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Abstract

Objectives—To develop and validate a prediction model for fat mass in infants ≤ 12 kg using 

easily accessible measurements such as weight and length.

Study design—We used data from a pooled cohort of 359 infants aged 1–24 months and 

weighing 3–12kg from three studies across Southern California and New York City. The training 

data set (75% of the cohort) included 269 infants and the testing data set (25% of the cohort) 

included 90 infants aged 1–24 months. Quantitative magnetic resonance was used as the standard 

measure for fat mass. We used multivariable linear regression analysis, with backwards selection 

of predictor variables and fractional polynomials for non-linear relationships to predict infant fat 

mass (from which lean mass can be estimated by subtracting resulting estimates from total mass) 

in the training data set. We used 5-fold cross-validation to examine overfitting and generalizability 

of the model’s predictive performance. Finally, we tested the adjusted model on the testing data 

set.

Results—The final model included weight, length, sex, and age, and had high predictive ability 

for fat mass with good calibration of observed and predicted values in the training data set 

(optimism-adjusted R2: 92.1%). Performance on the test dataset showed promising generalizability 

(adjusted R2: 85.4%). The mean difference between observed and predicted values in the testing 

dataset was 0.015 kg (−0.043 to −0.072 kg; 0.7% of the mean).

Conclusions—Our model accurately predicted infant fat mass, and could be used to improve the 

accuracy of assessments of infant body composition for effective early identification, surveillance, 

prevention, and management of obesity and future chronic disease risk.
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Childhood obesity represents an urgent public health issue, as almost 20% of children have 

obesity compared with ~10% in the year 20001. Childhood obesity can originate early in 

life, with 8% of infants and 20% of preschoolers already classified as overweight or obese2. 

Identifying overweight and obesity in infancy could allow for early surveillance, prevention, 

and management of long-term obesity risk. Although simple-to-obtain measures such as 

growth z-scores and body mass index (BMI) can be useful for estimating obesity risk in 

later life3,4, body composition is a more accurate indicator of metabolic health5,6. This 

is because anthropometric-based measures do not provide insight on the proportion of fat 

versus lean mass6. However, there are many challenges with measuring body composition in 

infants, as outlined in a recent National Institutes of Health (NIH) workshop7. For example, 

skinfold measurements are relatively easy to obtain but are prone to measurement error8. 

More accurate and precise methods, such as dual energy X-ray absorptiometry (DEXA) 

require stillness for prolonged periods and expose infants to small amounts of radiation9–12. 

Another highly accurate and precise method – quantitative magnetic resonance (QMR) – has 

benefits over DEXA in that it emits no radiation, does not require stillness, and takes just 

3 minutes to complete11. However, QMR is a relatively novel technology that is expensive 

and not widely available for use in infants. For this reason, simple methods for infant body 

composition assessment, based on routinely available measurements such as weight and 

length, would be of considerable value. Therefore, the aim of this study was to develop 

predictive models using easily obtained information (weight, length, sex, and age), for use 

by investigators and clinicians to estimate infant fat and lean mass without the need for more 

complex and burdensome assessment.

Methods

We pooled data from two on-going longitudinal cohort studies of Hispanic infants in the 

Los Angeles area (NIH R01DK110793 and NIH R01DK109161) and one multi-ethnic 

cohort from New York City (The Lifestyle Intervention for Two (LIFT) Study14). Inclusion 

criteria for the Los Angeles cohorts were maternal and paternal Hispanic self-identity; 

singleton pregnancy; and the ability to read/understand English or Spanish at a 5th grade 

level. Exclusion criteria were pre-existing medical, mental, or cognitive issues preventing 

participation; medications that affect body weight or composition, insulin resistance, or 

lipid profiles; current smoking or use of other recreational drugs; gestational diabetes; 

pre-term/low birth weight infants or diagnosis of any fetal abnormalities; and maternal age 

less than 18 years at time of delivery. Infants in the Los Angeles cohorts were examined at 

5 longitudinal timepoints in both studies: 1, 6, 12, 18, and 24 months. However, because 

both Los Angeles studies are on-going, no infants had more than three longitudinal QMR 

measurements in the current analysis. The New York City cohort contained two longitudinal 

timepoints at 3.5 and 12 months of age. Inclusion criteria for the New York City cohort 

were singleton viable pregnancy; body mass index ≥ 25; age ≥ 18 years; and ability 

to contact. Exclusion criteria were diagnosis of diabetes or hemoglobin A1c (HbA1c) ≥ 
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6.5%; ) known fetal anomaly; termination of pregnancy; history of 3 or more consecutive 

first trimester miscarriages; certain medications including metformin and mood stabilizers; 

smoking; and other medical, psychiatric, social, or behavioral factors that could interfere 

with study participation. Because both studies included data points from the same individual 

at multiple time points (up to a maximum of three time points per infant), we tested 

whether any correlation between measurements from the same infant affected results using 

generalized estimating equations (GEE). We only included infants ≤12kg because Infant 

