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Abstract

This review “teaches” researchers how to make their lackluster proteomics data look really 

impressive, by applying an inappropriate but pervasive strategy that selects features in a biased 

manner. The strategy is demonstrated and used to build a classification model with an accuracy 

of 92% and AUC of 0.98, while relying completely on random numbers for the dataset. This 

“lesson” in data processing is not to be practiced by anyone; on the contrary, it is meant to be 

a cautionary tale showing that very unreliable results are obtained when a biomarker panel is 

generated first, using all the available data, then tested by cross-validation. Data scientists describe 

the error committed in this scenario as having test data leak into the feature selection step, and 

it is currently a common mistake in proteomics biomarker studies that rely on machine learning. 

After the demonstration, advice is provided about how machine learning methods can be applied 

to proteomics data sets without generating artificially inflated accuracies.
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Introduction:

Machine learning is entering many aspects of daily life: from Siri to spam filters, our 

days are becoming influenced by, and better because of, these computational tools. Not 

surprisingly, proteomics researchers are realizing the benefits of incorporating these methods 

into their workflows. The problem, though, is that if the approaches are implemented 

incorrectly, the results are not credible. To demonstrate how biased the reported accuracies 

can be after making just one common mistake, I committed a single error in feature selection 

(on purpose) while performing a machine learning study on simulated proteomics biomarker 

data using a set of completely random numbers. I was able to predict the disease state 

of my samples with >90% accuracy in a cross-validation experiment. (Random numbers 

should always produce a very poorly predictive model.) The outcome of this demonstration 

should not be remarkable to anyone who understands appropriate implementation of feature 

selection and cross-validation, but surprisingly, the majority of proteomics papers that use 

machine learning in biomarker discovery studies make the same mistake I commit here. 

Why are so many people making this mistake? Likely, most researchers have no idea how 

much this error can impact their results. So a demonstration is provided.

Amazing Machine Learning Results from Random Numbers

Figure 1 shows several analyses of a group of 40 samples, using a small (50 feature), 

medium (500 feature) and large (10,000 feature) dataset; a detailed explanation of all the 

experiments and a code example are provided in Supplemental Materials. Each feature in 

the data sets could be a different protein quantified from plasma in a quantitative proteomics 

experiment. In reality, the dataset was generated from 400,000 random numbers, installed 

into a 40 by 10,000 matrix. In the first demonstration experiment, the “best protein” (best 

feature) of the small, medium, or large data set is identified, by calculating the area under 

the receiver operator characteristic (ROC) curve, or the AUC, for each simulated protein. 

See the leftmost bars in Figure 1. Here, one can see that the more features in the data set, 

the better the AUC can be. The best feature in the biggest data set is able to discriminate 

all the samples with an AUC of 0.85. (A perfectly discriminating feature generates an 

AUC of 1.0, while one that is no better than random chance, such as assigning disease 

state by flipping a coin, would generate an AUC of 0.5.) This finding, that testing more 

features will naturally increase the likelihood of identifying highly discriminative ones, is 

a well-known phenomenon that has been studied by statisticians.1–3 While this principle 

should be understood by proteomics researchers, many researchers still do not understand 

what they can and cannot do with the highly discriminating features that were identified in 

datasets with limited numbers of samples. The next demonstration experiments show how 

using only the highly discriminating features can lead to highly biased accuracy estimates, 

when only the selected features are used to predict disease state.

The most common type of machine learning studies in proteomics, supervised classification, 

uses multiple features to classify samples into two (or more) groups by first developing a 

model on known data and then applying it to data with an unknown group assignment. There 

are several different types of classifiers that can be used, and more detailed background 

information can be found in references 4 and 5. One critical aspect of supervised 

Desaire Page 2

J Proteome Res. Author manuscript; available in PMC 2023 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classification is that the model’s accuracy needs to be determined by test data, and not 

the data used to train the model. How is this best accomplished? Machine learning experts 

contend that the model should first be developed and optimized with one set of data (or a 

fraction of the original data set), then the accuracy of the model should be reported using 

only a second set of independent test data (or a fraction of the original data that had not 

been part of the machine learning optimization).1,2,4 Unfortunately, almost all proteomics 

experiments suffer from too-few samples to implement this approach, and the field has 

generally accepted cross-validation as a reasonable alternative, provided the original data 

set is not too small. (For example, fourteen samples has been reported to be too small.3) 

Genomics researchers faced with this same problem, of not having enough data for a test 

set, have implemented the same solution, of using cross-validation to estimate accuracy.6 

In cross-validation, a subset of the samples is used to build the model, and the model’s 

accuracy is found by analyzing the remaining samples. Different combinations of training 

and test data can be generated so that each sample can be leveraged as a test sample. 

Reference 4 provides more detail.

