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ABSTRACT
Patient no-shows is a significant problem in healthcare, reaching up to 80%
of booked appointments and costing billions of dollars. Predicting no-shows
for individual patients empowers clinics to implement better mitigation
strategies. Patients’ no-show behavior varies across health clinics and the types
of appointments, calling for fine-grained studies to uncover these variations in
no-show patterns. This article focuses on dental appointments because they are
notably longer than regular medical appointments due to the complexity of dental
procedures. We leverage machine learning techniques to develop predictive models
for dental no-shows, with the best model achieving an Area Under the Curve (AUC)
of 0.718 and an F1 score of 66.5%. Additionally, we propose and evaluate a novel
method to represent no-show history as a binary sequence of events, enabling the
predictive models to learn the associated future no-show behavior with these
patterns. We discuss the utility of no-show predictions to improve the scheduling of
dental appointments, such as reallocating appointments and reducing their duration.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords Dental no-shows, Machine learning, Patient no-show, Dental appointments

INTRODUCTION
Patient no-show, which refers to patients missing their booked appointments, is a major
problem in healthcare. Its rates may reach up to 80% (Kheirkhah et al., 2015; Rust et al.,
1995). Reports estimated that the no-show of patients costs the United States’ healthcare
system an average of $150 billion a year (Gier, 2017). Patients may miss their appointments
for various reasons, such as scheduling factors, forgetness, transportation, and work-
related issues (Marbouh et al., 2020). The consequences of this problem are wide, affecting
patients, doctors, and the overall healthcare system. Patients are perhaps affected the most
by no-shows, whether it is the patient who has missed the appointment or the others who
could not book appointments due to unavailabilities. When patients miss their
appointments, important treatments get delayed, leading to complications that require
costly and complex medical procedures.

Outpatient clinics implement several mitigation strategies to tackle the no-show
problem, yet, this brings limited success. For example, sending reminders to booked
patients may not reduce the no-show rates (Li et al., 2019b). Blind overbooking is
ineffective because the number of extra appointments is often estimated based on factors
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that do not consider the historical no-show patterns of the scheduled patients. If the
overbooking strategy is implemented aggressively, it would crowd the clinic, over-utilize its
resources and increase patient waiting time. On the other hand, if overbooking is
conservative, resources would be wasted, and the clinic is yet again underbooked (Zeng,
Zhao & Lawley, 2013).

Several papers in the literature have utilized machine learning techniques to develop
predictive models for patient no-shows. See “Related Work” for details. These models use
patient no-show history to predict no-shows on a per-patient basis, which empowers
targeted and more effective mitigation strategies. No-show behavior varies across health
clinics and specialties (AlMuhaideb et al., 2019; Ding et al., 2018;Mohammadi et al., 2018).
For instance, reported percentages of no-shows for Urology and Oncology were 6.5% and
6.9%, respectively. In contrast, no-shows for Surgery, Optometry, and Dietary reached
16.6%, 23.8% and 27.23%, respectively (AlMuhaideb et al., 2019). This calls for fine-
grained studies covering specific specialties to discover useful patterns that may help to
predict no-shows.

This problem could get even worse for some geographical locations. For example,
previous research reported that 58.1% of patients missed their dental appointments in
Saudi Arabia, impacting their oral health (Baskaradoss, 2016; Shabbir, Alzahrani & Khalid,
2018). Furthermore, dental appointments are notably longer than regular medical
appointments due to the complexity of dental procedures. The average duration of primary
care appointments is 17.4 min, while the average for dental appointments is 48.7 min, as
reported by the American Dental Association (American Dental Association, 2021). Dental
appointments are, on average, almost thrice as much as the duration of primary care
appointments. Consequently, dental no-shows are costlier and blind overbookings are
impractical. In this article, we leverage machine learning techniques on a newly proposed
feature creation approach to develop models to precisely predict no-shows to dental
appointments.

Prior no-show history is one of the most significant predictors for future no-shows
(AlMuhaideb et al., 2019; Goffman et al., 2017; Harvey et al., 2017). This article proposes a
novel method to represent no-show history as a binary sequence of events. Each previous
appointment is represented as 1 if the patient has attended and as 0 if the patient has
missed the appointment, resulting in a representation of a sequence of binary numbers for
each of the appointment records. We evaluate this approach for capturing no-show history
considering the last three, five, seven, and ten appointments. The intuition behind this
approach is that the model should learn the behavior associated with each sequence of no-
show history in the training phase rather than reducing no-show history to a number
based on fixed calculations.

Additionally, we discuss the utility of no-show predictions to improve the scheduling of
dental appointments. Several studies (Chiara & Domenic, 2018; Li et al., 2019b; Srinivas &
Ravindran, 2018) suggested utilizing the predictions of no-shows to implement more
effective overbooking strategies. These strategies may be impractical for dental
appointments because of their long duration, see “Discussion” for details. For this reason,
we propose to reduce the time of appointments with high no-show probabilities to
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minimize the impact of no-shows. Last, the dataset is publicly available for the research
community to facilitate further research and comparative studies. The contribution of this
article is as follows:

� Leveraging machine learning models to predict no-shows for dental appointments.

� Proposing a novel method to capture prior no-show history, one of the strongest
predictors of no-shows, as a binary sequence.

� Reviewing and discussing various techniques to mitigate no-shows in the field of
dentistry.

� Making the dataset publicly available for further research (see Supplemental File).