QMR is calibrated for weights between 2 and 12 kg13. All infants were weighed without 

clothes and wearing a clean diaper. All studies included weight, length, sex, age, and fat 

and lean mass from Infant QMR (EchoMRI-Infant, Echo Medical Systems, Houston, TX). 

Precision and accuracy data for the Infant QMR instrument is provided as supplementary 

material (Appendix, Tables V and VI; available at www.jpeds.com).

During model development, we considered infant weight (kg), length (cm), sex, age (days), 

and ethnicity as candidate predictors. The full pooled data set of n = 574 observations from n 

= 359 individual infants was split into 75% training and 25% test datasets whereby repeated 

measures from the same infant were contained within the same split to reduce bias. The 

training dataset was restricted to those with complete data for each of these variables and 

fat mass, and had a sample size of n = 269 infants with n = 431 observations. This sample 

size satisfies both the minimum 10 people per candidate predictor rule of thumb and the 

minimum sample size requirements for prediction models proposed elsewhere15,16.

RStudio version 1.2.5042 was used for all analyses17. We followed the TRIPOD (transparent 

reporting of a multivariable model for individual prognosis or diagnosis) guidance 

for development and reporting of multivariable prediction models18. We modelled our 

procedures after those of Hudda et al, who developed a similar predictive model in children 

aged 4–15 years19. Linear regression was used to develop a prediction model with fat mass 

as the outcome, and weight, length, age, ethnicity, and sex as candidate predictors. Using 

a stepwise approach through backwards elimination, candidate predictors were excluded 

based on their statistical significance (Wald test p > 0.05). Non-linear relationships between 

outcome and continuous predictors were considered by identifying, at each iterative step of 

the stepwise process, the best fitting fractional polynomial terms, using the mfp R package. 

This model development process led to final models for the prediction of fat and lean mass 

based on the selected predictors along with their corresponding estimated β coefficients and 

associated intercept terms.

Performance of the final model was assessed using several approaches:

• R2 – proportion of the variance in fat and lean mass explained by the included 

predictors

• Calibration slope – based on regressing observed on predicted values of fat and 

lean mass (with a slope of 1 being ideal).

• Calibration intercept term – based on regressing observed on predicted values of 

fat and lean mass (with an intercept of 0 being ideal)

• Root mean square error (RMSE) – the standard deviation of the residuals
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We also assessed calibration graphically by displaying fat and lean mass on calibration 

plots. We carried out an internal validation to estimate optimism (the level of model 

overfitting) and correct measures of predictive performance (R2, calibration slope, and 

calibration intercept) for model overfitting by 5-fold cross validation of the test data using 

the rms R package. Each of these cross-validation sample models within the original 

dataset was applied to estimate optimism in the performance statistics (difference in test 

performance and apparent bootstrap performance) of R2, calibration slope, and calibration 

intercept, referred to as optimism adjusted R2, calibration slope, and calibration intercept, 

respectively. Estimates of a uniform shrinkage factor (the average calibration slope from 

each of the cross-validation samples) were multiplied by the original β coefficients to obtain 

optimism adjusted coefficients. Model intercepts were then re-estimated using the metamisc 
R package to maintain overall model calibration, producing a final model.

The final prediction model was applied to each participant in the test dataset, which 

contained n = 90 infants with n = 143 observations. Model performance was assessed using 

R2, calibration slope, calibration intercept, and RMSE. Overall calibration of the model was 

assessed graphically by plotting agreement between predicted and observed values. Finally, 

the intercept term was re-estimated to maintain calibration of the model.

Results

The training dataset included 431 observations from 269 infants between 1–24 months of 

age and ≤12 kg with complete data on weight, length, sex, age, and triplicate Infant QMR 

measurements. Summary statistics are provided in Table I(available at www.jpeds.com).

