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MEDICAL IMAGING
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Abstract
Introduction: To explore and evaluate the performance of MRI-based brain
tumor super-resolution generative adversarial network (MRBT-SR-GAN) for
improving the MRI image resolution in brain tumors.
Methods: A total of 237 patients from December 2018 and April 2020 with T2-
fluid attenuated inversion recovery (FLAIR) MR images (one image per patient)
were included in the present research to form the super-resolution MR dataset.
The MRBT-SR-GAN was modified from the enhanced super-resolution gen-
erative adversarial networks (ESRGAN) architecture, which could effectively
recover high-resolution MRI images while retaining the quality of the images.
The T2-FLAIR images from the brain tumor segmentation (BRATS) dataset
were used to evaluate the performance of MRBT-SR-GAN contributed to the
BRATS task.
Results: The super-resolution T2-FLAIR images yielded a 0.062 dice ratio
improvement from 0.724 to 0.786 compared with the original low-resolution
T2-FLAIR images, indicating the robustness of MRBT-SR-GAN in providing
more substantial supervision for intensity consistency and texture recovery of
the MRI images. The MRBT-SR-GAN was also modified and generalized to
perform slice interpolation and other tasks.
Conclusions: MRBT-SR-GAN exhibited great potential in the early detection
and accurate evaluation of the recurrence and prognosis of brain tumors,which
could be employed in brain tumor surgery planning and navigation. In addition,
this technique renders precise radiotherapy possible. The design paradigm of
the MRBT-SR-GAN neural network may be applied for medical image super-
resolution in other diseases with different modalities as well.
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1 INTRODUCTION

Gliomas are the most frequently occurring primary
malignant tumors of the brain and the central nervous
system in adults.1 Accurate diagnosis and an effec-
tive therapeutic strategy are the most relevant factors
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on the prognosis in the event of gliomas.2,3 Surgery
and chemotherapy are the most common treatment
approaches for brain tumors such as gliomas.4 In recent
years, novel surgery methods, including gamma knife
radiosurgery,5 and accurate radiotherapy, have resulted
in a better prognosis of gliomas.6 Stereotactic radiother-
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apy (SRT) is becoming increasingly popular in treating
brain tumors against whole-brain radiotherapy, which
benefits from efficient local control.7 A previous study
conducted by our research group8 showed that the
degree of surgical excision and precise radiotherapy
were identified as the effective therapeutic factors affect-
ing the prognosis of glioma patients. A high degree
of surgical excision is also beneficial to precise radio-
therapy. High-resolution MRI images bring accuracy in
detection and segmentation of tumor region, which is
necessary for the clinical management of surgery and
SRT.9

In recent years, it has been demonstrated that deep
learning models are capable of accurate, efficient, and
automatic segmentation of brain tumors from MRI
images, which would have enormous potential value
for improved diagnosis, treatment plan, surgery plan, or
SRT.10 With the release of the brain tumor segmentation
(BRATS) dataset, various deep learning models were
developed to segment brain tumors. Pereira et al.11 pro-
posed the automatic segmentation method based on the
convolutional neural networks (CNNs) for glioma seg-
mentation. Dong et al.12 proposed the UNet-based fully
connected CNNs for BRATS. UNet has now become
the prominent architecture for medical image segmen-
tation. Considering the MRI images as stacked images
that could be treated as three-dimensional volume data,
the three-dimensional convolution networks (3D-CNNs)
were proposed to improve segmentation accuracy. Baid
et al.13 combined the 3D-CNNs with the UNet and
proposed the 3D-UNet for achieving the higher accu-
racy of BRATS using the BRATS dataset.Subsequently,
several modifications of the 3D-UNet were proposed,
such as cascaded 3D-UNet,14 separable 3D-UNet,15

and 3D-UNet with the focal loss,16 which further demon-
strated the potential of neural networks. Xue et al.9

built a brain metastases (BM) segmentation dataset
comprising 1652 patients and proposed the 3D fully
connected CNNs (3D-FCN) for the segmentation and
analysis of BM in the MRI images. The segmenta-
tion dice ratio reached 0.85 ± 0.08 for total tumor
volume.

