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Abstract
The S-X2 statistic (Orlando & Thissen, 2000) is popular among researchers and practitioners who
are interested in the assessment of item fit. However, the statistic suffers from the Chernoff–
Lehmann problem (Chernoff & Lehmann, 1954) and hence does not have a known asymptotic null
distribution. This paper suggests a modified version of the S-X2 statistic that is based on the
modified Rao–Robson χ2 statistic (Rao & Robson, 1974). A simulation study and a real data
analyses demonstrate that the use of the modified statistic instead of the S-X2 statistic would lead
to fewer items being flagged for misfit.
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Introduction

The Standard 4.10 of the Standards for Educational and Psychological Testing (American
Educational Research Association, American Psychological Association, & National Council for
Measurement in Education, 2014) recommends documenting evidence of model-data fit when an
item response theory (IRT) model is employed in test development and score reporting. In
practice, analysis of model-data fit for IRT models involves the use of item-fit residuals and χ2-
type statistics (Hambleton & Han, 2005). Among the χ2-type statistics for IRT models, the S-X2

statistic (Orlando & Thissen, 2000) is popular, presumably because of four reasons. First, to
compute S-X2, one has to divide the examinees into groups based on their observed total scores
rather than the estimated abilities. Second, S-X2 has been found to perform respectably in terms of
Type I error rates and power in simulation studies (e.g., Glas & Suarez-Falcón, 2003; Sinharay,
2006; Sinharay & Lu, 2008; Stone & Zhang, 2003). Third, the simple and intuitive nature of S-X2

has allowed it to be easily generalized to cases with polytomous items (Kang & Chen, 2008, 2010),
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multidimensional examinee abilities (Zhang & Stone, 2007), unfolding models (Roberts, 2008),
and cognitive diagnostic models (e.g., Sorrel et al., 2017). Fourth, S-X2 is implemented in multiple
IRT software packages including irtplay (Lim, 2020), mirt (Chalmers, 2012), and IRTPRO
(Cai et al., 2011)

Notwithstanding these appealing features, S-X2 should not be used without considering its limitations.
As noted by researchers such as Sinharay (2006), S-X2, which is a special case of the Pearson’s χ2 statistic
(Pearson, 1900), does not have a known asymptotic null distribution in typical IRTapplications where the
traditional marginal maximum likelihood estimates (MMLEs) of item parameters are used to compute the
statistic. Instead, the values of S-X2 are stochastically larger than those from the theorized (χ2) distribution
of the statistic. As a consequence, the Type I error rates of S-X2 tend to be slightly larger than the nominal
level even for large samples, which has been observed inmultiple simulation studies (e.g., Glas& Suarez-
Falcón, 2003; Sinharay, 2006; Sinharay&Lu, 2008). The aimof this paper is to introduce amodified S-X2

statistic that has a known χ2 asymptotic null distribution.
The next section includes a review of the Pearson’s χ2 statistic used for assessing general model-

data fit and the S-X2 statistic (Orlando & Thissen, 2000) for assessing item fit, followed by a brief
review of a potential problem associated with the use of the Pearson’s χ2 statistic (Chernoff &
Lehmann, 1954). The section also includes a description of the modified Pearson’s χ2 statistic that
Rao and Robson (1974) suggested to overcome the Chernoff–Lehmann problem. The method
section presents the details of our modified S-X2 statistic that is a special case of the modified
Pearson’s χ2 statistic. The section on simulation studies compares themodified S-X2 statistic with the
original S-X2 statistic with respect to Type I error rates and power. The two statistics are compared
using a real data set in the penultimate section. Conclusions and recommendations are provided in
the last section. Although the S-X2 statistic has been extended to tests with polytomously scored
items (Kang & Chen, 2008, 2010), we will only consider tests with dichotomously scored items.

Background: Pearson’s χ2, Orlando-Thissen’s S-X2, Chernoff–Lehmann
Problem, and Rao–Robson’s Modified χ2

Pearson’s χ2 Statistic

Let us assume that a sample with N independent observations, y1, y2, …, yN, is available from a
population. Suppose that p(yi; η), the probability distribution of yi, involves a parameter vector η
with L elements. Suppose that the observations are partitioned into K groups (or cells) and the
proportion of observations belonging to group k is pk ¼ Nk

N , where Nk represents the number of
observations in group k, k = 1, 2, …, K. Let πk(η) denote the expected value of pk under the
assumed probability distribution.

Pearson’s χ2 statistic (Pearson, 1900) for assessing goodness of fit, denoted henceforth as P-X2,
is defined as

P� X 2 ¼ N
XK
k¼1

ðpk � πkðηÞÞ2
πkðηÞ ¼ ½uðηÞ�uuðηÞ, (1)

where

uðηÞ ¼
ffiffiffiffi
N

p
�

p1 � π1ðηÞffiffiffiffiffiffiffiffiffiffiffi
π1ðηÞ

p ,
p2 � π2ðηÞffiffiffiffiffiffiffiffiffiffiffi

π2ðηÞ
p ,…,

pK � πKðηÞffiffiffiffiffiffiffiffiffiffiffiffi
πKðηÞ

p
�u

: (2)

In practice, the parameter vector η is unknown and P-X2 is computed by replacing η by η̂, which
is the maximum likelihood estimate (MLE) of η, and is assumed to follow a χ2 distribution with
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K � L � 1 degrees of freedom (df ), or, the χ2K�L�1 distribution, for large samples under no item
misfit.

