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Technical Background for 4D Flow MR Imaging

Masaki Terada1*, Yasuo Takehara2, Haruo Isoda3, Tetsuya Wakayama4,
and Atsushi Nozaki4

Recently, the hemodynamic assessments with 3D cine phase-contrast (PC) MRI (4D flow MRI) have
attracted considerable attention from clinicians. Unlike 2D cine PC MRI, the technique allows for cardiac
phase-resolved data acquisitions of flow velocity vectors within the entire FOV during a clinically viable
period. Thus, the method has enabled retrospective flowmetry in the spatial and temporal axes, which are
essential to derive hemodynamic parameters related to vascular homeostasis and those to the progression
of the pathologies. Accelerations in imaging are critical for this technology to be clinically viable; however,
a high SNR or velocity-to-noise ratio (VNR) is also vital for accurate flow measurements. In this chapter,
the technologies enabling this difficult balance are discussed.
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Introduction

MR data inherently include velocity information. The most
efficient and precise method to measure velocity is phase-
contrast (PC) MRI. Specific velocity encoding (VENC) is
allowed with a bipolar gradient, and the technique enables
proton velocities to be replaced by signal intensities of phase
proportional to the velocity on a PC. Triggered by electro-
cardiography (ECG), time-resolved velocimetry is also
available at each cardiac phase. Regarding spatial encoding,
2D PC MRI has been the workhorse for in vivo velocity data
collection for decades. ECG gated 2D cine PC MRI has been
used for cardiac phase-resolved investigation.1–9

Despite its availabilities, 2D cine PC MRI has not been
widely used in day-to-day clinical practice. One of the rea-
sons is its cumbersome flowmetry, what may be called a
prospective flowmetry. The determination of measurement

plane setting should be concluded, while patients are within
the MR scanner. The operators cannot terminate the exam-
ination until they are confident that the measured flowmetry
values are reasonable. Another reason is its limited spatial
resolution in the z-axis of 2D Fourier transform (FT).
Although there is much hemodynamic information with
physiological significance, a 3D view of arbitrary multi-
section is essential to convey it to the clinician in an under-
standable form. However, 2D FT requires multiple postpro-
cessing across multiple non-negligibly thick slices with
interslice gaps, as well as setting every measurement section.

To solve these drawbacks in the 2D PC method, 3D cine
PC MRI has been the natural development alternatives. If
3D cine PC is available, the data are acquired en-bloc
during a specific period; therefore, the flow measurements
can be performed after patients leave the MR scanner room.
This strategy could be termed as a retrospective flowmetry.
Time-resolved 3D data acquisitions in velocimetry can
maximize the practical usefulness and abilities in postpro-
cessing en-bloc velocity data. When the temporal and spa-
tial information in velocimetry is available, numerous
postprocessings that expand the physiological and clinical
understandings of the cardiovascular physiologies and
pathologies are available. However, the time-resolved 3D
velocimetry had required an unacceptably long scan time,
such as one hour or longer, which had not been clinically
viable.

With the aid of hardware and software developments in
high-speed data acquisitions, 3D cine PC MRI, or so-called
4D flow MRI has enabled the strategy clinically viable. 4D
flow is a method that allows the most efficient cardiac phase-
resolved data acquisitions in the whole 3D FOV.10–16 4D
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flow MRI to maximize the efficiencies in data acquisition,
retrospective ECG gating, interleaved acquisitions with
appropriate K-space data segmentation, efficient excitations.
TR and TE can be set shorter than 2D cine PC MRI, it allows
data acquisitions with more minor errors in velocimetry of
the accelerated fluid movement.

Even if very accurate velocity data with the spatial and
temporal information are available in hemodynamic analy-
sis, clinical usefulness is limited if it is not convincingly
presented to the clinicians. Therefore, it has been essential
to develop the dedicated flow analysis software equipped
with various visually appealing 3D options, such as stream-
line, pathline, wall shear stress (WSS), oscillatory shear
index (OSI), and energy loss (EL) (Fig. 1). These parameters
have not been readily available until 3D spatial (particularly
concerning WSS) and temporal data (particularly concerning
pathline and OSI) components have been provided by 4D
flow MRI.

