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Abstract

In this study, we introduce a method to perform independent vector analysis (IVA) fusion to 

estimate linked independent sources and apply to a large multimodal dataset of over 3000 subjects 

in the UK Biobank study, including structural (gray matter), diffusion (fractional anisotropy), and 

functional (amplitude of low frequency fluctuations) magnetic resonance imaging data from each 

subject. The approach reveals a number of linked sources showing significant and meaningful 

covariation with subject phenotypes. One such mode shows significant linear association with 

age across all three modalities. Robust age-associated reductions in gray matter density were 

observed in thalamus, caudate, and insular regions, as well as visual and cingulate regions, 

with covarying reductions of fractional anisotropy in the periventricular region, in addition to 

reductions in amplitude of low frequency fluctuations in visual and parietal regions. Another 

mode identified multimodal patterns that differentiated subjects in their time-to-recall during 

a prospective memory test. In sum, the proposed IVA-based approach provides a flexible, 

interpretable, and powerful approach for revealing links between multimodal neuroimaging data.

I. INTRODUCTION

Standard neuroimaging research practice involves collection of multimodal magnetic 

resonance imaging (MRI) data on every individual. Each modality provides rich, unique 

information about brain structure and/or function [1], [2]. Although separate analysis of each 

data modality can provide important insights into the structural or functional integrity of the 

brain, multimodal fusion analyses provide insights into cross-modal (joint) associations that 

can lend important missing links in brain development and disease [3].

While large scale neuroimaging datasets (1000+ subjects, with multimodal data acquired 

on the same subjects) increase our ability to recognize robust biomarkers for brain health 

and disorder, the relationship between modalities is often complex and unknown. Because 

of this, data-driven approaches play a key role in discovery of relationships between 

†Corresponding authors: phone: 404-413-4953; fax: 404-413-3393, (edamaraju@gsu.edu, rsilva@gsu.edu).
§Equal contribution.

HHS Public Access
Author manuscript
Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 
November 22.

Published in final edited form as:
Annu Int Conf IEEE Eng Med Biol Soc. 2021 November ; 2021: 3928–3932. doi:10.1109/
EMBC46164.2021.9631027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain function and structure, which may not cooccur at the same spatial regions and may 

covary among subjects in complex ways [4]. Based on the marked success of independent 

component analysis (ICA) for exploratory analysis of brain imaging data, a number of 

approaches have attempted to capture these relationships leveraging independence. Rarely, 

however, they were able to directly estimate such covariation, typically resorting to an 

amalgamation of indirect methods [5]. Independent vector analysis (IVA) [6], a multidataset 

extension of independent component analysis (ICA), provides a natural and extendable way 

to directly link multivariate brain imaging data together. While separate unimodal ICAs 

can only identify modality-specific sources, IVA identifies sets of linked sources across 

modalities, which are called source component vectors (SCV).

Largely inspired by hybrid experiments in [7], this work demonstrates an application of 

IVA for multimodal fusion, combining unimodal features from structural MRI (sMRI), 

diffusion MRI (dMRI), and functional MRI (fMRI) data from a large UK Biobank sample. 

Specifically, we identify corresponding linked sources from gray matter (GM) probabilistic 

segmentation maps from sMRI data, fractional anisotropy (FA) maps from dMRI data, 

and amplitude of low frequency fluctuations (ALFF) maps from fMRI data. GM maps 

summarize variations in gray matter density. FA maps capture variation in the extent of 

directional diffusion within regional white matter. ALFF maps summarize the strength of 

local functional connectivity and the ability of brain regions to communicate with distant 

regions. Each SCV estimated with IVA represents a linked mode of shared variability across 

these modalities, providing a rich linked feature set for joint interpretation. Furthermore, 

we investigate potential associations between the extracted SCVs and non-imaging subject 

phenotypes. We show that the multimodal IVA fusion model can extract meaningful linked 

sources with statistically significant linear associations with the non-imaging phenotypes.

In the following, Section II describes the data, preprocessing, and methodology utilized in 

this work. Section III presents our results, which are further discussed in Section IV before 

presenting our final conclusions.

II. METHODS

A. Data

In this work, we use imaging data from a subset of 3497 subjects participating in the 

UK Biobank study, a prospective epidemiological study with a large imaging database. 