The organization of this article is as follows. “Problem Definition” details our approach
to capturing no-show history. The collected data and our research methodology are
described in “Data Analysis” and “Experimental Setup”, respectively. Experimental results
and their discussion are reported in “Results” and “Discussion”. Last, “Related Work”
provides a literature review and “Conclusion” concludes our work.

PROBLEM DEFINITION
In this section, we first formally define the problem of predicting no-shows to dental
appointments. Then we describe our approach to capturing the no-show history patterns
from our dataset.

Predicting dental appointment no-shows
We formulate the problem of predicting no-shows as a binary classification problem,
where the goal is to assign a class label belonging to {no-show, show} for each booked
dental appointment. In our settings, we consider the no-show as the positive class for which
our models are optimized to predict. For a given booked dental appointment ni, such that
ni 2 N , where N is the set of all booked appointments, we seek to define a prediction
algorithm that assigns a score SðniÞ 2 [0, 1]. The score models the predicted likelihood that
the dental appointment ni will be unattended, i.e., the higher the prediction score, the more
likely that patient will not attend the appointment. A decision boundary c 2 [0, 1] can be
used to attain class label assignments in accordance to the prediction function F: N! [no-
show, show], such that:

FðNÞ ¼ no� show; if SðNÞ � c;
show; otherwise:

�

Capturing no-show history
Prior no-show history is one of the significant predictors for future no-shows (AlMuhaideb
et al., 2019; Chiara & Domenic, 2018; Goffman et al., 2017; Harvey et al., 2017). Most
papers in the literature capture it as an empirical probability, a likelihood of an event
occurring based on historical data. Instead of computing the no-show history for all
previous appointments, the no-show percentage is usually calculated based on a moving
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window, such as the latest 10 appointments. This is because older appointments have less
impact on predicting future no-shows than recent ones.

This article captures no-show history as a binary sequence of events, representing each
previous appointment as 1 if the patient attended and 0 if the patient missed the
appointment. For instance, a patient with a previous no-show history sequence as (show,
no-show, no-show, show, no-show) is represented as a (1, 0, 0, 1, 0). This approach is
applied to sequences of n last appointments, i.e., ðaiÞni¼1; ai 2 f0; 1g. We perform an
evaluation for these sequences where n 2 f3; 5; 7; 10g; see “Results” for details. The
intuition behind this method is that the model should learn the behavior associated with
each sequence of no-show history in the training phase rather than reducing no-show
history to a single number, e.g., moving average. For example, consider a patient with a no-
show history sequence as (show, show, no-show, no-show). The empirical probability of
this no-show history is 50%. This approach treats all previous appointments equally,
computing the same percentage (50%) for other different sequences, such as (no-show, no-
show, show, show). It fails to capture possibly different future no-show behavior associated
with these sequences.

DATA ANALYSIS
In order to evaluate our approach, we collected and analyzed a dataset of dental
appointments obtained from a dental clinic. In “Data Collection and Preprocessing ”, we
describe our approach for collecting and preprocessing the dataset, and in “Feature
Analysis ”, we describe our feature analysis process.

Data collection and preprocessing
For this article, we collected a dataset of dental appointments from a local dental clinic in
Riyadh, Saudi Arabia, for one year between January 1st, 2019, and December 31st, 2019.
Our dataset consists of 262,140 appointments. Among these appointments, we delete
66,122 records that are missing critical data elements, such as appointment date/time, or
containing erroneous values (see “Data Preprocessing” for details). The resulting data
consists of 196,018 appointments. Among these appointments, 42.68% (83,663) belong to
the positive class, i.e., no-show.

Each record in our dataset consists of 10 predictive attributes (features), in addition to
the target class (show or no-show). Among the predictive attributes are data specific to each
patient, such as date of birth, marital status, gender, and nationality. The records also
contain information about the appointments, such as appointment date, time, show or no-
show, booking date and time, appointment duration, and a variable specifying whether a
confirmation SMS is sent for that appointment. Description of each variable is shown in
Table 1.

Feature analysis
We explore the dataset to determine the distribution of values for different variables. In our
dataset, 75.4% (133,772) of the appointments are for male patients, while 24.6% are for
female patients; 89.3% are for single patients, and 10.7% are for married patients. The
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average age of patients at appointment time is 29.77 years, as illustrated in Fig. 1. The
average appointment duration is 35.99 min, as shown in Fig. 2.

We utilize the variables, shown in Table 1, to compute features, such as the appointment
lead time (i.e., days between appointment booking date and actual appointment date),
appointment month, and day. Furthermore, we obtain historical weather data for the
appointment date, including temperature and condition. The complete list of computed
features and their description is shown in Table 2. For instance, (In Holiday) is a feature to
capture whether the appointment date is on a public holiday in Saudi Arabia, and (In
Ramadan) is a feature to capture whether the appointment date is in Ramadan, which is
the holy month of fasting for Muslims. We also compute features to capture the previous
no-show history in various ways. First, we calculate the percentage of no-shows based on
the last 10 appointments, namely ‘No-show10 %’, and based on all previous appointments,
namely ‘No-show All %’. Second, we represent previous no-show history as a binary
sequence of events. We provide a detailed description of the no-show binary sequence
representation in “Problem Definition”.

We investigate the correlation between the target variable (show or no-show) and each
feature in the dataset for preliminary analysis. We observe multiple features that correlate
with the target class variable. These features are Age at Appointment Date, Lead Time,
Hour, and the variables associated with previous no-show history.