Orlando and Thissen’s S-X2 Statistic

Orlando and Thissen (2000) developed the S-X2 statistic, which is a special case of the Pearson’s
χ2 statistic, to assess item fit in the context of IRTmodels for dichotomously scored items. Suppose
that we are interested in assessing item fit for a J-item test. To compute S-X2 for a given item of
interest, the examinees are divided into (J + 1) groups, where group k includes all the examinees
whose raw score is k. Let Nk denote the size of group k. One then computes, for each group k, Ok,
which is the observed proportion of test-takers in the group who answered the item correctly. The
statistic S-X2 for the item is then computed as

S� X 2 ¼
XK
k¼1

Nk ½Ok � EkðηÞ�2
EkðηÞ½1� EkðηÞ� ¼ ½vðηÞ�uvðηÞ, (3)

where K = J � 1, Ek (η) is the expected value, under the IRT model, of Ok

vðηÞ ¼
� ffiffiffiffiffi

N1

p ½O1 � E1ðηÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðηÞ½1� E1ðηÞ�

p ,

ffiffiffiffiffi
N2

p ½O2 � E2ðηÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðηÞ½1� E2ðηÞ�

p ,…,

ffiffiffiffiffiffi
NK

p ½OK � EKðηÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKðηÞ½1� EKðηÞ�

p
�u

, (4)

and the L × 1 vector η includes the parameters of the item of interest, that is, η ¼ ðη1,…, ηLÞu,
where L could vary over the items depending on the assumed IRT model, and, for example, would
be equal to 2 if the two-parameter logistic (2PL) model is used. Let vk(η) denote the k-th element of
v(η).

In computing the S-X2 statistic, the number of examinee groups (K) is typically equal to J � 1
because O0 = E0(η) = 0 and OJ = EJ (η) = 1 for any data set. For small samples, to ensure that the
expected number of examinees is not too small in any examinee group, some groups may be
merged and K can be set equal to a number smaller than J � 1. In the simulations and empirical
data examples for this paper, groups with fewer than 5 expected number of test-takers were
merged, as was recommended by Orlando and Thissen (2000). However, for the sake of sim-
plicity, merging is not considered in the theoretical derivations.

The expected proportion of examinees for group k, Ek(η), is computed as

EkðηÞ ¼
R
PðY ¼ 1jθ, ηÞPðT�1 ¼ k � 1jθ, ηÞψðθÞ dθR

PðT ¼ kjθ, ηÞψðθÞ dθ
, (5)

where Y is the score of a randomly chosen examinee on the item of interest, P(Y = 1|θ, η) is the
probability that Y is equal to 1 given examinee ability θ and item parameters η, T is the total (raw)
score on the test, T�1 is the rest score, or the total score on all items except the item of interest,
PðT ¼ kjθ, ηÞ is the probability that T is equal to k given ability θ and item parameters η, PðT�1 ¼
k � 1jθ, ηÞ is the probability that the rest score given ability θ is equal to k � 1, and ψ(θ) is the
population distribution of the examinee ability and typically assumed to be the standard normal
distribution. The integrals in equation (5) are approximated using numerical integration.

The expressions P(Y = 1|θ, η), PðT�1 ¼ k � 1jθ, ηÞ, and PðT ¼ kjθ, ηÞ depend on the IRT
model fitted to the data. If, for example, the 2PL model is used, then
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PðY ¼ 1jθ, ηÞ ¼ exp½aðθ � bÞ�
1þ exp½aðθ � bÞ�,

where a and b, respectively, are the slope and difficulty parameters of the item of interest. Also, the
terms PðT�1 ¼ k � 1jθ, ηÞ and PðT ¼ kjθ, ηÞ are computed using the Lord–Wingersky recursion
formula (Lord & Wingersky, 1984).

Orlando and Thissen (2000) assumed that the asymptotic null distribution of S-X2 is the χ2K�L
distribution.

The Chernoff–Lehmann Problem with the Pearson’s χ2 Statistic

A critical step in defining P-X2, the Pearson’s χ2 Statistic, is the partitioning of the data into K
groups. Under the setup of subsection 2.1, the grouped data comprise Ok = Npk, k = 1, 2, …, K,.
Because the Ok’s follow the multinomial distribution (e.g., Agresti, 2013, p. 6), the log-likelihood
of η based on the grouped data is given by

log∏
k
½πkðηÞ�Npk ¼ N

X
k

pk log πkðηÞ: (6)

Fisher (1924) proved that if P-X2 is computed using the estimated parameter vectors ~η that
maximizes the log-likelihood provided in equation (6), then the asymptotic null distribution of
P-X2 is the χ2K�L�1 distribution. That is, for large samples and under no model misfit

P� X 2 ¼ h
u
�
~η
�iu

u
�
~η
�
∼ χ2K�L�1: (7)

The distribution reflects a loss of 1 df for each parameter that is estimated. The estimate ~η is
often referred to as the minimum χ2 estimator (e.g., Harris & Kanji, 1983).