However, the MRI data is acquired with a finite res-
olution because of several limiting factors, such as the
partial volume effect (PVE),hardware, imaging time,and
so forth.17 MRI super-resolution reconstruction is crucial
to the diagnosis and segmentation of gliomas. Several
algorithms have been proposed previously to deal with
the problem of recovering high-resolution MRI images.18

A few examples of common MRI image super-resolution
methods are diffusion tensor imaging,19 subpixel shifted
method,20 inter-slice reconstruction,21 self -similarity,
and image priors.22 In recent years,deep learning meth-
ods have demonstrated relatively better performance in
MRI image super-resolution than the traditional image
processing methods. Wang et al.17 proposed a spare

representation-based learning method for MRI super-
resolution reconstruction, while Sert et al.23 proposed a
residual network (ResNet)25 architecture based super-
resolution network for MRI reconstruction and evaluated
its performance in BRATS to prove the effectiveness
of super-resolution reconstruction. However, ResNet is
trained using the ImageNet dataset,24 which is a natural
color image dataset; indicating that the input required for
the super-resolution neural network must be grayscale
images with only 256 color scales rather than the origi-
nal MRI image in Dicom format, which would imply loss
of image information. 3D CNN methods using Dicom
formatted MRI images are proposed for MRI super-
resolution.26,27 However, in contrast to CT imaging,small
slice thickness in MRI imaging usually implies a long
scan time. In the MRI images of gliomas, slice thick-
ness is generally greater than 5 mm. The performance
of 3D CNNs is generally poor in the case of large slice
thickness.

Wang et al.28 proposed the enhanced super-
resolution generative adversarial networks (ESRGAN)
for single image super-resolution (SISR), which
achieved the best performance and won first place
in the PRIM2018-SR challenge.29 The proposed per-
ceptual loss enables the ESRGAN network to generate
realistic textures. In ESRGAN, the perceptual loss is
calculated using the visual geometry group (VGG) fea-
tures before the activation layer,30 which is fine-tuned
for material recognition.31 However, the medical image
data collection and annotation work require profes-
sional knowledge,32 which makes it challenging to train
an appropriate pre-trained deep learning model to cal-
culate the perceptual loss. Therefore, according to our
knowledge,no previous study has adopted the ESRGAN
architecture for medical image super-resolution.

Intending to overcome the above-stated challenges,
the present research proposes a novel paradigm for
designing super-resolution deep neural networks for
medical images. In the present research, several MRI
T2-fluid attenuated inversion recovery (FLAIR) brain
tumor images were annotated and combined with the
BRATS dataset to develop a new BRATS dataset. A
UNet network is trained using the segmentation dataset.
The UNet architecture comprises feature extraction
(encoding) part and feature fusion (decoding) part.33

The output of the feature extraction part was utilized
to calculate the perceptual loss. Moreover, long-range
identity mapping and skip connections were added
to the ESRGAN network architecture. The percep-
tual loss and the network architecture were combined
to form the MRBT-SR-GAN for super-resolution of
brain tumor MRI T2-FLAIR images. In this paradigm,
the specific application-oriented medical image super-
resolution neural network could achieve the state-of -
the-art by means of the UNet model trained with another
modality/disease.
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F IGURE 1 Structure of residual-in-residual dense block

2 METHODS

2.1 Study populations and MRI
acquisitions

The institutional review board approved the present
study of our hospital. All the experiments were per-
formed in compliance with the Declaration of Helsinki.
Written informed consent was obtained from each par-
ticipating patient. Between December 2018 and April
2020, the data of 237 patients with gliomas were retro-
spectively collected. All these patients were examined
in our hospital using 3.0T MRI machines with dif-
ferent slice thicknesses. Among the MRI images of
237 patients, 167 cases had a slice thickness of 1
mm, while the remaining cases had a slice thickness
of 5 mm.

2.2 Dataset preparation

A total of 76 cases were selected randomly. Man-
ual segmentation of tumor on T2-FLAIR was per-
formed by one neuroradiologist and one radiation
oncologist. The noncommercial software itk-SNAP (ver-
sion 3.8.0; http://www.itksnap.org/pmwiki/pmwiki.php?
n=Downloads.SNAP3) was employed to label the tumor
region, slice by slice manually.

2.3 MRBT-SR-GAN architecture

MRBT-SR-GAN28 is a compelling image super-
resolution neural network. Ideas were borrowed from
ESRGAN, and some modifications were incorporated
into the architecture.