Scanning Technique

The PC flowmetry is characterized by a bipolar gradient,
i.e., a pair of positive and negative gradients of equiva-
lent strength. The amount of phase shift varies in propor-
tional to the velocity of the measured protons and the
intensity of the bipolar gradients VENC (Fig. 2). ECG
triggering is used to cover variable velocities related to
the cardiac phase.

In terms of imaging time, other methods have not
enabled clinically viable 3D cine PC MRI before 4D flow
method innovated by Markl et al.13,14 The K-space data are
acquired in 3D Fourier transformation; therefore, it allows a
high SNR. While encoding in the slice and phase directions
using short TRs and TEs, bipolar gradient almost simulta-
neously encodes x-, y-, and z-phase shifts. The use of short
TR and TE also allows for accurate data collections for
accelerating fluids. 4D flow MRI also allows for K-space
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Fig. 1 Representative flow analysis with data obtained by 4D flow MRI of Cartesian data sampling for AAA. a) Streamline image at systole
shows a vortex flow (arrow in a) in the aortic aneurysm. b) Streamline image at diastolic phase. The vortex flow (arrow in b) is still evident
within AAA. c) WSS image at systole shows a low value (arrow in c) of the AAA wall. d) WSS image at diastole shows a low value (arrow in
d) of the AAA wall. e) EL image at systole and f) at diastole shows an increased EL (arrow in e and f) at both phases within the AAA. g) OSI
image shows an elevated value on the right side of the AAA. AAA, abdominal aortic aneurysm; EL, energy loss; OSI, oscillatory shear index;
WSS, wall shear stress.
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data segmentation (Fig. 3) and parallel imaging techniques
or compressed sensing (CS), further reducing imaging time.

Performing the subtraction on the K-space and after FT,
the real data as phase images and magnitude images are
available for each cardiac cycle (Fig. 2).

K-space data trajectory
The trajectory for K-space data filling with Markl’s 4D
flow has been Cartesian linear data filling. On the other
hand, PC vastly undersampled isotropic projection recon-
struction (PC-VIPR) is a radial data filling trajectory that

fills the K-space like a kooshball (Fig. 4). The significant
advantages of PC-VIPR include high spatial resolution of
isotropic voxels and a large FOV.17,18 The Cartesian data
acquisition is characterized by velocity encoding by bipo-
lar gradient in three directions (x, y, and z) while encod-
ing in slice and phase directions. Radial acquisition
requires no slice encoding, The average addition effect
by filling the k space center repeatedly, and its short
readout time help minimizes TE, thereby avoiding phase
shifts other than the proton movement of the velocity.19

The radial sampling in PC-VIPR makes the sequence
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Fig. 2 Schematic illustration for Cartesian 4D flow MRI in the abdomen. Four sets of velocity data are collected for each time frame
to measure 3D velocity encoding (Vx, Vy, and Vz). The refore, using the shortest TR, has a positive impact on speeding up the 4D
flow MRI. ECG, electrocardiogram; F.T, fourier transform.
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highly resistant to bulk motion and susceptibility arti-
facts. Furthermore, the undersampled components of the
higher frequency are suitable for the subtraction of sta-
tionary tissue. Although streak artifacts occur, they are
mitigated by the high contrast and sparse signal distribu-
tion between vessels and tissue (Fig. 5).19

TR
Similar to other MRI, the length of the TR affects temporal
resolution. Since standard 4D flow MRI employs four sets of
TR for velocity encoding, the length of the TR has a parti-
cular impact on the overall imaging time. Therefore, the TR
should have a minimum value.

TE
The use of minimum value for TE is essential for avoiding
intravoxel phase shifts. A shown below, an increase in TE
significantly affects the SNR; therefore, it degrades the velo-
city-to-noise ratio (VNR) on PC image.

VENC
When the VENC setting is lower than the maximum flow
velocity value of the target vessel, the velocity will be
aliased, causing an error in the flow velocity measurement.

However, it is not easy to predict the highest blood velocity
in an entire field of interest. For example, in healthy circula-
tions, the aorta is the highest velocity; however, in the patho-
logical status, such as with narrowed segments, the jet flow
may coexist where the velocity is extremely high, which is
even higher than that of the aorta.

Setting the optimum VENC in PC study enables data
with high accuracy and precision by reducing the noise.
VNR can be calculated as follows: which can be reduced
by increasing the SNR of the PC image and by setting
as low as possible VENC within the range not exceeding
the maximum flow velocity value in the field of
interest.3

VNR ¼ SNR πV=VENCð Þ [1]20

where VENC is the velocity corresponding to a phase shift of
π, V is the measured velocity component.