Figure 1 also shows the accuracy and AUC generated using leave-one-out cross-validation 

and XGBoost (extreme gradient boosting) as the classifier, either using all the features in 

the model (second and third sets of bars), or using only the best features in the model 

(fourth and fifth sets of bars). In leave-one-out cross-validation, all the samples except the 

one being assigned are used to build the model; then the left-out sample is assigned; and 

this process is repeated for every sample in the data set. The Figure shows that this cross-

validation approach can be an appropriate strategy to implement in machine learning studies 

of proteomics data, even for small numbers of samples, because applying it introduces 

virtually no bias, if it is applied appropriately (with no up-front feature selection). It does not 

matter if the number of features in the data set are 50, 500, or 10,000; using an XGBoost 

classifier and cross-validation, only a poorly predictive model is generated. While many 

different classifiers can be used in this kind of experiment, essentially the same result 

would have occurred with any of them. This outcome is what is supposed to happen during 

cross-validation. If there is no underlying trend in the data, the machine learning workflow 

should not manufacture one.

Unfortunately, “manufactured accuracy” can be, and often is, generated in proteomics 

experiments that implement machine learning by making a common mistake in the data 

science steps. If, instead of doing classification on the entire set of features, one had 

instead only used the features whose abundance changed the most between the two groups, 

while still applying the same rigorous-seeming cross-validation strategy, an entirely different 

result occurs. The fourth and fifth sets of bars in Figure 1 show what happens under 

those circumstances: Even though the same classifier (XGBoost) and strategy (leave-one-out 

cross-validation) were used, the model is now able to correctly “assign” the samples to the 

arbitrary classes that they were originally designated to, with up to 92% accuracy for the 

largest data set. The AUC is an astonishing 0.98 for this dataset. These ultra-high values 

demonstrate the severity of the problem caused by feature selection on the entire dataset: 

the model overfits the data, and these accuracies would never be obtainable on a fresh set of 

samples. (Full experimental details and a code example are in Supplemental Data.)
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What matters more: the data used to select the features or the method of feature selection? 

The problem is using all the data – leaking the test data into the training set – not the feature 

selection method, which, in this case, was using the features with highest information gain. 

(This approach was chosen because it is easy to implement using the XGBoost algorithm, 

and it is becoming prevalent in the literature.) Other feature selection strategies would 

have led to the same results, inflated accuracies, had all the data been used to select the 

features. In fact, a similar demonstration of this principle was provided in 2003 to genomics 

researchers: random numbers were used to generate a highly “accurate” and predictive 

model, after test data were included in the feature selection step.6 In that case, XGBoost did 

not yet exist, and a completely different approach for feature selection and classification, 

using a linear regression model, was employed, but the same outcome as shown here 

prevailed; the arbitrary class assignments were very accurately predicted.6 A further example 

is described in reference 7, where SVM (Support Vector Machine) was the classifier and 

a recursive feature selection algorithm was used: again, starting with random numbers 

and arbitrary class assignments, then using all the samples for feature selection, a highly 

predictive model was built, even though the researchers were using random numbers in the 

data set. The error rate for the model was 2.5%, showing severe overfitting.7 A 50% error 

rate, which would be expected for random numbers, was obtained when the experiment was 

set up properly, by leaving the test data out of the feature selection step.7 When researchers 

use all their data, including their test data, to select the features up front, they are biasing the 

outcome of the study to find a difference in the samples, even if one does not actually exist.

It is easy to understand why proteomics researchers would fall into this trap. First, their 

sample sets are often too small to cut out a reasonable-sized test set. But, more important 

than that, the idea of down-selecting the proteins resonates so well with common sense: Of 

course most of the proteins in the data set are not going to change due to the biological 

condition of interest, so it might seem that it would be better to leave most of them out. 

Also, the end-goal of these kinds of experiments is typically to find a limited biomarker 

panel that can indicate the disease state; so again, logic may lead someone to want to use all 

the data for feature selection to identify the few proteins they want to keep in the panel, then 

to apply a rigorous test method like cross-validation to assess the panel’s accuracy. It sounds 

like a great idea; except it is not. By leveraging all the data into the feature selection step, the 

entire experiment becomes flawed, and one can easily generate a model that produces any 

arbitrary assignments desired with “92% accuracy”, just as is demonstrated in Figure 1.

Improving data science standards

The feature selection mistake described above is a well-known problem infiltrating machine 

learning studies; it is formally called “leaking test data into the training set.” In a recent 

metanalysis of over 100 machine learning publications focusing on the gut microbiome, 

80% of the studies inappropriately included their test data in the feature selection step of the 

workflow.8 The problem is so prevalent, researchers are probably learning to do this, simply 

by following the example of others. And when the pervasiveness of this mistake is coupled 

with the enormously inflated accuracies the mistake introduces, as shown in Figure 1, this 

mistake could very likely be the single most problematic machine learning implementation 

error in proteomics today.
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Journal editors must become judicious about preventing the publication of manuscripts 

where there is a leakage of test data into the machine learning workflow. Feature selection 

is a legitimate machine learning practice, when its accuracy is measured using data that is 

independent of the selection process. See references 7 and 9 for examples. However, when 

the same data to test the strategy are the ones that were used for feature selection in the 

first place, that is not scientifically justified, and it leads to enormous accuracy inflation, as 

shown in Figure 1.