2.3.1 Architecture of generator

The residual-in-residual dense block (RRDB) (depicted
in Figure 1) proposed in ESRGAN is the basic residual
block used in the generator architecture in MRBT-SR-
GAN.34 The residual scaling technique and the smaller
initialization technique were used to facilitate the training
of the MRBT-SR generator.35

In comparison to the ESRGAN, the generator of
MRBT-SR-GAN comprised four main components
(Figure 2): (1) header convolution part, (2) high-
resolution path, (3) low-resolution path, (4) tail convo-
lution part. The header convolution part was used to
fuse and expand the feature dimensions of the input
images. The high-resolution path was used to main-
tain the high-level structure of the input images and
prevent training instability. The low-resolution path was
used to obtain richer details and low-level texture of
the input images. The tail convolution part was used
to fuse the high-level and low-level structures and gen-
erate the output, which was the final super-resolution
image with the desired channel. Each part of the four
components could be modified to obtain better super-
resolution results or enable the MRBT-SR GAN to adapt
to a more significant number of applications scenes,
such as slice interpolation. Further discussion on this
could be obtained in the Results section.

2.3.2 Perceptual loss

Johnson et al.36 proposed perceptual loss to achieve
closer perceptual similarity. Perceptual loss is defined
as the output features of a pre-trained deep network. In
SRGAN, the VGG network is used to calculate the per-
ceptual loss.37 In ESRGAN, the perceptual loss is based
on the features before the activation layers of a fine-
tuned VGG network for material recognition.31 However,
the VGG network, ResNet,25 Inception network,34 and
the other networks that may be used to calculate the per-
ceptual loss are all trained using natural image datasets.
In medical image processing, the image features are
different for different modalities,38 such as computed
tomography (CT) images, magnetic resonance (MR) T1
images,MR T2 fast spin echo (FSE) images,and MR T2
FLAIR images. It is difficult to identify a common network
that would serve as perceptual loss for medical image
super-resolution between CT and MR images.

The FCN39 and the derived UNet are neural network
structures commonly employed in medical image seg-
mentation tasks. The architecture of UNet comprises
the encoder and decoder parts.While the encoder parts
learn a hierarchy of features, decoder parts fuse the
high-level features with low-level features and generate

http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3
http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3
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F IGURE 2 Results of super-resolution methods: (a) structure of generator of MRI-based brain tumor super-resolution generative
adversarial network and (b) structure of upsample block in generator

F IGURE 3 Structure of UNet: (a) structure of UNet; 32-channel Conv implies a convolution layer with 32 output channels; final Conv block
contains only the convolution layer, (b) structure of UNet used for calculating perceptual loss: 256-channel Conv block contains only the
convolution layer, and removes the LeakyReLU and Batchnorm. Figure 3b is the encoding part of Figure 3a, which is extracted for UNet as the
perceptual loss of MRI-based brain tumor super-resolution generative adversarial network

segmentation predictions. In MRBT-SR-GAN, a 2D-
UNet (Figure 3) was trained using the T2-FLAIR images
in BRATS dataset.10 Since the images in the BRATS
dataset have a low resolution (width 240, height 240)
and was preprocessed (bone subtraction, resampling),
the 2D-UNet was fine-tuned with our manually seg-
mented MR T2-FLAIR images (resolution:512 × 512) of
the 76 patients who were diagnosed with gliomas. The
perceptual loss was defined as the features of stage 4
in the pre-trained UNet (Figure 3).

2.3.3 Architecture of discriminator

The architecture of the discriminator was similar to that
of ESRGAN. The relativistic average discriminator ()
was used to estimate the probability that a particular

F IGURE 4 The relativistic average discriminator estimates the
probability that the input data is real

input image is real.The relativistic average discriminator
is depicted in Figure 4.

The relativistic average discriminator () is formulated
as:

The adversarial loss for the generator is in a symmet-
rical form, as follows:
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F IGURE 5 A standard GAN contains a generator and
discriminator. It is the structure of discriminator of MRI-based brain
tumor super-resolution generative adversarial network

This kind of discriminator assists in learn-
ing sharper edges and further detailed
textures.28

The structure of the discriminator is a VGG-like deep
neural network (Figure 5).