Dual VENC
As stated above, according to the equation of VNR, velocity
noise can be reduced by using higher SNR PC images,
which is enabled by the hardware (i.e., magnetic field
strength or coils) to some extent. In addition, VENC should
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Fig. 3 Examples of the partial sampling of K-space, a) complete sampling of K-space data (100% sampling), b) fractional sampling of K-
space data on Kz (67% sampling in Asymmetric), and c) undersampling of Ky-Kz corners (Shaving the octagonal shape corners of K space
results in 78% sampling). There is no noticeable difference in the streamline analysis results between the three types of data acquisition. d)
complete sampling of K-space data (100% sampling), e) fractional sampling of K-space data on Kz (67% sampling in Asymmetric), and f)
undersampling of Ky-Kz corners Shaving the octagonal shape corners of K space results in 78% sampling).
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be set to the lowest possible level not to induce aliasing.
Since VENC obtains the velocity information from the
phase difference of spins, it is necessary to set the max-
imum velocity value corresponding to the phase difference.
It is, therefore, essential to determine the target vessels.
Since flow velocities in the tissues are not homogeneous,
it is challenging to set the VENC just right for all blood
flows.

The dual-VENC method provides two VENC settings,
one for the highest velocity and the other for the lowest
velocity. Dual VENC enables simultaneous acquisitions

of high-velocity and low-velocity components of the flow
in the same FOV in a single imaging session19,21,22

(Figs. 6 and 7). Dual VENC contributes to the improve-
ment of VNR in the show blood flow component com-
pared to single VENC (even if it is assumed to be 2
number of excitations [NEX]). It improves the accuracy
in measuring slow blood vessels, near vessel walls, and
slow blood flow velocity components during diastole.
However, drawbacks should be considered: the extension
of 4 TR of single VENC to 7 TR of dual VENC may
decrease temporal resolution and misregistrations.
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Fig. 4 In 3D radial acquisitions, every acquired k-space line traverses through the center of k-space; therefore, higher signal is expected.
With radial undersampling, scan time is reduced at the expense of streak-like artifacts and a reduced SNR, while spatial resolution is
preserved. The pulse sequence diagram shows no traditional readout gradient, phase-encoding gradient, and slice-encoding gradient in a
radial acquisition. ECG, electrocardiogram; F.T, fourier transform.
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Contrast administration
The easiest extrinsic way to increase SNR on PC is to take
advantage of the T1 shortening effect of contrast media.
When contrast-enhanced MRA is scheduled in the MR
examination menu, the 4D Flow is advised to be performed
after the contrast administration. Since short TR fast spoiled
gradient echo is incorporated into the pulse sequence of 4D
Flow, VNR on the 4D flow MRI is considerably improved
with the T1 shortening effect of the blood after the adminis-
tration of gadolinium chelate.15 However, the imaging para-
meters need to be optimized by increasing the flip angle.

High-speed Scanning

The drawbacks of 4D flow in clinical practice are the long
imaging time, relatively low spatial resolution, and the sig-
nificant effect of motion artifacts. To solve these problems,
high-speed imaging techniques should be employed.
However, speeding up in MRI has to be done with care
because, in most cases, there is a dilemma of SNR, and spatial
and temporal resolution degradation concerning the speed up
of 4D flowMRI. The following is a list of high-speed imaging
techniques that are currently available for 4D flow.

Number of views per segment (NVS)
During each heartbeat, while the R-R interval of the cardiac
cycle is divided into multiple cine frames, only a K-space
segment is collected over the duration of each cine frame.
The number of lines of K-space acquired throughout a cine
frame is termed as the number of views per segment or
simply as the views per segment. The views per segment
multiplied by TR equals the duration of the cine frame. When
multiple lines of K-space are collected per R-R interval, the
imaging time decreases by a factor of NVS.23

Partial sampling of K-space data
Since high-frequency components have relatively little effect
on the fundamental image contrast, the high-frequency

components of the K-space data can be undersampled. This
method includes asymmetric undersampling using
Conjugate symmetry of K-space (Fig. 3b) and Ky-Kz octa-
gonal undersampling (Fig. 3c).