Let η̂ denote the MLE of η, which is computed by maximizing

XN
i¼1

log f ðyi, ηÞ,

which is the log-likelihood for the original/ungrouped data.
Chernoff and Lehmann (1954) proved that if one uses η̂ to compute P-X2, the corresponding

statistic

P� X 2 ¼ h
u
�
η̂
�iu

u
�
η̂
�
∼ χ2K�L�1 þ

XL
l¼1

λl
�
η̂
�
χ21, (8)

where 0 < λl(η) < 1; that is, the statistic is somewhere between a χ2K�L�1 variable and a χ2K�1
variable on average. Equation (8) implies that if a statistic of the form ½uðη̂Þ�uuðη̂Þ is used to
assess item fit and the χ2K�L�1 distribution is used to approximate the limiting distribution of the
statistic, the null hypothesis of adequate model fit will be rejected more often than is appropriate,
which would result in an inflated Type I error rate of the fit-assessment approach.

Equations (1) and (4) imply that the S-X2 statistic is a special case of the Pearson’s χ2 statistic. In
addition, S-X2 is computed using the MMLE of the item parameters based on the original/
ungrouped data and yet is assumed to have a χ2J�L�1 asymptotic null distribution (Orlando &
Thissen, 2000). Such a use of S-X2 is exactly like the use of the Pearson’s χ2 statistic along
with the χ2K�L�1 asymptotic null distribution. Therefore, S-X2 is expected to suffer from the
Chernoff-Lehmann Problem and is expected to follow not a χ2 distribution, but a distribution like
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the one given by equation (8). Thus, S-X2 is expected to be larger on average than a χ2J�L�1 random
variable for large samples under no model misfit. Existing simulation studies that examined the
Type I error rates of S-X2 corroborate this fact. Glas and Suarez-Falcón (2003), Sinharay (2006),
and Sinharay and Lu (2008) found in simulation studies that the Type I error rates of S-X2 are
slightly inflated when it is computed using the MMLEs of item parameters from ungrouped data
and is assumed to have the χ2J�L�1 asymptotic null distribution. For example, Table 1 of Glas and
Suarez-Falcón (2003) shows that the Type I error rates of S-X2 at 5% significance level are 0.08,
0.08, and 0.07, respectively, for sample sizes 500, 1,000, and 4000 for 10-item tests. The
resampling-based approaches developed by Sinharay (2006), Stone (2000), Stone and Zhang
(2003), which involve the determination of the null distribution of S-X2 using simulations, offer
alternative solutions and successfully avoid the use of an inaccurate asymptotic null distribution,
but these approaches are computation-intensive. The use of the minimum χ2 estimator ~η and the
P-X2 statistics defined in equation (7) is another possible approach to attain the target Type I error
rate. However, bη is a more efficient estimator compared to ~η because the former utilizes more
information than the latter (e.g., Rao, 1962; Rao & Robson, 1974). Also, η̂ is more popular than ~η.
For example, the former is implemented in several publicly available IRT software packages such
as BILOG (Mislevy & Bock, 1991), MULTILOG (Thissen, 1991), and PARSCALE (Muraki &
Bock, 2003). Further, a χ2-type statistic that utilizes η̂ rather than ~η is likely to be more useful and
popular among researchers and practitioners.

The Modified χ2 Statistic of Rao and Robson

One solution to the abovementioned Chernoff–Lehmann problem is to modify P-X2 in a way such
that the modified statistic has a known asymptotic null distribution.

One modification of the Pearson’s χ2 statistic was suggested by Rao and Robson (1974) and is
computed as

P� X 2
RR ¼ h

u
�
η̂
�iu

Σ�1

u
�bη�u�η̂Þ,

where Σuðη̂Þ is the approximate covariance matrix of uðbηÞ for large samples. The modification is

essentially a standardization of uðη̂Þ such that Σ�1=2
uðη̂Þ uðη̂Þ follows a multivariate normal distri-

bution for large samples under no model misfit, and, consequently

P� X 2
RR ∼ χ2K�1:

Note that there is no loss of df for parameter estimation in the null distribution of the P� X 2
RR

statistic. Rao and Robson (1974) found that P� X 2
RR has larger power than the Pearson’s χ2

Table 1. The Type I Error Rates of S-X2 and S� X2
RR for the 2PL model.