Therefore, the total loss for the generator is:

where, is the content loss or pixel loss that
evaluates the L1-norm distance between
the generated image and the ground-truth
high-resolution image, and are the coeffi-
cients used for balancing the different loss
terms.

2.4 Statistical analysis and quantitative
performance measures

To quantitatively evaluate the performance of the super-
resolution of MRI T2 FLAIR images, the following three
metrics were used for comparing the reconstructed
images with the original ones:

Root mean square error (RMSE) which quantified the
pixel intensity differences between the generated high-
resolution images and the ground-truth high-resolution
images, using the following equation:

where, denotes the foreground regions
(brain regions), and RISE denote the image
intensities in the foreground regions of the
generated high-resolution images and the
ground-truth high-resolution image, respec-
tively. We use the skull-stripping filter of ITK

to extract the brain region. Lower RMSE
means better super-resolution performance.

Peak signal-to-noise ratio (PSNR), which measured
the reconstruction accuracy, expressed the logarithmic
decibel scale. The PSNR was calculated as follows:

Normal Range of PSNR is 20 dB to 50
dB.Higher PSNR values representing better
performance.

Structural similarity index (SSIM)40 measured the
similarity between two images.The default settings of k1
and k2 in tensorflow and pytorch deep learning frame-
work is 0.01 and 0.03.41 The SSIM was calculated using
the following equation:

where and denote the mean values of
the generated high-resolution images and
the realistic high-resolution images, respec-
tively, and denote the standard deviation
of and, respectively, represents the covari-
ance of, and (L being the maximum intensity
value; and). The resultant SSIM index was
a decimal value within the range of −1 to 1,
where 1 was reachable only in the case of
two identical images. A higher SSIM value
means better super-resolution performance.

To evaluate the improved performance of automatic
BRATS with the application of MRBT-SR-GAN, the
metrics of dice ratio,41 specificity, and sensitivity were
calculated to evaluate the accuracy of the segmen-
tation. The definitions of these metrics are provided
below.

where, and represent ground-truth segmen-
tation and automatic segmentation, respec-
tively, and denotes the overlap of and. The
TP score was the number of tumor pix-
els correctly identified as tumor pixels. The
false positive (FP) score was the number
of non-tumor pixels incorrectly identified as
tumor pixels. The TN score was the num-
ber of background pixels that were correctly
identified as background pixels. The false-
negative (FN) score was the number of
non-background pixels incorrectly identified
as background pixels.

2.5 Implementation details

2.5.1 Data processing

Each input axial slice of an MRI T2 FLAIR image
was normalized through the following steps: (1) the
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mean intensity value and the standard deviation of
the foreground pixels were calculated, (2) the inten-
sity value was subtracted by mean intensity value, and
then divided by the standard deviation value for each
pixel (including the background pixels),and (3) the high-
resolution normalized images were downsampled by a
scaling factor of four using the MATLAB bicubic kernel
function.

The MRI T2 FLAIR images of 100 unlabeled cases
diagnosed with gliomas were used to form the train-
ing and test datasets. The training dataset comprised
70 cases (40 cases with 1 mm slice thickness and
30 cases with 5 mm slice thickness). The test dataset
comprised 30 cases (10 cases with 1 mm slice
thickness and 20 cases with 5 mm slice thickness).
Each sample contained a pair of normalization low
resolution (LR) images (128 × 128 resolution) and
normalization high (H) resolution image (512 × 512
resolution).

In addition, the MRI T2 FLAIR images from the
BRATS dataset were normalized to form the expended
dataset. Each dataset sample contained one pair of
normalization LR images (60 × 60 resolution) and
non-normalized high-resolution image (240 × 240
resolution).

2.5.2 Training settings

Our MRBT-SR-GAN was implemented based on the
Pytorch open-source framework on two Nvidia Titan
Xp GPUs with a total memory of 24 GB. The train-
ing process involved the following two steps: (1) a
PSNR-oriented model with L1 loss was trained using
the images from the expended dataset, which implied
that the parameters were set to zero or one with
the formulation. The model was trained through the
Adam algorithm, with the initialized learning rate of
2e−4 was decayed by a factor of 2 every 30 epochs.
The training process comprised 120 epochs in total.
(2) Next, training the MRBT-SR-GAN model using the
training dataset, the trained PSNR-oriented model was
employed to initialize the generator. The generator
was trained at the following parameter settings: 1e−1 :
1e−4 : 1. The training process comprised 150 epochs,
with the initialized learning rate of 1e−4, which was
decayed by a factor of 2 every 50 epochs. The test
dataset was used to evaluate the performance of the
super-resolution.

