level was a significant 

predictor of VVC (std. β = −0.230, p = 0.033), while 
baseline and Year 1 levels did not show an association 
for MRI volume changes. Among the remaining clini-
cal and radiological characteristics assessed after the 
first year of treatment, no significant associations 
with MRI volume changes were found (Supplemental 
eTable 2).

Figure 3. Identifying predictors of annualized percentage brain volume change (PBVC), ventricular volume change 
(VVC), thalamus volume change (TVC).
Univariate linear regression analyses were applied, where a standardized beta with a 95% confidence interval (95% CI) that does not 
include zero corresponds to a statistically significant association (p-value < 0.05). Only the variables age, sex, biomarker levels during 
Year 1, and MRI volumes at Year 1 were selected to include in these plots (complete results on the univariate regression analyses are 
presented in Supplemental eTable 2). Volume changes were calculated between Year 1 and follow-up (natalizumab initiation is regarded 
baseline time point). Levels of sNfL and sCNTN1 were log-transformed. 
sNfL: serum neurofilament-light; sCNTN1: serum contactin-1; EDSS: Expanded Disability Status Scale; T25FW: Timed 25-Foot Walk 
Test; 9HPT: 9-Hole Peg Test; FU: follow-up; T1GE: T1 gadolinium-enhancement; BPF: brain parenchymal fraction; VF: ventricle 
fraction; TF: thalamus fraction; LF: lesion fraction.
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Step-wise linear regression of MRI volume change
The results of the step-wise linear regression analyses 
are shown in Table 3. The model for worse PBVC 
(adjusted (adj.) R2 = 0.12, F = 3.9, p = 0.006) consisted of 
higher Year 1 sNfL level (std. β = −0.264, p = 0.013) and 
lower BPF at Year 1 (std. β = −0.275, p = 0.009). Larger 
ventricular growth (adj. R2 = 0.28, F = 7.4, p < 0.001) 
was predicted by female sex (std. β = −0.198, p = 0.039), 
higher Year 1 sNfL (std. β = 0.356, p < 0.001), lower 
3 months CNTN1 (std. β = −0.306, p = 0.002), and 
higher Year 1 LF (std. β = 0.250, p = 0.011). Finally, the 
prediction model for TVC (adj. R2 = 0.065, F = 3.0, 
p = 0.036) included Year 1 sNfL level (std. β = 0.250, 
p = 0.011) as the only significant predictor.

Discussion
This study investigated the predictive value of sNfL and 
sCNTN1 levels for MRI-derived neurodegeneration in 
an observational cohort of natalizumab-treated RRMS 
patients followed for a median of 5 years. The main find-
ings of this study were that long-term brain and thalamus 
atrophy were best predicted by sNfL level measured 

after 1 year of treatment and MRI volumes, but not by 
baseline or 3 months sNfL levels nor sCNTN1 levels.

Stronger increases in sNfL levels between Year 1 and 
follow-up showed a significant intra-individual asso-
ciation with whole-brain and thalamus atrophy, but 
not with lesion volume. These findings indicate that 
the predictive value of sNfL for long-term atrophy 
under natalizumab treatment is masked in the first 
year of treatment, possibly by inflammatory effects, 
and that only later the predictive value of sNfL is 
driven by neurodegeneration in the context of disease 
progression during highly effective treatment. The 
observations in our study are in line with a fingoli-
mod-treated cohort study, which reports that sNfL 
levels measured 1 and 2 years after treatment initia-
tion have higher prognostic value for long-term disa-
bility and brain volume loss compared to baseline 
sNfL level.23 Furthermore, our results confirm the 
strong predictive value of sNfL for future neuro-
axonal loss found in a cohort study of patients without 
disease-modifying treatment (DMT) as well as 
patients using first-line DMTs.7 Albeit study design 

Table 3. Best prediction models for annualized percentage brain volume change (PBVC), ventricular volume change 
(VVC), and thalamus volume change (TVC).