By looking at the age variable (Fig. 3), the records in the dataset indicate that patients
who need a companion (i.e., kids and elderly patients) are more likely to show up for their
appointments. By investigating the Lead Time variable (Fig. 4), it can be clearly seen that
appointments that are booked closer to the actual appointment date have a higher rate of
showing up. When looking at previous no-show history (Fig. 5), it is evident that patients
with a high rate of prior no-shows are more likely to not show up for their future
appointments.

To further investigate the relationship between appointment hours and the likelihood of
no-shows, we bin the ‘Hour’ variable into different shifts to identify shifts that are likely to

Table 1 Description of the variables in the dataset.

Category Variable Description

Date of birth Patient’s date of birth

Marital status Specifies whether the patient is single or married

Gender Patient sex (male or female)

Patient Nationality The nationality of the patient

Appointment date Date of the booked appointment

Appointment time Time of the booked appointment

Show or No-show Specifies whether the appointment is attended or missed

Booking date and time Date and time in which the appointment was booked

Appointment duration Length of the appointment in minutes

SMS Specifies whether a confirmation SMS is sent or not sent

Appointment Doctor ID Dentist identification number
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exhibit more no-shows. As seen in Fig. 6, appointments scheduled early in the morning
(i.e., before 10 AM) have the highest likelihood of being unattended.

Overall, this preliminary analysis shows clear correlations between some features and
the target class label. This implies that machine learning methods can be effective in
building a well-performing model for predicting no-shows for dental appointments.

EXPERIMENTAL SETUP
Several supervised learning algorithms are examined to predict appointment no-shows
with the best performance possible. This section explains the steps followed to preprocess
and clean our data. It details our approach to partitioning data into training and testing
sets. Moreover, the model selection process and hyperparameter optimization applied to
our datasets are explained in this section. Additionally, we present the evaluation metrics
used to evaluate the performance of the machine learning models. We do so by using the
scikit-learn Python machine learning library.

Data preprocessing
Our data is produced by an appointment scheduling system that enables the dental clinic
to manage patient appointments. The data is pulled out from a relational database. Some

Figure 1 Patients’ age distribution at appointment date.
Full-size DOI: 10.7717/peerj-cs.1147/fig-1
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attributes in the database may have been manually altered by users having certain
privileges without validating the inputs. Manual alteration has resulted in issues with
values in some database attributes. For example, the attribute ‘duration’ represents the
estimated time needed to complete the dental appointment’s work. Hence, it may only take
positive values. The dataset has zero- and negative-duration appointments. All records
with any such invalid values have been removed from the dataset. Invalid values are found
in four attributes, explained in Table 1. That includes records where: (1) ‘Appointment
Duration’ is less than 10 min, (2) ‘Date of Birth’ is a future date, (3) ‘Appointment Date’ is
missing, or (4) ‘Appointment Time’ is missing. Records of patients without appointments
(i.e., walk-ins) are removed because they are only admitted if physicians are available.
Therefore, they are not part of the prediction task.

Training and testing data split
Machine learning models are generally trained by fitting a training dataset. They are then
evaluated on a different testing dataset. The train and test datasets are often assumed to be
drawn from the same underlying data distribution. However, this may not always be the
case with time-series data where the data distribution changes over time, aka., concept drift

Figure 2 Distribution of appointment duration in minutes.
Full-size DOI: 10.7717/peerj-cs.1147/fig-2
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Table 2 Description of the computed variables in the dataset.

Variable Description

Multi appointments More than one appointment on the same day

Age at appointment date Patient age at the appointment date

Lead time Days between booking and appointment dates

Days since last appointment Days between the last and upcoming appointments

Appointment day Day of the week that the appointment is booked in

Is weekend If the appointment is on the weekend

Month The month that the appointment was booked in

In holiday If the appointment is scheduled to be during a national holiday

In Ramadan If the appointment is in Ramadan

Temperature The temperature on the appointment day

Weather The weather on the appointment day

Hour The appointment time in hours

No-show All # Number of all no-shows

No-show All % Percentage of all no-shows of a particular patient

No-show10 # Number of no-shows based on the last ten appointments

No-show10 % Percentage of no-shows based on the last ten appointments

No-show Seq3 Binary sequence representation of last three appointments

No-show Seq5 Binary sequence representation of last five appointments

No-show Seq7 Binary sequence representation of last seven appointments

No-show Seq10 Binary sequence representation of last ten appointments

Figure 3 Probability of showing up with respect to the patient’s age at appointment date.
Full-size DOI: 10.7717/peerj-cs.1147/fig-3
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(see (Gama et al., 2014) for a survey). Data may be partitioned into training and testing
data in different ways. For example, in k-fold cross-validation, performance is reported on
all the data after k runs, i.e., data is partitioned into k folds. For each fold/run, models are

Figure 4 Probability of showing up with respect to lead time.
Full-size DOI: 10.7717/peerj-cs.1147/fig-4

Figure 5 Probability of showing up with respect to no-show rate in the last 10 appointments.
Full-size DOI: 10.7717/peerj-cs.1147/fig-5
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fit to the remaining k−1 folds, and the fold is used to test the models. Such a setting violates
the temporal aspect of time-series data where concept drift may exist.