2.5.3 UNet training settings

A 2D UNet based on the BRATS dataset was trained
and finetuned using our manually segmented MRI T2
FLAIR images of 76 patients. The binary cross-entropy

loss and the dice loss were combined as the training loss
for the 2D-UNet.The UNet was also implemented based
on Pytorch open-source framework and trained on two
Nvidia Titan Xp GPUs with a total memory of 24 GB.The
training process comprised of 60 epochs in total. The
initialized learning rate was 1e−3 and was decayed by a
factor of 5 every 20 epochs. The Adam algorithm was
used for the UNet. The perceptual loss is defined as the
output features of stage 1 to stage 4 in the pre-trained
2D UNet.

3 RESULTS

3.1 Super-resolution experiment

The super-resolution neural network proposed in the
present study was compared to the approaches by
Pham et al., Chen et al., Rueda et al., and Li
et al.26,27,42,43 The results for the performance of super-
resolution approaches are presented in Table 1 and
Figure 6. As depicted in Figure 6, the 4× downsampled
image was upsampled using all of the proposed meth-
ods. The performance of MRBT-SR-GAN exceeded
the performance of all the other methods. The MRBT
architecture with the UNet features as perceptual loss
presented better super-resolution quality evaluated with
RMSE, PSNR, and SSIM performance metrics. The
MRBT architecture with stage 4 in the pretrained
finetuned UNet as the perceptual loss has the best
evaluation results.

3.2 Exploration of the MRBT-SR
generator structure

The tail convolution part was used to reduce the
feature channels and generate the final predicted
super-resolution results. The function of the high-
resolution path and low-resolution path was explored
in detail by abandoning another path. In the con-
cat layer of the tail convolution part, zero tensor was
used to replace the outputs of the high-resolution
path or those of the low-resolution path. The struc-
tures of the proposed experimental neural networks and
the predicted super-resolution results are depicted in
Figure 7. As depicted in Figure 7, the high-resolution
part outputs the principal part of the original image
with smoother edges and textures with high fidelity.
In comparison, the low-resolution part outputs refined
sharper edges and detailed textures. Combination of
high-res path and low-res path enabled the proposed
MRBT-SR-GAN to generate high fidelity images with
detailed textures.This exploration demonstrated that the
proposed MRBT-SR-GAN has better explanation and
robustness.



ZHOU ET AL. 7 of 13

TABLE 1 Comparison of bicubic, overcomplete dictionaries, MRBT-SR-without perceptual loss, MRBT-SR-with perceptual loss on
benchmark data

RMSE
(Mean ± STD)

PSNR (dB)
(Mean ± STD)

SSIM
(Mean ± STD)

Bicubic upsampling 14.29 ± 1.16 25.13 ± 1.00 0.921 ± 0.015

Overcomplete dictionaries 11.52 ± 1.81 27.00 ± 1.95 0.969 ± 0.018

ESRGAN 11.41 ± 1.03 27.09 ± 1.11 0.972 ± 0.011

MRBT-SR-with VGG perceptual loss 9.91 ± 1.07 28.31 ± 1.33 0.970 ± 0.011

MRBT-SR-without perceptual loss 8.85 ± 0.53 29.29 ± 0.74 0.981 ± 0.007

MRBT-SR-with perceptual loss (Stage 1) 8.82 ± 0.998 29.32 ± 1.40 0.982 ± 0.010

MRBT-SR-with perceptual loss (Stage2) 8.75 ± 0. 71 29.39 ± 1.00 0.984 ± 0.010

MRBT-SR-with perceptual loss (Stage3) 8.73 ± 0.47 29.41 ± 0.66 0.986 ± 0.007

MRBT-SR-with perceptual loss (Stage4) 8.72 ± 0.49 29.42 ± 0.69 0.986 ± 0.006

Abbreviations:ESRGAN,enhanced super-resolution generative adversarial networks;MRBT-SR,MRI-based brain tumor super-resolution,PSNR,peak signal-to-noise
ratio; RMSE, root mean square error; SSIM, structural similarity index; VGG, visual geometry group.