Test Sample size

Length Statistic 500 1000 2000 4000

10 S-X2 0.092 0.087 0.074 0.068
S� X2

RR 0.035 0.042 0.043 0.044
20 S-X2 0.072 0.067 0.061 0.057

S� X2
RR 0.054 0.048 0.041 0.040

40 S-X2 0.062 0.057 0.053 0.051
S� X2

RR 0.054 0.053 0.049 0.047
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statistic computed using the minimum χ2 estimator defined in equation (7)—this result is pre-
sumably due to the larger degrees of freedom of the former statistic compared to the latter statistic.

In this paper, we borrow the idea underlying P� X 2
RR and derive the covariance matrix

Σvðη̂Þ. The matrix Σvðη̂Þ allows us to compute the statistic S� X 2
RR, which is a special case of

the P� X 2
RR statistic and is a modified version of the S-X2 statistic, as

S� X 2
RR ¼ h

v
�
η̂
�iu

Σ�1
v
�
η̂
�v�η̂�: (9)

Further

S� X 2
RR ∼ χ2J�1

(Rao & Robson, 1974). The key of this modification is the computation of the covariance
matrix Σvðη̂Þ. The detailed derivation of the matrix is provided below.

Method: Derivation of the Covariance Matrix Required in S� X2
RR

To obtain Σvðη̂Þ, we first approximate vðη̂Þ using the first-order Taylor series expansion (e.g.,
Lehmann & Casella, 1998, p. 77) around η0 as

v
�
η̂
�
≈ vðη0Þ þ A0

�
η̂� η0

�
, (10)

where η0 is the unknown true item parameter vector

vðη0Þ ¼
 ffiffiffiffiffi

N1

p ½O1 � E1ðη0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðη0Þ½1� E1ðη0Þ�

p ,

ffiffiffiffiffi
N2

p ½O2 � E2ðη0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðη0Þ½1� E2ðη0Þ�

p ,…,

ffiffiffiffiffiffi
NK

p ½OK � EKðη0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKðη0Þ½1� EKðη0Þ�

p !u

, (11)

and A0 is a K × L matrix whose (k, l)-th element is given by

ðA0Þk,l¼
∂vkðηÞ
∂EkðηÞ

∂EkðηÞ
∂ηl

				
η¼η0

¼N 1=2
k



� 1

Ekðη0Þ1=2ð1�Ekðη0ÞÞ1=2
þðEkðη0Þ�0:5ÞðOk�Ekðη0ÞÞ

Ekðη0Þ3=2ð1�Ekðη0ÞÞ3=2
�
∂EkðηÞ
∂ηl

				
η¼η0

:

(12)

Note that for large values of Nk,Ok is approximately equal to Ek(η0), and, consequently, ðA0Þk, l
can be approximated as

ðA0Þk, l ≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nk

Ekðη0Þð1� Ekðη0ÞÞ

s
∂EkðηÞ
∂ηl

					
η¼η0

: (13)

Equation (10) implies that

Σ
v
�bη� ≈Σvðη0Þ þ 2Cov

h
A0

�
η̂� η0

�
, vðη0Þ

iþ A0ΣbηAu
0 : (14)

Among the terms in equation (14), the elements of A0 can be approximated using equation (13)
and Ση̂, which is the variance-covariance matrix among the estimates of the item parameters, can
be obtained from the IRT software that was used to fit the IRT model to the data set.1 The
computation of the other terms, Σvðη0Þ and Cov½A0ðη̂� η0Þ, vðη0Þ�, are described below.
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Computation of Σvðη0Þ
Because of equation (11), the diagonal elements of Σvðη0Þ are terms such as Var(vk(η0)), where

vkðη0Þ ¼
ffiffiffiffiffi
Nk

p ½Ok � Ekðη0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekðη0Þ½1� Ekðη0Þ�

p , k ¼ 1; 2,…,K,

computed at η = η0 and the off-diagonal elements of Σvðη0Þ are terms such as Covðvk1ðη0Þ, vk2ðη0ÞÞ
for k1 ≠ k2 = 1, 2, …, K computed at η = η0.

Because the variance of Ok computed at η = η0 is Ek(η0)[1� Ek(η0)]/Nk, vk(η0) is standardized,
that is, its variance is 1 for k = 1, 2, …, K. So, the diagonal elements of Σvðη0Þ are all equal to 1.
Because the quantities Ek1ðη0Þ are constants, Covðvk1ðη0Þ, vk2ðη0ÞÞ is a multiple of CovðOk1,Ok2Þ,
the covariance of Ok1 and Ok2, computed at η = η0. Appendix A includes a proof that
CovðOk1,Ok2Þ, computed at η = η0, is approximately equal to 0 for large samples. Therefore, the
off-diagonal elements of Σvðη0Þ are all approximately equal to 0 for large samples.

Consequently, for large samples

Σvðη0Þ ≈ IK , (15)

where IK denotes an identity matrix of dimension K × K.