Our task of predicting appointment no-show has the temporal dimension, i.e., time-
dependent. Therefore, we follow experimental settings that best resemble real-world,
deployed predictive models on time-series data where concept drift may exist. To do so,
appointments are sorted by the appointment date for all experiments. After sorting, 90% of
the data points are used to train models, and 10% of the data points are reserved for testing
the models. We do so to avoid timely-intermixing the appointments. This way guarantees
that none of the appointments in the testing set preceded any appointment in the training
set. Following these settings, the first set of experiments is done to predict the no-show on
all appointments, regardless of the appointment duration. In this set of experiments,
models are trained on several feature sets, as explained in “Results”.

In another set of experiments, the models are fit to predict longer appointments, e.g.,
appointments for more lengthy procedures such as crown mounting and root canal. This
category of appointments costs the clinic significantly more than shorter appointments as
they rely on the high involvement of skilled physicians and at least two assistants.

Optimizing hyperparameters
Most supervised machine learning algorithms can be controlled to learn representations
from data through a set of parameters, often known as hyperparameters, e.g., learning
rates, number of predictors in ensemble machine learning algorithms, depth of the
decision trees, types of kernels, etc. The optimal set of hyperparameters should be
empirically identified from the training dataset. The goal of such optimization is to
produce the best-performing models (in terms of the efficiency of the learning process and
the accuracy of the models). Grid search is perhaps the most commonly used
hyperparameter tuning algorithm because of its implementation simplicity (Bergstra &
Bengio, 2012). Grid search attempts to exhaustively search through a pre-defined set of
hyperparameter space of a given algorithm.

In this article, we run a grid search for all experiments and models. Table 3 summarizes
the hyperparameter search space and the optimal set of parameters that resulted in the

Figure 6 Probability of showing up with respect to the hour shift of the day. Full-size DOI: 10.7717/peerj-cs.1147/fig-6
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highest F1 score. Grid search runs are parallelized on a CPU computer equipped with an 8-
core Intel Core i7 Processor.

Supervised learning
After reviewing the related literature and empirically testing over eight different machine
learning models, including k-nearest neighbors, naive Bayes, and decision tree, among
others, we use grid search to find the optimal hyperparameter values on the three best-
performing supervised learning models: (1) logistic regression (LR), (2) random forests
(RF), and (3) gradient boosting (GB).

Logistic regression (LR): is a statistical model that is widely used for classification
applications in various scientific fields. In logistic regression, a logistic function is fit to data
to model the uncertainty that a dependant variable belongs to a certain binary class label, a
setting that is similar to the problem addressed in this study. However, there are various
extensions to logistic regression for multinomial classification problems (El-Habil, 2012).

Random forests (RF): is an ensemble learning model that is commonly used for
classification (Breiman, 2001). A random forest works by constructing a set of classification
tree predictors; each tree is induced from a set of data points sampled independently and
trained on a sampled set of features, depending on the selected method. A large body of
work in the literature has proposed different approaches to training individual trees in the
forest for varying predictive tasks. In general, a significant improvement in predictive
accuracy is achieved when the ensemble combines votes from the individual tree
predictions.

Gradient boosting (GB): is similar to random forests, and it is an ensemble supervised
machine learning approach that uses a set of decision trees. However, gradient boosting is
an iterative model that builds the trees in a stage-wise manner by adding a weak learner at
each learning stage to optimize the current ensemble of learners, i.e., boosting (Friedman,
2002).

Table 3 Description of the hyperparameter search space and the optimal set of parameters that resulted in the highest F1 score.

ML model Hyperparameter Description Search values Optimal values
by grid search

LR ‘penalty’ Specifies the norm of penalty term L1, L2 L2

‘C’ A constant controlling the regularization strength 0.001, 0.01, 0.1, 1, 10 0.001

‘max_iter’ Maximum number of iterations for the solvers to converge 100, 250, 500 500

RF ‘n_estimators’ Number of trees in the forest 100, 250, 500 100

‘max_depth’ Maximum depth of trees in the forest 5, 8, 10, 30, 40, 50 10

‘min_samples_split’ Minimum number of samples required to be at a leaf node 2, 5, 10, 20, 50, 70, 80, 90, 100 70

GB ‘learning_rate’ A constant controlling the contribution of each tree 0.001, 0.01, 0.1, 1 1

‘n_estimators’ Number of boosting stages performed 50, 100, 200, 300, 400, 500, 550, 600 500

‘max_depth’ Number of nodes in each individual tree 2, 3, 5, 8 2

‘min_samples_leaf’ Minimum number of samples required to be at a leaf node 1, 5, 10 1
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Performance evaluation
To report the prediction performance, we compare the labels predicted by our models with
the actual labels from the ground truth testing dataset. We use different evaluation metrics
to quantify the prediction performance. The first set of metrics is the commonly used
precision, recall, and F1 score. In the problem of predicting dental appointment no-shows,
precision is the fraction of appointments that are correctly predicted to be unattended
from the total number of predicted appointments, while recall is the fraction of
appointments that are correctly predicted to be unattended from the total unattended
appointments. F1 score is the harmonic mean of precision and recall. Table 4 summarizes
how each metric is computed.