Specifically, we utilize multivariate features [8] from structural MRI (sMRI), diffusion MRI 

(dMRI) and resting functional MRI (rfMRI) data extracted from each subject. All data was 

collected in one of the three participating locations in the United Kingdom. All participants 

provided informed consent from their respective institutional review boards.

T1-weighted structural MRI images were acquired using a 3D MPRAGE sequence at 

1mm3 isotropic sagittal slices with acquisition parameters: 208×256×256 matrix, R=2, TI/

TR=880/2000 ms. Diffusion MRI images were acquired using a standard Stejskal-Tanner 

spin-echo sequence at 2mm3 isotropic resolution at two different b values (b = 1,000 and 

2,000 s/mm2) and 50 distinct diffusion-encoding directions each acquired with a multi-band 

(MB) factor of 3. Resting functional MRI were acquired axially at 2.4mm3 resolution while 
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the subjects fixated at a cross with the following acquisition parameters: 88×88×64 matrix, 

TE/TR=39/735ms, MB=8, R=1, flip angle 52°. A pair of spin echo scans of opposite phase 

encoding direction in the same imaging resolution as rFMRI scans were acquired to estimate 

and correct distortions in rFMRI echo-planar images, and a single band high resolution 

reference image was acquired at the start of the rFMRI scan to ensure good realignment and 

normalization.

B. Preprocessing

We processed each of the three imaging data modalities to obtain GM, FA, and ALFF 

feature maps, which were then used for multimodal fusion analysis. Besides summarizing 

information into features, the preprocessing also promotes dimensionality reduction and 

denoising, both of which facilitate latter analyses. Specifically, the sMRI images underwent 

segmentation and normalization to MNI space using the SPM12 toolbox, yielding gray 

matter (GM), white matter (WM), and cerebro-spinal fluid (CSF) tissue probability maps. 

The normalized GM segmentations were spatially smoothed using a 10mm FWHM 

Gaussian filter. The smoothed images were resampled to 3mm3. We defined a group mask to 

restrict the analysis to GM voxels as follows. First, an average GM segmentation map from 

all subjects was obtained from normalized segmentation images at 1mm3 resolution. This 

map was binarized at a 0.2 threshold and resampled to 3mm3 resolution, which resulted in 

44318 in-brain voxels.

For dMRI data, we used the FA maps provided by the UK Biobank consortium. The 

preprocessing steps that raw dMRI images underwent are thoroughly described in [9]. 

The FA maps were then spatially smoothed using a 6mm FWHM Gaussian filter and 

resampled to 3mm3 voxels. For dMRI data, we computed a group mask similar to the 

approach described above for sMRI data. However, the group average WM segmentation 

was binarized at a threshold of 0.4, resulting in 18684 in-brain voxels in the group mask.

Lastly, we used distortion corrected, FIX-denoised [10], normalized rfMRI data provided 

by the UK Biobank data resource. We computed amplitude of low frequency fluctuation 

(ALFF) maps, defined as the area under the low frequency band [0.01–0.08 Hz] power 

spectrum of each voxel time course. We then obtained mean scaled ALFF maps (mALFF), 

ALFF maps divided by the global mean ALFF value, as this scaling has been shown to result 

in greater test-retest reliability of ALFF maps [11]. The mALFF maps were smoothed using 

a 6mm FWHM Gaussian filter and resampled to 3mm isotropic voxels. We used the same 

group mask learned from GM features for mALFF maps in the subsequent fusion analysis.

C. Multimodal IVA (MMIVA) fusion model

Here we present a general IVA approach for direct analysis of heterogeneous multimodal 

data. As mentioned earlier, IVA is a natural extension of ICA. While ICA operates on a 

single dataset to obtain statistically independent source signals via estimation of one linear 

unmixing matrix, IVA performs joint estimation of many unmixing matrices simultaneously 

across multiple datasets [12].
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Briefly, ICA is a blind source separation model that assumes linear mixing of C statistically 

independent sources s, yielding the observed data x:

x(n) = As(n), 1 ≤ n ≤ N, x(n), s(n) ∈ ℝC, (1)

where A is the mixing matrix, and N is the number of observations (here, the number of 

subjects). The ICA algorithm seeks to identify the sources s(n) = Wx(n) by estimating an 

unmixing matrix W, according to certain properties of the sources such as higher-order 

statistics and non-Gaussianity. Typical ICA algorithms minimize the mutual information 

defined as:

ℐICA(W) = ∑
i = 1

C
H s i − log detW , (2)

where H s i  is the differential entropy, given by H s i = − E logpsi wi⊤x .