F IGURE 6 Results of super-resolution methods: (a) 4× downsampling of the original MRI image, (b) bicubic upsampling, (c) overcomplete
dictionaries, (d) enhanced super-resolution generative adversarial networks, (e) MRI-based brain tumor super-resolution (MRBT-SR) with visual
geometry group perceptual loss, (f) MRBT-SR without perceptual loss, (g) MRBT-SR with perceptual loss (Stage 1), (h) MRBT-SR with
perceptual loss (Stage 2), (i) MRBT-SR with perceptual loss (Stage 3), (j) MRBT-SR with perceptual loss (Stage 4), (k) the original
high-resolution image

3.3 Enhanced performance of brain
tumor segmentation

A 2D-UNet architecture depicted in Figure 3a was
used to evaluate the performance of the BRATS. The

experiment results are presented in Table 2. As pre-
sented in Table 2, the UNet trained with the super-
resolution dataset preprocessed by MRBT-SR-GAN
could detect more details, particularly for the enhancing
tumor (ET) and tumor core (TC) class,which implied that
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F IGURE 7 Structures of the proposed experimental neural networks and the predicted super-resolution: (a) abandoning the low-resolution
path and retaining the high-resolution path, (b) abandoning the high-resolution path and retaining the low-resolution path, (c) predicted
super-resolution results for Figure 8

super-resolution of the original images could provide
more substantial supervision for brightness consistency
and texture recovery. The evaluation of the three per-
formance factors revealed that the UNet trained with
the super-resolution dataset was more accurate and
robust than the UNet trained with bicubic interpolation.
It was, therefore, inferred that the proposed MRBT-
SR-GAN with features calculated by the pretrained
finetuned UNet could significantly improve the BRATS
accuracy.

3.4 Other modifications

The header convolution part of MRBT-SR-GAN was
modified to take multiple consecutive slices as input,and
experiments to evaluate the super-resolution accuracy
were designed. The modified structures are depicted
in Figure 8. As depicted in Figure 8, three consecutive
slices were utilized as the three input channels of the
first convolution layer in the header convolution part.This
allowed the use of five or more successive slices as

input channels. The experimental results are presented
in Table 3. As revealed in Table 3, the slice thickness
could significantly influence the super-resolution accu-
racy. The smaller the distance between the slices, the
better was the super-resolution accuracy. The structure
that considered five consecutive slices as the input did
not exhibit improved model performance than the struc-
ture, which considered only three consecutive slices as
the input. In brief, the influence of the input slices or
channels varies with the distance from the target slice.
Owing to the limited number of output channels or fea-
tures of the convolution layer in the header convolution
part, a more significant number of input slices or chan-
nels could introduce noise in the target slice. It would
ultimately reduce the accuracy of the super-resolution.

3.5 Slice interpolation

The MRBT-SR-GAN also has applications in slice-
interpolation. In the present study, the MRBT-SR-GAN
generator structure was modified to utilize the nearby
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TABLE 2 Comparison of improved performance contributed to brain tumor segmentation using different super-resolution methods

WT
(Mean ± STD)

TC
(Mean ± STD)

ET
(Mean ± STD)

Bicubic interpolation

Dice ratio 0.724 ± 0.11 0.611 ± 0.13 0.704 ± 0.12

Specificity 0.992 ± 0.007 0.998 ± 0.002 0.999 ± 0.001

Sensitivity 0.808 ± 0.10 0.516 ± 0.19 0.703 ± 0.13

Overcomplete dictionaries

Dice ratio 0.758 ± 0.16 0.626 ± 0.14 0.736 ± 0.10

Specificity 0.993 ± 0.006 0.998 ± 0.001 0.999 ± 0.001

Sensitivity 0.820 ± 0.12 0.621 ± 0.16 0.765 ± 0.11

ESRGAN

Dice ratio 0.772 ± 0.12 0.631 ± 0.11 0.745 ± 0.08

Specificity 0.994 ± 0.003 0.998 ± 0.001 0.999 ± 0.001

Sensitivity 0.832 ± 0.09 0.653 ± 0.14 0.781 ± 0.10

MRBT-SR without perceptual loss

Dice ratio 0.780 ± 0.10 0.635 ± 0.11 0.758 ± 0.08

Specificity 0.994 ± 0.003 0.999 ± 0.001 0.999 ± 0.001

Sensitivity 0.841 ± 0.07 0.688 ± 0.15 0.803 ± 0.09

MRBT-SR-GAN with perceptual loss (stage 4)