Computation of Cov½A0ðη̂� η0Þ, vðη0Þ�
The grouped data in the context of item-fit analysis comprise the quantities NkOk and Nk(1� Ok), which
are the numbers of correct and incorrect answers on the item of interest for examinee group k. The log-
likelihood of these grouped data is provided by

~lðη̂Þ ¼ log∏
k
Ekðη̂ÞNkOk ð1� Ekðη̂ÞÞNk ð1�OkÞ ¼P

k
½NkOk logðEkðη̂ÞÞ þ Nkð1� OkÞ

logð1� Ekðη̂ÞÞ�:
As mentioned earlier, the minimum χ2 estimator ~η is obtained by solving

∂~lðηÞ
∂ηl

¼
X
k



NkOk

EkðηÞ �
Nkð1� OkÞ
1� EkðηÞ

�
∂EkðηÞ
∂ηl

¼ 0, l ¼ 1; 2,…,L, (16)

or by solving X
k

Nk ½Ok � EkðηÞ�
EkðηÞ½1� EkðηÞ�

∂EkðηÞ
∂ηl

¼ 0, l ¼ 1; 2,…, L:

Therefore, the solution ~η to the above equations satisfies

∂~lðηÞ
∂η η¼~η ¼ 0L×1,

		 (17)

where 0L×1 is a vector of length L whose elements are zeroes. Also note that Equations (11), (13),
and (16) imply that

∂~lðηÞ
∂η

						
η¼η0

¼ �Au
0 vðη0Þ: (18)
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By applying the Taylor series expansion around η = η0 to
∂~lðηÞ
∂η

						
η¼~η

and using the result provided
in Equations (17) and (18), we obtain

∂~lðηÞ
∂η

						
η¼~η

¼ 0L×1 ≈� Au
0 vðη0Þ þ B0

�
~η� η0

�
, (19)

where

B0 ¼ ∂2~lðηÞ
∂η∂η0

						
η¼η0

:

Equation (19) implies that

B�1
0 Au

0 vðη0Þ � ~ηþ η0 ≈ 0

or

B�1
0 Au

0 vðη0Þ þ η̂� ~η ≈ η̂� η0: (20)

Using equation (20), we can express the covariance Cov½A0ðη̂� η0Þ, vðη0Þ� in equation (14) as
Cov

h
A0

�
η̂�η0

�
, vðη0Þ

i
≈Cov

h
A0B

�1
0 Au

0 vðη0Þ þ A0

�
η̂� ~η

�
, vðη0Þ

i
¼ A0B

�1
0 Au

0 Σvðη0Þ þ Cov
h
A0

�
η̂�~η

�
, vðη0Þ

i
:

(21)

However, note that Cov½A0ðη̂� ~ηÞ, vðη0Þ�, the second term in the right side of equation (21),
converges to a matrix of zeroes since A0 is a matrix of constants and η̂� ~η, which is the difference
between two sets of item parameter estimates, converges to a zero vector as sample size increases.
Therefore, equation (21) yields the result that

Cov
h
A0

�
η̂� η0

�
, vðη0Þ

i ¼ A0B
�1
0 Au

0 Σvðη0Þ (22)

Equations (14), (15), and (22) imply that

Σv
�
η̂
� ≈ IK þ 2A0B

�1
0 Au

0 þ A0Ση̂A
u
0 : (23)

Although the minimum χ2 estimator appears in the above derivation, one does not have to
compute the estimator to compute Σvðη̂Þ. That is because A0 and B0 can be adequately ap-
proximated using the MLE η̂ that is an accurate estimator of η0 for common IRT models (e.g.,
Harwell et al., 1988).

After approximating Σvðη̂Þ using equation (23), one can compute our modified version of S-X2

as

S� X 2
RR ¼ h

v
�
η̂
�iu

Σ�1
v
�
η̂
�v�η̂�, (24)

where vðη̂Þ is computed using equation (4) after replacing η by η̂. The asymptotic null distribution
of S� X 2

RR is a χ
2
J�1 distribution (Rao & Robson, 1974). Thus, item misfit is indicated by values of

S� X 2
RR that are larger than the appropriate percentiles (say 95th or 99th percentile) of the χ2J�1

distribution.
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Simulation Studies

We performed a simulation study to evaluate the Type I error rates and power of the new S� X 2
RR

statistic defined in equation (24) and to compare its Type I error rates and power to those of the
S-X2 statistic (Orlando & Thissen, 2000) defined in equation (3). In the first part of the study, we
compute and compare the Type I error rates of S-X2 and S� X 2

RR for data simulated from the 2PL
model. In the second part of the simulation study, we examine and compare the power of S-X2 and
S� X 2

RR for data simulated from the Rasch, the 2PL and the 3PL models. Both the statistics were
computed using bη, which is the vector of the MMLEs of the item parameters.