IVA extends the ICA model to multiple (K) datasets, assuming a linear mixture of C 
independent sources for each dataset:

x[k](n) = A[k]s[k](n), 1 ≤ k ≤ K, 1 ≤ n ≤ N, (3)

additionally assuming statistical dependence (i.e., linkage) of corresponding sources. 

This collection of linked sources is defined as the source component vector (SCV) 

si(n) = [si
[1](n), si

[2](n), …, si
[k](n)]⊤ ∈ ℝK. Here, K = 3, such that each SCV spans across 

modalities.

Solving the IVA problem comes from minimizing the following mutual information:

ℐIVA(W) = ∑
i = 1

C
∑

k = 1

K
H s i

[k] − ℐ si − ∑
k = 1

K
log det W[k]

(4)

The second term ℐ si  in the equation above is mutual information accounting for 

dependence among sources in each SCV. Altogether, the terms in big parentheses 

correspond to the joint entropy of an H si , simply indicating that IVA identifies 

independence among SCVs while taking into account the dependence across datasets. 

See [12] for a general discussion on ICA and IVA algorithms and [13], [14] for their 

application to data fusion (particularly our choice of transposed IVA). See [7] for details 

on the multidataset independent subspace analysis (MISA) implementation we utilized to 

estimate the IVA model in this work.

We performed MMIVA fusion of the GM, mALFF, and FA features by treating each 

modality as one of the K datasets in the IVA model above. Each subject’s feature set 

was z-scored per modality and then reduced to 20 principal directions using multimodal 

group principal component analysis (MGPCA). Unlike standard PCA that finds orthogonal 

directions of maximal variation for each modality separately, MGPCA finds directions 
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of maximal common variation, i.e., eigenvectors are computed based on the average of 

the scaled covariance matrices (Σ[k]) of all three modalities. The scaling factor used is 

trace(Σ[k])/N, which is the ratio of the variance in the modality to the number of observations 

(here, subjects). The MGPCA-reduced data then underwent an ICA estimation using the 

Infomax objective [15] to obtain 20 common independent sources.

We improved upon the Infomax estimation by configuring and running MISA as an ICA 

model [7], in which case it assumes source distributions to follow a univariate Kotz 

distribution. The final combined MGPCA+ICA estimates of W[k] were then utilized as 

projection matrices for each modality. The resulting data were analyzed by the MMIVA 

model after reconfiguring and running MISA as an IVA model to obtain the final joint 

decomposition. As discussed earlier, MMIVA accounts for dependence within corresponding 

sources across modalities. For both MISA and MMIVA models, the source distributions 

are assumed to take a multivariate Kotz distribution, as this has been shown to generalize 

well across multivariate Gaussian, multivariate Laplace, and multivariate power exponential 

source distributions [16]. All methods have been implemented using the MISA toolbox [7].

D. Statistics

UK Biobank provides extensive phenotype information for each subject including age, sex, 

lifestyle measures, cognitive scores, etc. We used a subset of the subject measures (SM) 

reported in [17] to identify associations between the subject demographics and the MMIVA 

sources obtained from our decomposition. We computed a multivariate MANCOVA model 

(s[k] ∼ SM + e) using the MANCOVAN toolbox, which implements multivariate stepwise 

regression, to identify associations between subject demographics and MMIVA sources for 

each modality separately.

Following the approach in [18], we dropped subject scores with more than 4% missing data. 

This resulted in 2907 subject scores out of 3497 for MANCOVAN analysis. Of 64 SMs, 

we dropped 10 columns which had extreme values. Extreme values are identified in 2 steps. 

First sum of square of absolute median deviations (ssqamdn) for each SM is computed. If 

there is any max(ssqamdn) >100*mean(ssqmdn), then the SM has subjects with extreme 

outliers which can influence statistical analysis and so were dropped. This resulted in 54 

phenotypes that include age, sex, fluid intelligence, a set of phenotypes covering amount and 

duration of physical activity, frequency of alcohol intake, and cognitive test scores (see [17] 

for details).