Parallel imaging
Parallel imaging, such as sensitivity encoding (SENSE),
simultaneous acquisition of spatial harmonics (SMASH),
and generalized autocalibrating partial parallel acquisition
(GRAPPA), is a technique that can be used to measure the
spatial harmonics of an image. Parallel imaging deliberately
applies a small amount of phase sampling data to speed up
the data sampling and takes advantage of the fact that the
sensitivity distribution provided by multiple RF coils
(phased-array coils) differs spatially, expands the folded
signals, and reconstructs the image by accurately restoring
the omitted sampling. Since the number of phase sampling is
reduced, this method considerably shortens the imaging
time. However, it is necessary to pay attention to the decrease
in SNR due to reducing phase sampling.24,25 The SNR of
parallel imaging degrades depending on the geometric factor
related to coil arrangements and on the square root of the
reduction factor.26

Sparse imaging using time and spatial components
Sparse imaging using time and spatial components, such as
k-and adaptive-t auto-calibrating reconstruction for Cartesian
sampling (kat ARC), k-t SENSE, and k-t GRAPPA, improves
time resolution.

For significantly shorten the imaging time, undersampling
of k-space over time in the main acquisition process (sparse
imaging). The cardiac motion can be estimated from the low-
frequency data of each segment. Based on the heartbeats, the
data can be collected more densely during systole, where
movement is more significant than in the diastole. Combining
spatial-temporal data into the k-t axis can efficiently fill the
uncollected points and finally reconstruct the image. The
technique is already applicable to 4D flow MRI.27,28 It has

a b c

Fig. 5 Three types of flow analysis postprocessed using velocity data acquired with PC-VIPR overlapped on MR angiography of the right
internal carotid artery and anterior and middle cerebral artery. a) streamline image, b) wall shear stress image, c) OSI image. PC-VIPR,
phase-contrast vastly undersampled isotropic projection reconstruction; OSI, oscillatory shear index.
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the advantage of less SNR degradation even when a signifi-
cant reduction factor is used (Fig. 8).29–33

Compressed Sensing
CS is a signal recovery theory enabling image reconstruction
from fewer sampled signals. According to the recently devel-
oped mathematical theory of CS, images with a sparse repre-
sentation can be recovered from randomly undersampled
k-space data. The artifacts due to random undersampling
overlap as similar to noise; however, significant signals
stand out above the noise with iterative reconstruction
using suitable regularization parameter. CS can considerably
shorten imaging time by changing the imaging sequence and

algorithm for image reconstruction without using additional
hardware for MRI. The image restoration from sparse signal
sampling in CS depends on the two assumptions, i.e.,
the sparsity and the incoherence.34,35 Deep learning utilizing
CNN for reconstruction from a randomly undersampled
signal; the images obtained from the CNN are used as a
constrained reconstruction model in conventional CS iterative
reconstruction.36,37 The use of CNN and CS for 4D flow MRI
is still underway. The scan time can be considerably shor-
tened; however, potential hemodynamic underestimation (i.e.,
7%–10% underestimation of maximum velocity, maximum
flow or net flow) should be considered when interpreting the
results.
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Fig. 6 An example of the use of dual VENC for 4D flow MRI. Upper row: Low VENC:50 cm/sec, lower row: high VENC: 150 cm/sec.
Optimization of VENC is essential for high-velocity noise ratio image on 4D flow MRI. Lower VENC (upper row) is appropriate for the
venous system and the pulmonary circulation, where the blood flow velocities are relatively low. Note higher VENC depicts un-aliasing on
the high-velocity aortic blood flow. All images are at systole. a) 3D vector field map postprocessed using low VENC data acquisition, b)
streamline image with low VENC, c) WSS map with low VENC, d) 3D vector field map of with high VENC, e) streamline image with high
VENC, f) WSS with high VENC. VENC, velocity encoding; WSS, wall shear stress.
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Echo planner imaging
EPI employs gradient switching for the echo sampling, which
can be incorporated into 4D flow MR data acquisition. EPI
reduces imaging time and may ensure quality by reducing
motion-related artifacts, such as breathing, due to the fast data
sampling.38–40 However, when using large EPI factors, caution
should be exercised as phase shifts during data acquisition may
cause velocity shifts and resolution loss.41

Postprocessing

Streamline analysis
Streamline refers to a continuous curve connecting velo-
city vectors at a specific time. The flow diagram is
drawn for each phase of the cardiac cycle and the
color-coded blood flow velocity. Non-laminar flow
such as vortex or helical flow can be visually observed
with streamline analysis (Figs. 1a, 1b, 5a, 6b, 6e, 7c, 7g,
and 8a–8d).42

Pathline analysis
The pathline is the path of blood or fluid that travels over a
certain period of time, which are the trajectories that indivi-
dual fluid particles follow. The streamlines of the fluid will
determine the direction the path takes at each moment in
time.