The final multivariable model included four out of the five candidate predictors (weight, 

length, age in days, and sex). Ethnicity was excluded by backwards stepwise selection, 

suggesting that ethnicity was not an important determinant of infant fat mass prediction 

in our model. Fractional polynomial terms for the continuous predictors were included in 

the final model to allow for non-linear relationships. The model showed high predictive 

performance for fat mass (R2 = 92.6%) and was perfectly calibrated in the development 

data (apparent slope = 1, apparent intercept = 0). This was confirmed by the calibration 

plot, assessing agreement between observed and predicted fat and lean mass (Figure 1). The 

difference between mean observed and predicted values for fat and lean mass was zero. The 

RMSE value was 0.238 kg.

5-fold internal cross-validation on the training data set showed little model overfitting, which 

was reflected in the similar apparent and optimism-adjusted performance statistics (Table II). 

After adjustment for overfitting, the final prediction model maintained a high proportion of 

the variance in fat mass with an adjusted R2 value of 92.1%. The uniform shrinkage factor 

was 0.996 – very close to an ideal slope of 1, meaning there was no important overfitting. 

This uniform shrinkage factor was multiplied by the original model β coefficients to obtain 

optimism-adjusted coefficients before re-estimation of the intercept term (Table III; available 

at www.jpeds.com). The final model is included in the Appendix.
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We applied our final prediction model to the test data set, which included 90 infants with 

143 observations (Table I). The resulting R2 was 85.4% with moderate RMSE values for fat 

and lean mass of 0.347 kg, respectively (Table IV; available at www.jpeds.com). The model 

showed great calibration, with an intercept of −0.076 and slope of 1.04. The mean difference 

between observed and predicted values was 0.015 kg (Figure 2).

To determine whether our predicted fat and lean mass measures are useful beyond standard 

World Health Organization (WHO) growth charts for infants, we tested how well infant 

fat mass correlated with WHO weight-for-length z scores – the recommended measure for 

infants aged 0–24 months20. We also compared fat mass with infant BMI z-score, which 

uses the same input measures as our equation (weight, length, sex, and age). We found that 

infant fat mass correlated poorly with both weight-for-length and BMI z-scores (Pearson’s 

R = 0.39 and 0.36, respectively, both p < 0.0001). We also transformed predicted fat 

mass into z-scores and compared these against weight-for-length and BMI z-score. Again, 

there was a significant but weak relationship between predicted fat mass z-scores and both 

weight-for-length and BMI z-scores (Pearson’s R = 0.22, p = 0.008 and 0.36, p < 0.001, 

respectively), suggesting that our prediction equations are beneficial beyond the applications 

of standard growth measures.

Due to the longitudinal nature of the cohorts, we repeated our procedures using generalized 

estimating equations (GEE) rather than standard multivariable linear regression. GEE 

accounts for any correlation among repeated measures taken from an individual21,22. 

However, the research for GEEs being applied to prediction modeling is not fully developed, 

which is why we did not use this as the primary method of model development. We found 

that GEE gave similar results to the previously described prediction model (Table VII; 

available at www.jpeds.com) suggesting that any correlation between repeated measures 

from the same individual did not affect the performance of the model.

We also tested whether there were significant interactions between terms that could improve 

the model. We found two-way interactions between weight and age and length and age (and 

their respective fractional polynomial terms) to be statistically significant at the 5% level. 

However, inclusion of these interaction terms did not improve the apparent performance of 

the models (R2 =91.5% and RMSE = 0.255 kg ) and therefore were not included in the final 

models.

Discussion

Although there are existing prediction models for infant fat mass, the majority were 

developed in neonates (i.e., within the first 72 hours after birth). Further, most require 

skinfold measurements in addition to weight, length, age, and/or sex, and there have been 

conflicting reports on their performance in validation studies. Josefson et al tested three 

prediction models of neonatal fat mass against air displacement plethysmography (ADP)23. 

Catalano et al24’s equation showed the best predictive power with a mean prediction error 

of −0.062kg and RMSE of 0.133kg, while the other tested equations25,26) had “suboptimal 

predictive power”23. Although these error values are lower than those reported in the current 

paper, the Catalano equation was developed and validated in neonates, whereas our cohort 
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includes infants between 1–24 months of age. When expressed as a percentage of mean fat 

mass (0.483kg), the Catalano equation showed an error of 27.5% in the Josefson validation 

study - larger than the error of 17.0% that we found in our testing dataset. Cauble et 

al r performed a validation study of the same infant fat mass prediction equations (with 

the addition of Deierlein et al27), and found poor agreement, precision, and accuracy 

of all tested equations against newborn ADP-measured fat mass28. Of these existing 

equations, only a single equation developed by Lingwood et al25 does not require skinfold 

measurements. The Lingwood equation uses similar predictors to our model (weight, length, 

sex) and provides an estimate of fat-free mass. Unfortunately, the authors did not include 

details of R2 or RMSE in the development paper or in the validation paper, making it 

difficult to compare the performance of the two models. However, when we tested the 