Dice ratio 0.786 ± 0.10 0.639 ± 0.10 0.763 ± 0.07

Specificity 0.994 ± 0.003 0.999 ± 0.001 0.999 ± 0.001

Sensitivity 0.846 ± 0.06 0.709 ± 0.14 0.817 ± 0.09

Abbreviations:ESRGAN,enhanced super-resolution generative adversarial networks;ET,enhancing tumor;MRBT-SR,MRI-based brain tumor super-resolution;MRBT-
SR-GAN, MRI-based brain tumor super-resolution generative adversarial network; tumor core (TC).

F IGURE 8 Modified structures of the generator of MRI-based brain tumor super-resolution generative adversarial network

TABLE 3 Experimental results for the modified structures of MRI-based brain tumor super-resolution generative adversarial network

RMSE
(Mean ± STD)

PSNR (dB)
(Mean ± STD)

SSIM
(Mean ± STD)

3 slices, slice distance:1 mm 8.34 ± 0.43 29.81 ± 0.634 0.988 ± 0.006

5 slices, slice distance:1 mm 8.39 ± 0.39 29.76 ± 0.57 0.988 ± 0.006

3 slices, slice distance:5 mm 8.76 ± 0.61 29.38 ± 0.86 0.983 ± 0.007

5 slices, slice distance:5 mm 8.85 ± 0.50 29.29 ± 0.69 0.881 ± 0.01

Abbreviations: PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity index.
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F IGURE 9 Modified structures of the generator of MRI-based brain tumor super-resolution generative adversarial network for
slice-interpolation. Image N represents the target slice, Image N − 1 represents the first slice above the target slice, and Image N + 1 represents
the first slice below the target slice

TABLE 4 Experimental results for slice-interpolation using the modified structures of MRI-based brain tumor super-resolution generative
adversarial network

RMSE
(Mean ± STD)

PSNR (dB)
(Mean ± STD)

SSIM
(Mean ± STD)

2 slices, slice distance:1 mm 9.40 ± 1.41 28.80 ± 1.86 0.973 ± 0.013

4 slices, slice distance:1 mm 9.29 ± 1.07 28.87 ± 1.42 0.978 ± 0.012

6 slices, slice distance:1 mm 9.30 ± 1.06 28.88 ± 1.40 0.978 ± 0.013

2 slices, slice distance:5 mm 20.73 ± 2.17 21.90 ± 1.29 0.803 ± 0.027

4 slices, slice distance:5 mm 19.25 ± 1.93 22.54 ± 1.24 0.819 ± 0.025

6 slices, slice distance:5 mm 19.51 ± 2.02 22.36 ± 1.27 0.807 ± 0.026

Abbreviations: PSNR, Peak signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity index.

top and bottom slices of the target slice as the input
channels of the first convolution layer in the header
convolution part, as depicted in Figure 9, the top and
bottom slices close to the target slice were utilized as
input channels to train the MRBT-SR-GAN. The exper-
imental results are presented in Table 4. As revealed
in Table 4, the distance between the slices could sig-
nificantly influence slice-interpolation performance. The
smaller the distance between the slices, the better was
the slice-interpolation performance. If the slice distance
exceeds 5 mm, it will not improve the quality of the
interpolated target slice. However, when the number of
input channels exceeds 6, the performance of slice-
interpolation will not improve anymore, which means
that structures of slices with a larger distance to the
target slice will play a minor role in slice-interpolation
of the target slice. The interpolation slices could not
be reconstructed from the MRI images slices with thick
slice-thickness. If the slice distance of the MRI images
was less than 3 mm, it was possible to interpolate the

F IGURE 10 Reconstructed images generated upon slice
interpolation: (a) the original image, (b) the reconstructed image by
considering two nearby slices (slice distance 1 mm) as input
channels, (c) the reconstructed image considering four nearby slices
(slice distance 1 mm) as input channels

intermediate slice or layer with high image quality. In this
manner, the MRI scanning time could be reduced, and
smaller residual or recurrence lesions that the original
scanning images might have missed could be identified.
The reconstructed images are depicted in Figure 10.
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4 DISCUSSION