Another metric we use is the Receiver Operating Characteristic (ROC) curve, a
graphical chart that illustrates the performance of a binary predictor. At each confidence
score threshold, ROC plots the true positive rate against the false positive rate. True
positive rate (aka., sensitivity or recall) in this study is the fraction of the correctly
predicted no-show appointments from all no-show appointments. Moreover, the false
positive rate (aka., false alarm ratio) is the fraction of the appointments that are wrongly
predicted as no-shows from all attended appointments. ROC only shows the performance
graphically. Therefore, we use the area under the ROC curve (AUC) to quantify the
performance of the predictors. A perfect predictor would have an AUC of 1, while a
random predictor with no discrimination power would be expected to have an AUC that is
close to 0.5. AUC is reported for all results in “Results”.

RESULTS
This section shows the performance results for the three selected models explained in
“Supervised Learning”. We choose ‘No-show Seq10’ of the no-show features, shown in
Table 2, because it captures more history, see “Comparing No-Show Features” for details.
Fig. 7 presents the ROC curve for the three no-show predictor models on the testing
dataset. It is clearly shown that the three models are performing almost the same in terms
of AUC. Yet, they are offering different tradeoffs between true positive and false positive
rates. Such tradeoffs are presented in the precision-recall curve as in Fig. 8.

Next, we show the F1 scores and compare the three models across various threshold
values in Fig. 9. The models have similar F1 scores, but it is noticeable that GB tolerates
threshold changes better than LR and RF. Given that the prior no-show probability is
42.68% in our testing dataset, our highest model with an F1 of 66.5% outperforms the
baseline with an F1 increase of over 55%.

Table 4 Evaluation metrics. TP, true positives; FP, false positives; FN, false negatives; TN, true
negative.

Metric Formula

Precision TP=TP þ FP

Recall TP=TP þ FN

F1 2 � precision � recall=precisionþ recall
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In the following subsections, we show results for four sets of experiments: (1)
experiments providing a comparison between the different no-show features, (2)
experiments evaluating the performance of our no-show prediction models on
appointments with long duration, (3) experiments reporting the results of an ablation test

Figure 7 Receiver operating characteristic (ROC) curve comparing the three models on the testing
dataset. Full-size DOI: 10.7717/peerj-cs.1147/fig-7

Figure 8 Precision-recall curve comparing the three models on the testing dataset.
Full-size DOI: 10.7717/peerj-cs.1147/fig-8
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to identify important features that are most indicative of class label, and (4) experiments
evaluating the generalization of our models on a different dataset.

Comparing no-show features
This article proposes a novel method to represent no-show history as a binary sequence of
events, as discussed in “Comparing No-Show Features”. To show the utility of the no-show
history representation approach, we evaluate this approach for the last n previous
appointments ðaiÞni¼1; ai 2 f0; 1g. This sequence representation is compared to other
methods that represent previous no-show history as a numerical feature, namely ‘No-show
All #’, ‘No-show All %’, ‘No-show10 #’, and ‘No-show10 %’, as described in Table 2, to
evaluate the value of learned no-show sequences.

Table 5 provides a comparison between these no-show features. Each row shows the
reported AUC for one of the prediction models. The second column, ‘Baseline’, represents
the baseline result for each prediction model where all no-show history features are
removed. We keep all other features that are not related to no-show history in all
experiments. Each of the remaining columns represents adding its corresponding no-show
history feature.

Figure 9 F1 by threshold comparing the three models on the testing dataset.
Full-size DOI: 10.7717/peerj-cs.1147/fig-9

Table 5 Reported AUC results for the three models on the testing dataset using various representations of no-show history.

Model Baseline No-show All
#

No-show All
%

No-show10
#

No-show10
%

No-show
Seq3

No-show
Seq5

No-show
Seq7

No-show
Seq10

Markov
model

LR 0.676 0.674 0.695 0.677 0.695 0.718 0.719 0.718 0.717 0.712

RF 0.726 0.723 0.725 0.726 0.726 0.728 0.731 0.727 0.718 0.716

GB 0.724 0.726 0.724 0.732 0.727 0.728 0.722 0.722 0.712 0.711
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Considering the logistic regression model, the binary sequence representations of no-
show history outperform the numerical features by 2–5%. There is no significant difference
between the examined lengths of no-show sequences. For the numerical no-show history
features, percentage values outperform counter values by about 2%. For the remaining RF
and GB models, there are insignificant differences between the various no-show history
features. The reported AUC baseline numbers (second column) for the RF and GB models
are very close to the AUC numbers when adding the no-show history features.

We compare our binary sequence representation of no-show history with the Markov
model approach to compute no-show probabilities based on the last 10 appointments,
proposed in (Goffman et al., 2017). The AUC values for the Markov model, see the last
column of Table 5, are very close to our binary sequence representation for the three
machine learning models.

Long appointments
Appointments that have longer duration are more costly as they occupy more time slots
and probably include advanced medical procedures. Consequently, these appointments are
more important for predicting no-shows accurately. Furthermore, we hypothesize that
they have lower no-show rates as patients should be more considerate not to miss them.
For this set of experiments, we look at appointments with duration � d where
d 2 f15; 30; 40; 45; 50; 60g. We report the no-show rate and the number of appointments
in training and testing data sets for each group d in Table 6. It turns out that the no-show
rates are very similar for the various duration groups. We do not report the AUC for the
various duration groups because they are comparable, indicating an insignificant impact.

Important features
We perform an ablation test to determine the important features. First, we add all features
and measure AUC as a baseline, see second column of Table 7. Then, we remove each
feature independently and report AUC to determine the importance of the feature. In

Table 6 No-show percentage and the number of appointments in the training and testing data sets
for each grouping of duration.