Lingwood equation in our testing dataset, the resulting R2 was 80.3% (vs 85.4% found by 

our model), mean prediction error was 0.508kg (vs −0.015kg) and RMSE was 0.661kg (vs 

0.347kg). Taken together, these data suggest that our model performs better than previously 

developed models, has a much wider weight/age range, and has greater accessibility by not 

requiring skinfold measurements.

A limitation of this study is that, due to the recruitment criteria of two of the cohorts, 

Hispanic infants were overrepresented in our datasets (62–64%) vs ~18.5% in US 

population29. To account for this, we included ethnicity as a feature in our model. However, 

ethnicity was dropped from the backwards stepwise selection suggesting it was not a factor 

that significantly influenced the prediction of infant fat mass All previously mentioned infant 

prediction models have similarly not included infant ethnicity in their models, and Josefson 

et al noted that the Aris and Catalano equations perform similarly despite being developed in 

Asian and multi-ethnic cohorts, respectively23. Further, in a model for child and adolescent 

fat mass, ethnicity did not meaningfully affect results in sensitivity analyses, and the authors 

noted that “children of unknown ethnic origins can be treated as white with little effect on 

the predictive performance”19. Another limitation is that we had multiple observations from 

the same infant within both the development and validation datasets. However, when we 

performed GEE – which takes repeated measures into account – we obtained similar results, 

suggesting that this did not meaningfully affect model performance. Finally, we recognize 

that the inclusion of fractional polynomial terms makes the equation appear convoluted 

for practical use. We have therefore devised a Microsoft Excel calculator which we have 

included as an online-only Appendix and a web app (https://jasmineplows.shinyapps.io/

FatLeanMassCalculator/) for straightforward calculation of predicted fat and lean mass. 

Finally, this model was developed in apparently healthy infants and so may not be suitable 

for infants with metabolic conditions without further evaluation.

This new predictive model could be used for early identification of increased body fat in 

infants – a trend that often tracks into childhood and adulthood – and early interventions 

could be designed accordingly. As we and others 30–32 have demonstrated, true and 

predicted fat mass was not strongly correlated with WHO z-scores. This suggests that our 

model of estimated fat mass will be beneficial beyond the applications of WHO z-scores. 

This model could also be used for routine surveillance of adiposity in infants in national 

databases. This would allow for assessment of ethnic, geographical, and socioeconomic 
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variations in fat mass rather than reliance on weight-based measures, which do not 

distinguish between fat and lean mass.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

Final predication equations for fat mass (lean mass can be predicted by 
subtracting predicted fat mass from total body weight)

Fat mass (predicted) = (4.09644221* ((weight/10)3)) - (6.87699828 *((weight/10)3 * 

ln((weight)/10)))) - (3.58838763* ((length/100)3)) - (14.70363829 * ((length/100)3 * 

ln((length/100)))) - (0.03962223 * ((age/100)3)) + (0.02136099* ((age/100)3 * ln((age/
100)))) - (0.18975680* sex) - 0.61556255

Notes: Weight units are kg. Length units are cm. Age units are days. Sex units are female 

= 0 and male = 1. Predicted fat mass units are kg.
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Figure 1. 
Assessment of model calibration for fat mass in the training dataset. The broken line depicts 

an ideal slope of one and intercept of zero, while the solid black line represents a loess 

smoother through the data points, showing a linear relationship between observed and 

predicted values of fat mass. Plot shows R2 value prior to adjusting for optimism.

Plows et al. Page 11

J Pediatr. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Calibration plot of mean observed fat mass against mean predicted fat mass values in the 

testing dataset.
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Table 1.