Simulation Design

In the simulations, item scores were simulated under the Rasch, 2PL, and 3PL models. The test
length was set as equal to 10, 20, or 40. The sample size was set equal to 500, 1000, 2000, or 4000.
The true slope parameters, difficulty parameters, and guessing parameters were randomly gen-
erated from uniform distributions U(1, 2), U( � 3, 3), and U(0.05, 0.3), respectively, where, for
example, U(1, 2) denotes the uniform distribution between 1 and 2. Simulating the true parameter
values from other distributions did not affect the comparative performance of the item-fit statistics.
To investigate the Type I error rates of the two statistics, the data-generating model (the IRTmodel
that was used to simulate the data) was fitted to the data. To investigate the power of the two
statistics, the Rasch and 2PL models were fitted to data simulated from the 3PL model and the
Rasch model was fitted to data simulated from the 2PL model. After the models were fitted to the
data and the item fit statistics were computed, the Type I error rate of an item-fit statistic at the 5%
significance level was computed as the proportion of values of the statistic that were larger than the
95th percentile of the χ2 distribution with J � 1 (for S� X 2

RR) or J � L � 1 (for S-X2) df for the
simulation cases where the data-generating model and the fitted model were the same; the power
of a statistic was computed as the proportion of values of the statistic that were larger than the 95th
percentile of the χ2 distribution with J� 1 or J� L� 1 df for the simulation cases where the data-
generating model and the fitted model were different. Both Type I error rate and power for each
combination of test length and sample size were computed from 100 replications. The true item
parameters were resampled in each replication.

Results

Table 1 shows that the Type I error rates of the two statistics for the various simulation cases where
the data-generating model and the fitted model were the same. The table shows that the Type I
error rates of S-X2 are larger than the nominal level in all simulation cases, a finding that is in
agreement with findings on Type I error rates of S-X2 in Glas and Suarez-Falcón (2003), Sinharay
(2006), and Sinharay and Lu (2008). However, the Type I error rates of S-X2 are not much larger
than the nominal level for 40-item tests. The Type I error rates of the modified statistic S� X 2

RR are
considerably smaller than those of S-X2 in all cases. Thus, S� X 2

RR overcomes the Chernoff–
Lehmann problem to a certain extent. However, the Type I error rates of S� X 2

RR is consider-
ably smaller than the nominal level for 10-item tests—we plan to investigate this issue in future
research.

Table 2 shows the values of power of the two item-fit statistics for the various simulation
cases where the data-generating model and the fitted model were different. The two columns
with heading, for example, “2PL/1PL,” show the power for the cases when the data were
simulated from the 2PL model and analyzed using the Rasch model. Table 2 shows that the
power of the modified statistic S� X 2

RR is smaller than that of S-X2. However, the slightly better
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power of S-X2 relative to S� X 2
RR is likely a consequence of the inflated Type I error rate of the

former statistic. As the sample size increases, the power of both statistics approach 1.0 for the
“2PL/1PL” and “3PL/1PL” cases. The small power of both item statistics for the “3PL/2PL”
case is an outcome of the fact that the 2PL model can explain data simulated from the 3PL model
except for the case that the difficulty and guessing parameters for the latter model are too high
(Sinharay, 2006).

Real Data Example

The two item-fit statistics, S-X2 and S� X 2
RR, were computed for a real data set. The data set

includes the item scores of 2000 examinees on a state test with 46 dichotomous and multiple-
choice items (with 5 answer options for each item) designed to measure students’ achievement in
mathematics and was previously analyzed in Sinharay (2017).

The Rasch, 2PL, and 3PL models were fitted to the data set and the values of S� X 2
RR and

S-X2 were computed for all items for each IRT model. Table 3 shows the number of items for
which the item-fit statistics were statistically significant at the 5% level of significance for the
three IRT models. The table shows that for each IRT model, the use of S� X 2

RR leads to fewer
items being identified as misfitting compared to that of S-X2, with the difference being more
prominent for the 2PL model. This finding agrees with the finding of smaller Type I error rate
and power of S� X 2

RR compared to S-X2 in the simulation study. Although both statistics are
significant for a considerable number of items for the Rasch and 2PL model, they are sig-
nificant for only 6 and 3 items, respectively, for the 3PL model. Although the 3PL model
seems to adequately fit the data set, more tests including tests for local independence (e.g.,
Chen & Thissen, 1997) and further investigations, should be conducted to finalize this
conclusion.

The three panels of Figure 1 show scatter plots of S-X2 versus S� X 2
RR for the real data set

under the three IRT models. The range of the X-axis is the same as that of the Y-axis in each panel.
The range is much wider in the leftmost panel than in the other two panels. The panels include a
diagonal line and also vertical and horizontal dashed lines indicating the critical values at 5% level
of significance for the respective statistics. The last two panels show that for several items, S-X2 is

Table 2. The Power of S� X2
RR and S-X2 for Various Combinations of Data-generating Model and Fitted

Model.