WSS
WSS is the frictional force caused by viscous blood flowing
along the vessel wall.43 This value can be calculated as the
product of the ratio of the velocity component dv along the
vessel wall at a small distance dx from the vessel wall (shear
rate: dv/dx) and the blood viscosity.

WSS ¼ ðμÞ � dv=dx [2]44

where μ is the viscosity, dv is the velocity, and dx is the
shortest distance from the measuring point to the vas-
cular wall.
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Fig. 7 The use of dual VENC for simultaneous velocity acquisitions for the arterial and portal venous system for 4D flow MRI. Upper row:
low VENC (50 cm/sec) for slow flow of the portal venous system, Lower row: High VENC (150 cm/sec) for the higher flow velocity of the
arterial system. The patient is suffering from occlusion of the celiac artery. Note markedly dilated pancreaticoduodenal arcade. a) Portal
MRAwith low VENC, b) 3D vector field map with low VENC, c) streamline image with low VENC, d) WSS image with low VENC, e) MRA of
the collateral arteries with high VENC, f) 3D vector field map with high VENC. Note that the flow vectors within the aorta are not aliased. g)
streamline image with high VENC, h) WSS with high VENC on abdomen aorta. MRA, MR angiography; VENC, velocity encoding; WSS,
wall shear stress.
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For vessel integrities, a certain amount of WSS must be
maintained against the vessel endothelium. As a mechanor-
eceptor, vascular endothelium detects WSS, and when WSS
is inappropriately high or low, the endothelium releases sub-
stances to promote atherosclerosis (Figs. 1c, 1d, 5d, 6c, 6f,
7d, and 7h). The value of WSS suggests future
atherosclerosis,12 which may predict vascular diseases.

Energy loss
In the human body, energy dissipation occurs due to viscous
friction in some blood vessels and the heart. Determining the
velocity and the coordinate points, EL is defined using the
first spatial differentials of the velocity vector components:

EL ¼
X

ij

ð
1

2
μ

@Ui

@xj
þ @Uj

@xi

� �2

dV [3]45

where μ is the viscosity, U is the velocity, and x is the
coordinate.

4D flow MRI enables 3D velocimetry in each voxel
within the entire FOV in a cardiac phase-resolved fashion
(Fig. 1e and 1f).

When this flow EL is more significant, extra energy is
required to pump blood throughout the body, and the afterload

on the heart increases. In recent studies, it has been used as an
index to evaluate various cardiac workloads, such as the effect
of blood flow EL on survival in valvular heart disease,46 the
fact that cumulative EL increases the risk of future heart fail-
ure in pediatric congenital heart disease,47 and an index to
evaluate cardiac load in dilated cardiomyopathy.48

The usual EL (total pressure loss × flow rate) cannot be
calculated without the total pressure data. However, it is
possible to calculate the EL using the information (vector)
of blood viscosity and flow velocity field.

Turbulent kinetic energy (TKE)
TKE is supposed to calculate the value of EL associated
with turbulence. In practice, the intra-voxel standard devia-
tion (IVSD) is calculated and quantified from the signal
difference between the PC images under the velocity con-
trol based on the relationship between the velocity distribu-
tion in the voxel and the PC MRI signal. To accurately
quantify IVSD, two or more magnitude images with differ-
ent VENCs are required to prevent aliasing, which can be
efficiently obtained by dual-NENC imaging as described
above.44 TKE has been reported to be helpful in assessing
the severity of disease in aortic stenosis49,50 and
cardiomyopathy.51,52
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Conclusion

4D flow MRI provides useful hemodynamic information on
many clinical occasions. Various available hemodynamic
parameters can provide vital information concerning hemo-
dynamic disorders, the severity, and the treatment outcomes
estimated quantitatively. We need to optimize the imaging
parameter settings and high-speed and high VNR method
enabling this purpose.
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