Characteristics of participants in the training and testing datasets. Data shown are mean (standard deviation)

Training
n = 431

Testing
n = 143

Weight (kg) 7.17 (±2.22) 7.03 (±2.16)

Length (cm) 64.91 (±8.51) 64.46 (±8.73)

Female, n (%) 216 (50.12%) 69 (48.25%)

Age (days) 183.30 (±143.70) 183.71 (±146.27)

Ethnicity

 Asian 1 (0.23%) 0 (0.00%)

 Black 35 (8.12%) 19 (13.29%)

 Hispanic 269 (62.41%) 92 (64.34%)

 Indian 2 (0.46%) 0 (0.00%)

 Mixed race 22 (5.10%) 11 (7.69%)

 Unknown 7 (1.62%) 0 (0.00%)

 White 95 (22.04%) 21 (14.69%)

Fat mass (kg) 2.09 (±0.88) 2.04 (±0.91)

Lean mass (kg) 3.92 (±1.07) 3.93 (±1.13)

Free water (kg) 0.18 (±0.06) 0.18 (±0.06)

Total water (kg) 3.85 (±0.99) 3.84 (±1.02)

^
Encompassing 269 individual infants with data collected at up to 3 different timepoints between 1–24 months of age.

†
Encompassing 90 individual infants with data collected at up to 3 different timepoints between 1–24 months of age.
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Table 2.

Model performance statistics based on internal validation

Measure Apparent performance Average optimism Optimism adjusted

R2 (%) (95% CI) 92.6 (91.3 to 94.0) 0.58 92.1

Calibration slope 1.00 (0.97 to 1.03) 0.004 0.996

Calibration intercept 0.00 (−0.06 to 0.06) −0.007 0.007
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Table 3.

Final multivariable analysis model in the development dataset and optimism adjusted β coefficients

Developed model: coefficients (95% CI) Final model coefficients after adjusting 
for overfitting*

Infant weight (kg)/103 4.11 (3.82 to 4.41) 4.10

Infant weight (kg)/103 x ln(Infant weight (kg)/10) −6.90 (−7.85 to −5.96) −6.88

Infant length (cm)/1003 −3.60 (−4.53 to −2.68) −3.59

Infant length (cm)/1003 x ln(infant length (cm)/1003) −14.76 (−20.94 to −8.58) −14.70

Infant age/100 (days)3 −0.04 (−0.05 to −0.03) −0.04

Infant age (days)/1003 x ln(age (days)/100) 0.02 (0.01 to 0.03) 0.02

Infant sex

Female Reference

Male −0.19 (−0.24 to −0.14) −0.19

Constant −0.62 (−1.15 to −0.09) −0.62

*
Uniform shrinkage factor from cross-validation determined to be 0.996.
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Table 4.

External validation: model performance statistics in infants aged 1–12 months and ≤ 12 kg.

Measure Overall performance

Adjusted R2 (95% CI) (%) 85.4% (81.1 to 89.8%)

Slope (95% CI) 1.044 (0.971 to 1.117)

Intercept (95% CI) kg −0.076 (−0.234 to 0.083)
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Table 5.

Precision of measuring infant body composition (1 – 24 months old and ≤12 kg) using Goran Lab Infant QMR 

expressed in terms of SD in units of grams and CV (=(SD/mean) x 100) in units of % (n = 324) 
1

Fat Lean Free Water Total Water

Mean (SD) g 29.48 65.14 17.95 83.03

SD (SD) g 23.72 48.06 11.68 194.20

Mean CV % 1.71 1.90 10.54 2.36

SD CV % 1.19 1.31 7.20 4.62

1
Mean is the total mean of the mean standard deviation of three consecutive readings from the same infant. SD is the standard deviation of the 

standard deviations of three consecutive readings from the same infant. CV is calculated as (SD/Mean)*100 for each infant, and mean CV % is the 
mean CV%s, while SD CV% is the standard deviation of CV%s.
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Table 6.

Accuracy of measuring body composition using Goran Lab Infant QMR with oil (3.584kg) and water 

(3.785kg) phantoms across 25 consecutive scans on one day
1

Fat Total Water

Mean difference (g) 92.24
(2.4%)

32.84
(0.9%)

SD of difference (g) 21.7 62.5

1Mean is the mean difference between known phantom weight and Infant QMR output averaged across 25 consecutive scans. SD is the standard 
deviation of the difference between known phantom weight and Infant QMR output averaged across 25 consecutive scans.
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Table 7.

Model performance statistics using generalized estimating equations rather than multivariable linear regression 

for model development.

Fat mass

Measure Performance

Training dataset

R2 (%) (95% CI) 92.6 (91.3 to 94.0)

Slope (95% CI) 1.00 (0.97 to 1.03)

Intercept (95% CI) 0.00 (−0.06 to 0.06)

Testing dataset

R2 (%) (95% CI) 85.5% (81.1 to 89.8%)

Slope (95% CI) 1.04 (0.97 to 1.12)

Intercept (95% CI) −0.08 (−0.23 to 0.08)
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