Test Length Sample Size

2PL/1PL 3PL/1PL 3PL/2PL

S-X2 S� X2
RR S-X2 S� X2

RR S-X2 S� X2
RR

10 500 0.26 0.19 0.34 0.26 0.06 0.05
1000 0.48 0.40 0.49 0.37 0.07 0.06
2000 0.65 0.57 0.67 0.55 0.08 0.06
4000 0.80 0.69 0.82 0.68 0.11 0.05

20 500 0.17 0.17 0.30 0.27 0.07 0.04
1000 0.39 0.35 0.47 0.40 0.09 0.05
2000 0.64 0.61 0.67 0.59 0.10 0.08
4000 0.80 0.75 0.82 0.76 0.13 0.10

40 500 0.18 0.17 0.27 0.25 0.08 0.05
1000 0.25 0.24 0.42 0.38 0.11 0.08
2000 0.54 0.48 0.66 0.64 0.11 0.09
4000 0.77 0.66 0.79 0.75 0.15 0.13
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larger than its critical value, but S� X 2
RR is smaller than its critical value. Because itemmisfit often

leads to an item being removed from the item pool (Sinharay & Haberman, 2014) and items are
costly, these results indicate that the use of S� X 2

RR rather than S-X2 may lead to considerable
saving of resources in operational testing.

Conclusions and Recommendations

The item-fit statistic S-X2 (Orlando & Thissen, 2000), in spite of its simplicity and popularity, does
not have a known asymptotic null distribution (Sinharay, 2006) and the Type I error rate of the
statistic is larger than the nominal level, especially for shorter tests. The present study adopts the
modification procedure suggested by Rao and Robson (1974) to provide a modified version of
S-X2 that has a known χ2 asymptotic null distribution. The statistic S-X2 can be written as v̂T v̂. The
central idea of the modification of Rao and Robson (1974) is the computation of v̂TΣ�1

v̂ v̂, where Σv̂

is an approximate variance-covariance matrix ofbv, so that v̂TΣ�1
v̂ v̂ has a known χ2 asymptotic null

distribution. A major contribution of this paper is the derivation of the appropriate Σv̂. Thus, this
paper suggests a χ2-type statistic that (a) can be used to assess item fit for any IRT model for
dichotomous items and (b) has a known asymptotic distribution under the null hypothesis. Item-fit
statistics that have known asymptotic χ2 distribution under the null hypothesis have been sug-
gested for the Rasch model by, for example, Glas (1988), but there is a lack of such statistics for

Table 3. The Number of Items with Statistically Significant Values of S-X2 and S� X2
RR for the Three IRT

models for the real data set.

Statistic Rasch 2PL 3PL

S-X2 33 18 6
S� X2

RR 31 12 3

Note. IRT = item response theory.

Figure 1. Plot of S-X2 versus S� X2
RR for three item response theory models for the real data.
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non-Rasch IRT models. Thus, this paper makes an important contribution given that experts such
as Box (1979) called for statistics that have known null distribution in assessing the fit of statistical
models. Note that researchers such as Haberman et al. (2013) have suggested residual-based item-
fit statistics that follow the standard normal distributions for non-Rasch IRT models, but we do not
consider such statistics.

Simulation studies were conducted to compare the performance of S-X2 and S� X 2
RR with

respect to Type I error rate and power. Results obtained from the simulation studies suggest that
the Type I error rate of S� X 2

RR is closer to the nominal level than S-X2 across different conditions.
However, S� X 2

RR was found to be slightly conservative in comparison to S-X2. Application of the
two item-fit statistics to a real data set revealed that the number of misfitting items using S� X 2

RR
was smaller than that for S-X2. In practice, item fit statistics such as S� X 2

RR should be used along
with other methods such as informative graphics and pair-wise item fit indexes in order to gain a
thorough understanding of the type of misfit.

This paper has several limitations. First, it is possible to compare the two statistics for more
simulated data and more real data. Second, the proposed statistic S� X 2

RR applies only to di-
chotomous IRT models—it is possible to extend the statistic to tests with polytomous items or a
mix of dichotomous and polytomous items in future research. Third, the current manuscript only
investigates three unidimensional IRT models assuming the latent variable follows a normal
distribution. To obtain better understanding of the suggested statistic, one can look into its
performance in other cases including for non-normal ability distributions, multidimensional latent
variables, and discrete latent variables. Finally, this manuscript only considers statistical sig-
nificance and does not discuss practical significance on IRT model misfit (Hambleton & Han,
2005; Sinharay & Haberman, 2014).

Appendix A

Proof that CovðOk1,Ok2Þ Computed at η = η0 is Approximately Equal to
Zero for Large Samples

Let Si denote the total score of examinee i, who is randomly chosen from the hypothetical
population of all possible examinees. Let us define an indicator variable Wik as

Wik ¼
�
1, Si ¼ k
0, Si ≠ k

Then Ok for an item of interest can be expressed as

Ok ¼
P

iWikXiP
iWik

where Xi is the score of examinee i on the item.
Let us consider two possible values k1 and k2 of Si, where k1 ≠ k2, and define a vector

U as

U ¼
 X

i

Wik1Xi,
X
i

Wik1,
X
i

Wik2Xi,
X
i

Wik2

!u

Then one can express Ok1 and Ok2 as
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Ok1 ¼
U1

U2
, Ok2 ¼

U3

U4

where, for example, U1 is the first component of U. The Jacobian for the transformation from
O ¼ ðOk1,Ok2Þu toU is given by a matrix of the first derivatives of the elements ofOwith respect
to those of U, or, by