Appointment length

Stats � 15 � 30 � 40 � 45 � 50 � 60

No-show % 42% 43% 44% 43% 43% 43%

Number of training appointments 173,537 143,899 61,155 42,522 36,152 31,036

Number of testing appointments 8,599 7,225 3,234 2,249 1,869 1,631

Table 7 Reported AUC results for the three models showing the most significant features.

Model All features Lead time No-show history

LR 0.717 0.642 0.676

RF 0.718 0.640 0.726

GB 0.712 0.633 0.724
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other words, each experiment includes all features except for the tested feature.1 We show
the results for two features only, see Table 7, as other features are insignificant with less
than 2% difference. Lead time is the most significant feature causing the AUC to drop
7.5%, 7.8%, and 7.9% with LR, RF, and GB, respectively, an observation that is confirmed
by the existing literature (AlMuhaideb et al., 2019; Chiara & Domenic, 2018; Goffman et al.,
2017; Harvey et al., 2017) that appointment lead time is one of the strong predictors of
future no-shows. Eliminating no-show history features causes the AUC to drop by 4.1%
with the LR model and is insignificant with the other models.

Model generalization
It is critical for machine learning models not to be limited to their training and testing
datasets. This ensures they are widely applicable and adapt to data changes without
significant performance degradation. To evaluate the generalization of the trained models,
we obtain a new dataset from a small dental clinic in Riyadh, Saudi Arabia. The dataset
consists of 49,007 appointments with 41% no-shows.

We use this new dataset to test the three machine models trained on the first dataset,
which is from a different clinic. We slightly modify the training dataset by removing the
‘SMS’ feature, which specifies whether an SMS confirmation message has been received
because the new dataset does not have it. We also use the ‘No-show Seq3’ feature instead of
‘No-show Seq10’ due to the small size of the new dataset that generated insufficient no-
show history.

Table 8 shows the AUC and F1 scores comparing the performance of the three models
that are trained on 90% of the first dataset. The second column of Tables 8a and 8b shows
the results for the 10% testing of the first dataset, while the third column shows the results
for the whole new dataset. The results for both AUC and F1 scores for the new dataset are
very similar to scores on the first dataset, showing that the three models generalize very
well. Furthermore, given a 41% no-show for the new dataset as a baseline, our models
outperform it by a percentage increase of over 62% in the F1 score.

Table 8 Evaluating the generalization of our models that are trained on the first dataset on a new
dataset.

(a) AUC

Model First dataset New dataset

LR 0.708 0.706

RF 0.731 0.748

GB 0.727 0.710

(b) F1 scores

Model First dataset New dataset

LR 0.652 0.657

RF 0.673 0.665

GB 0.669 0.653

1 Since we are r es may minimize the
impact of each other.
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DISCUSSION
The patient no-show problem has a tremendous negative impact on dental clinics
financially and operationally. Classical strategies to mitigate this problem include
overbooking and sending a reminder to the patients. However, these strategies have
limited success as they may not consider patients individually. In the literature, several
works have adopted machine learning algorithms to develop a model to predict patients’
no-shows based on various features. This work utilizes machine learning algorithms to
build a very effective predictive model of the no-show patient and improves the
implemented classical strategies.

Previous studies considered the patient history of no-shows and the lead time as the
essential features in building the no-show model. Other features such as age, appointment
time, duration, distance from the clinic, whether a reminder has been sent, etc., are also
considered. However, the importance of these features is relatively less than the history of
no-shows and the lead time as they do not provide important information to the model.
Similarly, this work focuses on these two features as the main features to develop the
model. However, the history of no-shows is further categorized into a sequence of binary (0
for missed appointments and 1 for attended appointments). This representation allows the
model to learn the behavior rather than depending on statistical calculations.

Implementing traditional strategies, including overbooking or sending reminders
blindly to the patients, could unexpectedly increase the overall cost or overwhelm the
dental clinic resources, eventually diminishing the quality of the provided services. The
proposed no-show model may help implement a careful overbooking strategy by
scheduling a reduced appointment time slot for patients with a high no-show prediction in
contrast to the traditional scheduling where all patients have the same appointment time
length. Thus, it would help to balance the cost of no-shows and the use of the clinic
resources effectively.

Our results demonstrate the importance of considering the right representation and
weighting the importance of one feature over others. More specifically, our results of the
developed models utilizing the sequence of binary representation show that the accuracy
score has improved noticeably as the best model achieves AUC of 0.718 beating the
baseline approach with a percentage increase of over 62%. Additionally, the results of
evaluation of the generalization of the model, using the develop models to a new dataset,
show that the developed models are not limited to a specific dataset confirming the
generality and ensuring the applicability with negligible performance degradation.

Several potential applications could utilize our model. For instance, deploying a
recommender system on top of the predictive no-show model could even boost certainty
and improve costs, resources, and patient satisfaction. For a given patient, the
recommender system, with the aid of the no-show model, suggests the optimal time slot at
which she is more likely to attend. For example, if a patient had missed some appointments
in the past in the early morning, the recommender system may suggest an afternoon time
slot. Additionally, the system could suggest a reduced time slot appointment for a patient
with a high no-show risk; even if the patient attended, the inconvenience for the following
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appointments would be minimal. On the other hand, her absence would not considerably
affect the utilization of the available resources.