PVE arises in the volumetric MRI images when greater
than one tissue type occurs in a voxel.44 The voxel
intensity relies on the imaging sequence and tissue
properties and the proportion of each tissue type
present in the voxel. In particular, in the MRI images
of brain tumors such as gliomas, the tumors are
poorly circumscribed, and the edges between the tumor
and the normal brain tissue are not well defined.
Therefore, it is challenging to segment the brain tumor
region and plan precise treatments accurately. In addi-
tion,PVE causes the early detection of cancer and accu-
rate evaluation of the recurrence of gliomas to become
difficult. MRBT-SR-GAN could effectively upsample the
MRI images and decrease the influences of image-
blurring caused by PVE to a certain extent, which led
to accurate detection and evaluation of the gliomas with
small tumor regions.

Reliable BRATS is essential for accurate diagno-
sis and treatment planning. However, brain tumors are
highly heterogeneous in terms of location, shape, and
size, rendering automatic segmentation methods chal-
lenging to this day.45 Deep learning methods demon-
strate outstanding potential in detecting and segmenta-
tion of the brain tumor regions based on MRI images. In
this context, the BRATS challenge has released a large
dataset of annotated MRI images of brain tumors, and
this challenge has become an annual affair now. MRBT-
SR-GAN could serve as an effective tool for improving
segmentation accuracy for all the segmentation neural
networks. A neural network comprising MRBT-SR-GAN
combined with the best segmentation neural networks
could greatly assist radiation oncologists in accelerat-
ing their workflow and enabling precise radiotherapy. In
MRI,a thinner slice gap may introduce artifact and noise
into the adjoining slices.47,48 Although recent advances
in high-field (≥7 T) MRI have enabled the study of
the fine structure of the human brain at the level of
fiber bundles and cortical layers.46 In addition, multi-
ple scans may reduce the slice gap and produce a
high-quality image with a small slice gap. However, high-
field MRI and the multiple scan method are expensive
and time-consuming. Therefore, they are not feasible for
use in clinics. The patients with brain damage rarely
cooperate with long-term MRI examinations. In the
present study, the MRBT-SR-GAN was modified to per-
form slice interpolation and obtained satisfactory results.
Slice interpolation may resolve the issue of undefined
brain tumor location and assist in accurately calculat-
ing the size and volume of brain tumors. The proposed
MRBT-SR-GAN comprises five main parts: header
convolution part, high-resolution path, low-resolution
path, tail convolution part, and task-oriented perceptual
loss.

Figure 7 illustrates the functions of the high-resolution
and low-resolution paths. Figures 8 and 9 illustrate the
modifications in the header convolution part for uti-
lizing the neighbor slices and realizing a variety of
functions for further accurate super-resolution or slice
interpolation. In Table 1 and Figure 6, the influence of
perceptual loss on super-resolution accuracy is demon-
strated. The five parts together formed the design
paradigm for medical image super-resolution applica-
tions. For instance, if a super-resolution neural network
for CT images is to be trained to diagnose spine frac-
ture,one may input five consecutive slices of CT images
and modify the header convolution part using 3D con-
volution. A UNet neural network may be trained for
spine segmentation, and the output features of different
stages of the UNet encoder part may be used as the
perceptual loss. This would produce SPINE-SR-GAN
architecture.

However, there are some limitations of the MRBT-SR-
GAN models. The most important limitation is that, only
T2-FLAIR modality is included in the MRBT-SR-GAN,
there are many MRI modalities such as T1-weighted
images, T2-weighted images and other possible modal-
ities could be considered and included in building the
datasets, which will make the MRBT-SR-GAN a more
adaptable and universal model in clinical.

5 CONCLUSION

In conclusion, our proposed MRBT-SR-GAN could
effectively improve the resolution of MRI images while
remaining high texture information, which could reduce
the impact of the PVE. The improved high-resolution
MRI images could enhance the accuracy of BRATS.
Modified MRBT-SR-GAN could do slice interpolation,
which could assist in reducing MRI scanning time.
Finally, the designed paradigm of MRBT-SR-GAN could
be generalized for other medical modalities of different
diseases.
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