J ¼


J1 J2 0 0
0 0 J3 J4

�
(A1)

where

J1 ¼ 1

U2
, J2 ¼ �U1

U 2
2

, J3 ¼ 1

U4
, J4 ¼ �U3

U 2
4

(A2)

Consequently, using the multivariate delta method (e.g., Lehmann & Casella, 1998, p. 61), the
variance-covariance matrix of O for large samples can be approximated as

CovðOÞ ≈ ~JΣU
~J
u

where ΣU is the variance-covariance matrix of the vector U, ~J is the value of J provided in
equation (A1) upon replacing the Uk’s with their expected values computed at η = η0, and the
parameters η are fixed at η0. Using the result that the (i, j)-th element of the product of three
matrices A, B and C is equal to the (matrix) product of the i-th row of A, the matrix B, and the j-th
column of C (e.g., Banerjee & Roy, 2014, p. 12), the covariance between Ok1 and Ok2 can be
approximated, for large samples, as

CovðOk1,Ok2Þ ≈
�
~J 1, ~J 2, 0; 0

�
ΣU

�
0; 0, ~J 3, ~J 4

�u
where ~J i is the value of Ji upon replacing the Uk’s with their expected values computed at η = η0,
or, as

CovðOk1,Ok2Þ ≈ ~J 1
~J 3σ13 þ ~J 1

~J 4σ14 þ ~J 2
~J 3σ23 þ ~J 2

~J 4σ24 (A3)

where σij is the (i, j)-th element of ΣU.
One can compute σ24 as

σ24 ¼ CovðU2,U4Þ ¼ Cov

 X
i

Wik1,
X
i

Wik2

!
¼
X
i

CovðWik1,Wik2Þ

where the last equality holds because the item scores are independent over two different examinees
i1 and i2, which results in CovðWi1k1,Wi2k2Þ ¼ 0. Consequently

σ24 ¼
X
i

½EðWik1Wik2Þ � EðWik1ÞEðWik2Þ� ¼ �
X
i

EðWik1ÞEðWik2Þ (A4)

because the raw score of examinee i cannot be equal to k1 and also equal to k2 so that Wik1Wik2 is
equal to 0.

Now note that EðWik1Þ is the probability that the raw score on the test is k1 for an examinee who
is randomly chosen from the population of all examinees, is equal to

R
SðT ¼ k1jθ, ηÞψðθÞ dθ,

and hence is the same over all the examinees. Therefore
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EðWik1Þ ¼
1

N

X
i

EðWik1Þ ¼
1

N
E

 X
i

Wik1

!
¼ 1

N
EðU2Þ (A5)

Similarly, one obtains

EðWik2Þ ¼
1

N
EðU4Þ: (A6)

Equations (A4) to (A6) imply that

σ24 ¼ �
X
i



1

N
EðU2Þ

�

1

N
EðU4Þ

�
¼ �1

N
EðU2ÞEðU4Þ

Let ~Uk denote E(Uk), where the expectation is computed at η = η0, k = 1, …, 4. Then

σ24 ¼ �1

N
~U 2

~U 4 (A7)

It is possible to prove in a similar manner that

σ13 ¼ �1

N
~U 1

~U 3, σ14 ¼ �1

N
~U 1

~U 4, σ23 ¼ �1

N
~U 2

~U 3 (A8)

Finally, equations (A2), (A3), (A7), and (A8) imply that

CovðOk1,Ok2Þ ≈� ~J 1
~J 3

1

N
~U 1

~U 3 � ~J 1
~J 4

1

N
~U 1

~U 4 � ~J 2
~J 3

1

N
~U 2

~U 3 � ~J 2
~J 4

1

N
~U 2

~U 4

≈� 1

N

24 ~U 1
~U 3

1
~U 2

1
~U 4

� ~U 1
~U 4

1
~U 2

~U 3

~U 2
4

� ~U 2
~U 3

~U 1

~U 2
2

1
~U 4

þ ~U 2
~U 4

~U 1

~U 2
2

~U 3

~U 2
4

35 ¼ 0

Acknowledgments

The authors would like to thank John Donoghue, Sooyeon Kim, Hongwen Guo, Lora Monfils, and two
anonymous reviewers for several helpful comments that led to a significant improvement of the article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or
publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author Note

Any opinions expressed in this publication are those of the author and not necessarily of Educational Testing Service.

ORCID iDs

Sandip Sinharay  https://orcid.org/0000-0003-4491-8510
Matthew S. Johnson  https://orcid.org/0000-0003-3157-4165

16 Applied Psychological Measurement 47(1)

https://orcid.org/0000-0003-4491-8510
https://orcid.org/0000-0003-4491-8510
https://orcid.org/0000-0003-3157-4165
https://orcid.org/0000-0003-3157-4165


Note

1. For example, the R package mirt (Chalmers, 2012) can be used to compute such a matrix.
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