Our predictive model has some limitations. First, some variables in the datasets are
unavailable, such as home address and distance to the clinic, which could even help the
model accuracy overall and reveal more meaningful insights. Second, external factors such
as the daily weather or some significant events have not been considered. Including such
factors could improve the model accuracy.

RELATED WORK
There is an abundance of papers that studied the behavior of no-shows in various domains
(Lawrence, Hong & Cherrier, 2003; Li et al., 2019a; Phumchusri & Maneesophon, 2014),
such as healthcare, airlines, hotel, and restaurant reservations. In the healthcare domain,
earlier work in the literature (Dove & Schneider, 1981; Oppenheim, Bergman & English,
1979; Shonick, 1977) studied the factors of no-show behavior and evaluated the
effectiveness of various interventions, such as sending reminders and charging service fees,
to mitigate no-shows (Garuda, Javalgi & Talluri, 1998). For predicting no-shows and the
number of no-show patients, early work used statistics and data mining techniques, such
as decision trees (Dove & Schneider, 1981) and association rules (Glowacka, Henry & May,
2009).

These techniques are used to discover patterns and properties of the data. They are
unable to effectively capture and predict complex behavior, such as no-shows, that involve
several factors. Furthermore, these techniques are not able to adapt to changing behavior
and new data effectively. They also failed to implement an appropriately targeted
intervention such as using text messages or reminder calls 24 h in advance to reduce no-
shows.

The early 2010s have seen a proliferation of studies to predict no-shows for individual
patients, using various machine learning and probabilistic modeling techniques. This
includes employing one or more techniques, such as logistic regression (Alaeddini et al.,
2011; Alshaya, McCarren & Al-Rasheed, 2019; Chiara & Domenic, 2018; Ding et al., 2018;
Goffman et al., 2017;Harvey et al., 2017; Lenzi, Ben & Stein, 2019;Mohammadi et al., 2018;
Nelson et al., 2019; Salazar et al., 2020; Srinivas & Ravindran, 2018), decision trees (Salazar
et al., 2020), random forests (Alshaya, McCarren & Al-Rasheed, 2019; Ferro et al., 2020;
Nelson et al., 2019; Salazar et al., 2020; Srinivas & Ravindran, 2018), neural networks
(Ferro et al., 2020;Mohammadi et al., 2018; Srinivas & Ravindran, 2018), gradient boosting
(Alshaya, McCarren & Al-Rasheed, 2019;Denney, Coyne & Rafiqi, 2019;Nelson et al., 2019;
Srinivas & Ravindran, 2018), NaïveBayes (Mohammadi et al., 2018), Bayesian Belief
Networks (Li et al., 2019b; Simsek et al., 2021; Topuz et al., 2018), Support Vector Machine
(Alshaya, McCarren & Al-Rasheed, 2019;Nelson et al., 2019), Hoeffding trees (AlMuhaideb
et al., 2019) and others (Alaeddini et al., 2011; Denney, Coyne & Rafiqi, 2019). Carreras-
García et al. (2020) conduct a comprehensive systematic literature review analyzing and
highlighting the limitations of the proposed predictive patient no-show models.

Some papers used different techniques to capture features (Goffman et al., 2017), select
variables (Simsek et al., 2021; Topuz et al., 2018), and balance the classes of data (Alshaya,
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McCarren & Al-Rasheed, 2019; Nelson et al., 2019; Simsek et al., 2021). Techniques include
class weights (Nelson et al., 2019), random undersampling (Nelson et al., 2019; Simsek
et al., 2021), Synthetic Minority Oversampling Technique (SMOTE) (Nelson et al., 2019;
Simsek et al., 2021), and elastic net (Topuz et al., 2018). To effectively capture no-show
history, Goffman et al. (2017) capture patients’ no-show history as binary sequences and
uses a Markov model to compute a probability for each observed sequence of no-shows in
the dataset. First, the training dataset is processed to compute the no-show probability for
each observed sequence of no-show history. Each probability is computed by considering
possible next future outcomes for the corresponding no-show history sequence in the
dataset. Our work is similar in that it represents no-show history as binary sequences.
However, our approach maintains the no-show history sequences and tries to learn the
behavior associated with different sequences from data training, including all features.
Their work requires processing the dataset to compute probability tables for different
lengths of sequences and reducing them to numbers based solely on observed no-show
history in the dataset.

Similar to our findings, several papers (AlMuhaideb et al., 2019; Chiara & Domenic,
2018; Goffman et al., 2017; Harvey et al., 2017) reported that the features of previous no-
show history and appointment lead time were strong predictors of future no-shows.
Dantas et al. (2018) summaries in a condensed systematic review of 105 studies focused on
no-shows in appointment scheduling revealing that socioeconomic status and history of
no-shows have a huge impact on the patients to miss their appointments. The importance
of other features, such as insurance (Harvey et al., 2017), multiple same-day appointment
(Goffman et al., 2017), gender (Chiara & Domenic, 2018; Simsek et al., 2021), age (Chiara
& Domenic, 2018; Simsek et al., 2021), care cost (Nelson et al., 2019), season (Li et al.,
2019b), count of previous appointments (Nelson et al., 2019), online doctor rating (Fan
et al., 2021), and utilizing a local weather data (Liu et al., 2022), varies across studies. This
is because the no-show behavior varies by demographics, clinic specialties, and other
factors. This calls for fine-grained studies covering specific specialties, clinics (Ding et al.,
2018; Mohammadi et al., 2018) and demographics to discover useful patterns that may
help to predict no-shows. For example, (Mohammadi et al., 2018) collected data from 10
facilities and observed differences in the strong predictors of no-shows across clinics and
facilities. Ding et al. (2018) examined patient appointments across 14 specialties, not
including dentistry, and 55 clinics. Their results showed that fine-grained data, which
captures clinic and specialty details, is more likely to perform better.