PBVC Year 1—FU, adj. R2 = 0.12, F = 3.9, p = 0.006

Predictors Std. β p-value

Age −0.154 0.148

Female sex 0.125 0.221

Log sNfL at 12 months −0.264 0.013
BPF Year 1 −0.275 0.009

VVC year 1—FU, adj. R2 = 0.28, F = 7.4, p < 0.001

Predictors Std. β p-value

Age 0.110 0.254

Female sex −0.198 0.039

Log sNfL at 12 months 0.356 0.000

Log sCNTN1 at 3 months −0.306 0.002
Log LF Year 1 0.250 0.011

Thalamus year 1—FU, adj. R2 = 0.065, F = 3.0, p = 0.036

Predictors Std. β p-value

Age −0.088 0.415

Female sex 0.158 0.136
Log sNfL at 12 months −0.244 0.025

sNfL: serum neurofilament-light; sCNTN1: serum contactin-1; BPF: brain parenchymal fraction; LF: lesion fraction; PBVC: 
percentage brain volume change; VVC: ventricular volume change; TVC: thalamus volume change.
Multivariate linear regression with forward selection procedure (cut-off p-value < 0.05) was used to establish the best prediction 
model for the different MRI volume changes. For the individual predictors in the models, a p-value of <0.05 was considered 
statistically significant and indicated in bold. Natalizumab initiation is regarded baseline time point, and volume changes were 
calculated between Year 1 and last follow-up (median = 5.2 years (4.3–6.8)) to correct for pseudo-atrophy.
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and population differed, our findings also connect to 
those of a recent study of MS patients who started 
follow-up within 5 years of disease onset and contin-
ued for 10 years, which found that sNfL levels at 1 
and 2 years of follow-up were associated with the 
thalamus volume at 10 years.24 More advanced quan-
tifications of axonal loss in the white matter might 
provide additional information, for instance, using 
diffusion-weighted imaging. Furthermore, the 
explained variance of the different models is quite 
low, illustrating the need for additional biomarkers 
and the use of other (e.g. machine learning) methods 
to compose more powerful prediction models for 
MRI-derived neurodegeneration during natalizumab 
treatment.

With regard to sCNTN1, this candidate biomarker 
was not related to whole-brain or thalamic changes 
but only significantly predicted ventricular growth 
and only using the level measured after 3 months of 
treatment. Since ventricular growth is considered a 
robust indicator of both white and gray matter atro-
phy,4 this could indicate that sCNTN1 is a potential, 
yet weak predictor of MRI-derived neurodegenera-
tion, and that it is less sensitive compared to sNfL. 
However, this result should be interpreted with cau-
tion, since the significance level of sCNTN1 at 
3 months was close to the statistical threshold and we 
did not find any significant longitudinal associations 
between sCNTN1 and other MRI volumetrics. 
Furthermore, the previously reported association of 
baseline sCNTN1 to long-term disability progression 
in the same cohort12 was not confirmed by the current 
radiological outcomes. Another explanation could be 
that the association of CNTN1 to long-term disability 
progression is driven by neurodegeneration in a spe-
cific region outside the scope of this study, for exam-
ple, the cortex, other DGM regions, or the spinal 
cord.25 Therefore, future studies measuring atrophy in 
more central nervous system (CNS) regions are 
needed to shed more light on the added value of 
sCNTN1 to predict radiological outcome measures.

In this natalizumab-treated cohort, no differences in 
brain atrophy rates over 5 years were found between 
EDSS-plus progressors and non-progressors. sNfL 
levels were associated with brain atrophy; however, 
sNfL failed to capture EDSS-plus progression in the 
studied cohort.9 Our findings could illustrate a lack of 
sensitivity of EDSS-plus assessments in the context 
of neurodegeneration. This is in accordance with 
another 3-year longitudinal study investigating natal-
izumab-treated patients, that also reported only a mar-
ginal association between disability changes and 
whole-brain atrophy.26 An alternative explanation 

could again include the role of smaller regions of 
DGM atrophy and the spinal cord, which have been 
shown to mainly drive disability progression across 
MS phenotypes.14,25

Strengths of this study include that we took into 
account the changes in disability and MRI volumes 
that occur in the first year after initiation of natali-
zumab treatment, which are more likely related to 
mechanisms of active inflammation rather than 
mechanisms underlying disease progression. In addi-
tion, we used well-validated and sensitive tests for 
biomarker analysis. Furthermore, the use of the lon-
gitudinal SAMSEG method enabled us to obtain vol-
ume changes from routine two-dimensional (2D) 
dual-echo T2-weighted scans acquired in standard 
clinical routine. To our knowledge, the longitudinal 
SAMSEG method has not been applied in a real-
world MS cohort before. However, we acknowledge 
several possible limitations. First, in the first year of 
treatment, we did not select additional time points for 
biomarker analysis next to the 3 months time point. 
Furthermore, although the used segmentation method 
was designed to be robust against differences in scan-
ners, this method has not been widely validated for 
longitudinal studies using clinical MRI data. The het-
erogeneity in acquisition protocols may have intro-
duced noise in the calculated atrophy measures, 
especially in this relatively small cohort. Second, due 
to using real-world clinical MRI data, we were lim-
ited to the usage of 2D PD/T2-weighted scans. Three-
dimensional (3D)-T1-weighted scans are still the 
current standard to assess atrophy, so further valida-
tion on 2D PD/T2-weighted scans is required. Third, 
the assessed MRI volumes were limited to global 
measures of total brain volume, ventricular volume, 
and thalamus, since image quality did not allow 
accurate segmentation of cortex and smaller DGM 
regions.

To conclude, this study demonstrated that the predic-
tive value of sNfL for long-term atrophy in natali-
zumab-treated RRMS patients is masked by 
inflammatory effects in the first year of treatment, and 
only later is driven by neurodegeneration in the con-
text of disease progression during highly effective 
therapy from which point it has better predictive value 
compared to sCNTN1 and other standard clinical and 
radiological characteristics.
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