For the measures that were retained, any missing values were imputed with K-Nearest 

Neighborhood (MATLAB’s knnimpute) method. Stepwise regression approach was used 

to retain only significant terms (SMsig) at each step, using α < 0.01. Univariate tests 

(si
[k] ∼ SMsig + e) were performed to identify significant SCVs and corrected for multiple 

comparisons at Bonferroni threshold (0.05/20 for 20 sources). In addition to the SMs, the 

following nuisance covariates were added to the design matrix:

1. sMRI: correlation of warped subject segmentation map to mean segmentation 

map (rSNsMRI),
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2. dMRI: correlation of warped subject FA map to mean FA map (rSNsMRI),

3. ALFF: correlation of warped subject ALFF map to mean ALFF map (rSNALFF),

4. and mean framewise displacement (mFD) computed from rigid body movement 

estimates from resting fMRI scan realignment step.

Any variable with fewer than 8 levels were modeled as categorical variables and rest were 

modeled as continuous variables. Only age by sex interaction was considered.

III. RESULTS

The MANCOVA analysis revealed several SCVs showing significant effects of age, sex 

across the three modalities on several SCVs. Figure 1 shows the source (component 8) 

most significantly associated with age, along with the corresponding mixing weights (spatial 

maps).

Component 1 showed the most significant sex effects, as depicted in Figure 2. The 

interaction term age by sex was only weakly significant for a couple of components and did 

not survive multiple comparison correction for all of the three modalities for any component.

Among the remaining phenotypes, time-to-answer (TTA) in a prospective memory test 

showed linear association with each of the three modalities for component 3, as shown in 

Figure 3. As seen in the figure, subjects with faster responses have higher component values 

and vice versa.

Few components show significant variation with nuisance variables (subject movement and 

spatial normalization summaries), which are not shown here.

IV. DISCUSSION

In this work, we showed that multimodal IVA, initialized with multimodal group principal 

components estimated using data from all modalities, can help extract independent 

subspaces with strong multimodal linkage and that also show significant covariation with 

subject phenotypes.

Age associated decline (hot areas in the weight maps of sMRI component 8) in gray matter 

density was primarily seen in caudate, thalamus, insular regions, anterior and posterior 

cingulate cortex, and lingual gyrus, consistent with earlier findings [19]. Subject weights 

corresponding to dMRI modality suggest reductions in fractional anisotropy values with age 

in periventricular regions including superior and posterior thalamic radiation. ALFF maps 

corresponding to component 8 suggest reductions in parietal and visual regions of the brain 

that covary with structural changes.

MMIVA Component 1 showed the most significant sex differences for all 3 modalities. 

In both sexes, linear covariation with similar trajectory of decline with age in ALFF in 

parietal cortex, cerebellar regions in gray matter density, and fractional anisotropy in parietal 

cortico-pontine tracts was observed.
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Variability in reaction times to prospective memory tests was captured in component 3 

with subjects who exhibited faster reaction times showing greater gray matter densities in 

cerebellum (Crus 1), higher ALFF values in the areas corresponding to dorsal visual stream, 

and higher FA values in the cortico-spinal tract.

In summary, we demonstrate the ability of multimodal independent vector analysis to 

directly extract linked multimodal independent modes of subject variations that also capture 

different aspects of pheonotypical information. Further investigations are needed to verify 

if the observed covariation patterns across the different modalities are driven by common 

causes and replicate in patient populations.
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Fig. 1. 
The sources corresponding to component 8 for each of the three modalities are plotted 

as scatter plot. Each point represents a subject color-coded by age. The component maps 

correspond to the mixing weights of the source for each modality.
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Fig. 2. 
The sources corresponding to component 1 for each of the three modalities, by sex. The 

component maps shown, correspond to the mixing weights for each modality.
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Fig. 3. 
The sources corresponding to component 3 for each of the three modalities, plotted as scatter 

plot. Each point represents a subject color-coded by time-to-answer (TTA) in a prospective 

memory test. The component maps correspond to the mixing weights of the source for 

each modality. The source intensities are also plotted separately for each modality to show 

consistent shift in source distributions of fast and slow responders in prospective memory 

task.
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