Several research papers have contributed by studying data from different populations
and specialties, see Table 9. These papers collected data from the United States (Alaeddini
et al., 2011; Denney, Coyne & Rafiqi, 2019; Ding et al., 2018; Goffman et al., 2017; Harvey
et al., 2017; Li et al., 2019b; Mohammadi et al., 2018; Srinivas & Ravindran, 2018; Topuz
et al., 2018), United Kingdom (Nelson et al., 2019), Brazil (Alshaya, McCarren & Al-
Rasheed, 2019; Lenzi, Ben & Stein, 2019; Salazar et al., 2020; Simsek et al., 2021), Italy
(Chiara & Domenic, 2018), Columbia (Ferro et al., 2020), and Saudi Arabia (AlMuhaideb
et al., 2019). Their data covered various clinics and specialties, such as primary care
(Denney, Coyne & Rafiqi, 2019; Ferro et al., 2020; Lenzi, Ben & Stein, 2019; Simsek et al.,
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2021; Srinivas & Ravindran, 2018), community health centers (Mohammadi et al., 2018),
veteran facilities (Alaeddini et al., 2011; Goffman et al., 2017), Radiology (Chiara &
Domenic, 2018; Harvey et al., 2017; Nelson et al., 2019), Pediatrics (Topuz et al., 2018), and
a mix of specialities (AlMuhaideb et al., 2019; Ding et al., 2018; Li et al., 2019b). Compared
to previous studies, this article focuses on predicting no-shows for dental appointments in
Saudi Arabia.

No-show predictions are utilized to improve the scheduling of appointments, resulting
in better utilization of resources and satisfaction of patients. No-show predictions may be
used to guide overbooking decisions (Chiara & Domenic, 2018; Li et al., 2019b; Srinivas &
Ravindran, 2018), facilitate targetted interventions (Li et al., 2019b; Simsek et al., 2021) and
reduce the cost of appointment reminders (Ferro et al., 2020; Nelson et al., 2019). For
example, Srinivas & Ravindran (2018) proposed multiple overbooking and sequencing
strategies for multi-stage appointments. Similarly, Chiara & Domenic (2018) presented an
algorithm to compute the minutes eligible for overbooking.

Li et al. (2019b) developed two models: one to predict whether a patient would confirm
her appointment or not and the second to compute the no-show probability. The first
model clusters patients into three groups, which may be used for targeted interventions,
and its output is fed to the second model, along with other features. The output of the
second model is used to improve overbooking strategies with respect to several parameters,
such as patient waiting cost, clinic overtime cost, and idle time cost. Nelson et al. (2019)
proposed an equation to calculate the benefit of sending reminders to a particular set of
patients compared to all patients.

Table 9 Studied specialties and population in the literature.

Study Speciality Location

Salazar et al. (2020) Unknown Brazil

Ferro et al. (2020) Primary care Columbia

AlMuhaideb et al. (2019) Various Saudi Arabia

Alshaya, McCarren & Al-Rasheed (2019) Unknown Brazil

Denney, Coyne & Rafiqi (2019) Primary care United States

Nelson et al. (2019) Radiology United Kingdom

Lenzi, Ben & Stein (2019) Primary care Brazil

Li et al. (2019b) Various United States

Simsek et al. (2021) Primary care Brazil

Chiara & Domenic (2018) Radiology Italy

Srinivas & Ravindran (2018) Primary care United States

Ding et al. (2018) Various United States

Mohammadi et al. (2018) Primary care (community health centers) United States

Topuz et al. (2018) Pediatric United States

Goffman et al. (2017) Primary care (veterans health centers) United States

Harvey et al. (2017) Radiology United States

Alaeddini et al. (2011) Primary care (veterans health centers) United States
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CONCLUSION
We study the patient no-show problem in the context of the dental appointment where
more than 40% of the patients miss their appointments for various reasons. Consequently,
it has a significant negative impact on the clinic resources and the patient’s oral health.
Traditional solutions such as overbooking and sending a reminder have limited success
and failed to address the problem effectively. In this work, we utilize state-of-the-art
machine learning algorithms to develop predictive models to anticipate no-shows. We use
locally collected dataset to develop the predictive models. The key feature utilized in the
developing the predictive models is the patient prior no-show history. Thus, we propose a
novel representation as a binary sequence of events that the model can effectively learn the
behavior of the attendance. The results show that our approach is both viable and
generalizable. The experiments show the best performing model achieves AUC of 0.718,
and the developed models outperformed the baseline approach with a percentage increase
of over 62%. Finally, we discuss various applications, such as a personalized recommender
system for appointment time, that could be built on the deployed models to boost the
utilization of the dental clinic resources and increase overall patient satisfaction. Our code
and the dataset are freely available for the community to reproduce and investigate other
ideas.

In future work, we plan to collect the dataset from the same dental clinics to study the
patient no-show problem during and post the outbreak of the COVID-19 pandemic and
how the results are different before the pandemic. Additionally, combining predictive no
show model and cancellation model is another promising direction that may reduce the
cost and utilize the healthcare clinic resources effectively.
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