The community needs to agree on acceptable alternatives to this problematic practice. 

Simply requiring additional data held out as a test set for every study is not feasible in 

certain circumstances. Some sample sets are too small and too hard to get to split into a 

training group and test group; examples include studies that require amniotic fluid, CSF, 

brain samples, samples assessing rare diseases, or samples from a racial subgroup. All those 

are important sample sets. Yet impossible-to-get sample sets cannot justify non-rigorous 

science. One route forward in these studies is to leave out the machine learning entirely 

and focus on other aspects of the work. Alternatively, editors and reviewers might refer 

authors to example studies where researchers still managed to leverage data effectively 

to offer validation for their findings, even though they were working with very precious 

samples.10,11 A third possibility would be that journals simply invoke a policy that states 

authors cannot do feature selection using the test data and let authors decide how to proceed. 

Many options are available for authors who study small data sets and want to publish on the 

outcomes while accurately reflecting what can be inferred from the limited data, but those 

options are not typically the routes chosen now.

My best suggestion to journal editors, in dealing with researchers who do not have enough 

samples for a test set because they are studying something rare or hard to get, is to take a 

middle-ground position: tell the authors to limit the types of machine learning done prior 

to cross-validation (i.e. no feature selection) and to show how much of an improvement 

is made versus randomly assigned samples undergoing the same workflow (a permutation 

study; see below). This opinion is not universally endorsed: statistical purists would argue 

that a separate test set, beyond cross-validation, is always necessary for a truly meaningful 

evaluation of accuracy.1,2 Cross-validation can provide reasonably accurate results under the 

right conditions though, as demonstrated above, and this proposed approach is a much better 

route forward than what is being done now: it allows users to publish on modestly-sized 

sample sets, provided the machine learning models are not optimized in ways that limit the 

utility of cross-validation: To keep the bias at a minimum, the full feature set should be 

used, and common hyperparameters should be used without optimization. That is what I did 

in the first cross-validation experiment, where the models showed no predictive accuracy. 

This type of experiment, machine learning without first reducing the feature set, would 

demonstrate whether the sample type and methods are useful for discriminating the classes 

studied (health vs disease, for example). My group used this approach on small proteomics 

data sets with samples originating from brain and CSF; as expected, Alzheimer’s Disease 

was easily discriminated using data from the brain samples, even when using the full set of 

>12,000 protein features; CSF also showed utility for discriminating the disease state, albeit 

at lower accuracies than the brain samples.12 These types of machine learning studies, on 

data sets with modest sample numbers but lots of features, offer preliminary justification for 
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doing future studies with larger sample sets, where a biomarker panel could be generated 

using valid feature selection methods and accuracy assessments based on a true test set.

Editors and reviewers could also suggest that a permutation study be done.13 To do this, 

the original samples are randomly assigned to either the “disease” or “control” groups, 

and the samples are reclassified based on their new (and meaningless) group assignments. 

The permutation can be done a bunch of times, with the average accuracy reported. This 

experiment allows readers to assess the extent to which the accuracy reported is related to 

the biological condition versus overfitting due to the machine learning strategy. And the 

beauty of it is that it requires no extra data, so it is a perfect strategy for small sample sets.

Concluding Remarks

Researchers will do better science, and be better reviewers and editors, if they see which 

data analysis strategies provide reasonable results, even on small sample sets, and which 

ones cause highly inflated accuracies. Leaking test data into the feature selection step, is 

a significant problem, and our community should stop doing this. We can reward rigorous 

studies and stop publishing reports of “biomarker panels” that claim to offer ultra-high 

predictability, when the same results could have been generated with sets of random 

numbers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Assigning Disease State Using Radom Numbers: Accuracy and AUC Under Different 

Conditions. Left to right: The maximum AUC for a single feature in the small (green), 

medium (orange) and large (blue) data sets is shown (Best Feature AUC). Accuracy by 

CV and AUC by CV: When all features are used and a classification model is tested by 

cross-validation (CV), (second and third sets of bars), the accuracy and AUC of the model 

are ~50%, which is expected for a dataset of random numbers. Fourth and fifth sets of bars: 

When only the best features are used, both the Accuracy by CV (cross-validation) and the 

AUC by CV are inappropriately high. All values are generated by averaging results from 50 

data sets of random numbers; full details provided in Supplemental Materials.
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