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Abstract

Motivation: Protein–protein interaction (PPI) networks have been shown to successfully predict essential proteins.
However, such networks are derived generically from experiments on many thousands of different cells.
Consequently, conventional PPI networks cannot capture the variation of genetic dependencies that exists across
different cell types, let alone those that emerge as a result of the massive cell restructuring that occurs during car-
cinogenesis. Predicting cell-specific dependencies is of considerable therapeutic benefit, facilitating the use of drugs
to inhibit those proteins on which the cancer cells have become specifically dependent. In order to go beyond the
limitations of the generic PPI, we have attempted to personalise PPI networks to reflect cell-specific patterns of gene
expression and mutation. By using 12 topological features of the resulting PPIs, together with matched gene de-
pendency data from DepMap, we trained random-forest classifiers (DependANT) to predict novel gene
dependencies.

Results: We found that DependANT improves the power of the baseline generic PPI models in predicting common
gene dependencies, by up to 10.8% and is more sensitive than the baseline generic model when predicting genes
on which only a small number of cell types are dependent.

Availability and implementation: Software available at https://bitbucket.org/bioinformatics_lab_sussex/dependant2

Contact: f.pearl@sussex.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

An essential gene is one on which a cell depends for cellular survival.
However, the set of essential genes is context specific, depending on the
cell type, genetic and epigenetic aberrations, and the environment the
cell finds itself in. Different definitions and measurements of essentiality
often have considerable overlap, but there are also large areas of dis-
agreement (Bartha et al., 2018; Eisenberg and Levanon, 2013).

During the process of carcinogenesis, the cell becomes addicted to
oncogenes and tumour suppressor genes become inactivated.
Consequently, the cell develops new gene dependencies as different
genes become transiently essential to that cell as it evolves (Acencio
et al., 2009; Weinstein, 2002). These gene dependencies can provide
opportunities for targeted treatments, as inhibiting proteins which are
only essential in cancer cells can provide a therapeutic opportunity
(Workman et al., 2013).

There have been significant experimental efforts to identify
and catalogue gene dependencies in cell-lines. Amongst these are
a number of loss-of-function (LOF) screens (Ngo et al., 2006) per-
formed using both RNAi and CRISPR-Cas9 (Aguirre et al., 2016;
Aksoy et al., 2014; Cheung et al., 2011; Luo et al., 2008;
Marcotte et al., 2012, 2016), which investigate the changes in cel-
lular phenotype caused by systematically knocking genes out one
by one, through down-regulation or disruption. Knock-downs or
knock-outs that result in significantly deleterious phenotypes in-
dicate that the respective gene may be essential in that cell-line.

A number of studies have reported off-target effects in loss of
function screens, where genes other than the target are disrupted by
certain RNAi or CRISPR treatments (Aguirre et al., 2016;
Birmingham et al., 2006; Buehler et al., 2012; Jackson and Linsley,
2004; Munoz et al., 2016). In response to these challenges,
Tsherniak developed DEMETER, an analytical framework to
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segregate the on- and off-target effects found in RNAi treatments
(Tsherniak et al., 2017). In addition, Meyers et al. developed the
computational method, CERES, to estimate gene-dependency levels
from CRISPR–Cas9 essentiality screens while accounting for copy
number–specific effects. A gene dependency score was assigned to
each gene in each cell-line, reflecting the probability that the cell-line
depends on the gene (Meyers et al., 2017).

Identifying core essential genes or disease-specific gene depend-
encies provides a better understanding of potential disease-specific
targets. However, LOF screens are not readily available for the ma-
jority of individual cancer patients. Computational tools that predict
cell-line specific gene dependencies from more readily available data
such as mutations and gene expression, may offer new opportunities
for tailored therapies (Benstead-Hume et al., 2017; Charlton and
Spicer, 2016).

There have been a number of successful attempts to predict com-
mon essential genes using biological network data in different contexts
and in different organisms [for a review see Zhang et al., (2016)].
These studies have used a range of different network data including
protein–protein interaction (PPI) networks, transcriptional regulatory
networks, gene co-expression networks, metabolic networks and net-
works that integrate two or more of the above. Due to data availability
these studies have generally focused on model organisms including
Saccharomyces cerevisiae (Acencio et al., 2009; Chen and Xu, 2005;
Saha and Heber, 2006), Escherichia coli (da Silva et al., 2008; Hwang
et al., 2009) and on several other species of bacteria (Cheng et al.,
2014; Lu et al., 2014; Plaimas et al., 2010).

For the most part these studies employ similar methods; topology
data is extracted from the biological networks and used as a feature-set
to train machine learning models to identify essential genes. For ex-
ample, Saha and Heber (2006) reported a Receiver Operating
Characteristic (ROC) Area Under the Curve (AUC) of 82% using PPI
network degree count and conservation score features, to classify
�2200 essential genes in S.cerevisiae, and da Silva et al. (2008)
reported accuracy, using F-measure scores, of 83.4% for essential gene
predictions and 79.7% for non-essential gene prediction in E.coli.
Comparable predictions for Homo sapiens have recently been reported
(Dai et al., 2020; Schapke et al., 2021; Zhang et al., 2020).

Previous computational studies have generally assumed that
genes are either essential or not, and have used a static version of the
known PPI network. However, observations made by Roumeliotis
et al. (2017) suggest the effect of genetic variations can be transmit-
ted from directly affected proteins to distant gene products through
protein interaction pathways, which suggests that a more dynamic
model of the PPI may be required to capture gene dependencies in
highly mutated cancer cells.

In cancer cells, mutations and changes in expression level and/or
copy number of one gene, can impact the function of proteins
encoded by other genes, thereby altering the underlying connectivity
of the PPI network. Topological network features such as eigen-
centrality and betweenness are effective at capturing long-distance
changes in networks, which suggests that the inclusion of genetic
alterations to the traditional PPI network model could be an appro-
priate way of predicting altered and novel dependencies.

In this study, we use recent cell-line specific gene dependency
data along with data from PPI networks, to build models able to
identify novel cell-line specific gene dependencies. To do this we
model genetic alterations in specific cell-lines by perturbing their re-
spective PPI networks. We explore the viability of identifying cell-
line specific gene dependencies both within and between various
human cancer cell-lines using this perturbed PPI network data.
Finally, we introduce DependANT, a classifier trained to predict
cell-line specific gene dependencies using both generic and perturbed
PPI network data, with the aim of providing a low-cost approach to
identifying personalised cancer drug targets without the need for ex-
perimental dependency screening.

2 Methods

We generated a baseline human PPI network, a network of known
physical protein interactions in which each node (7262 nodes)

represents a protein and each edge (�60 000 edges) a known physic-
al protein interaction. The PPI data was sourced from the STRING
database (v.10) (von Mering et al., 2005) and filtered to include
only human interactions with an experimental score higher than 80,
to ensure reliability. The Ensembl protein IDs (ENSPs) in this data-
set were converted to their respective gene IDs (ENSGs) using
Ensembl data (Hubbard et al., 2002). R (version 3.4.0) and the
igraph package (version 1.1.2) (Csárdi and Nepusz, 2006) was used
to produce a network model of the PPI data for each cell-line and
calculate each topological feature.

To establish a baseline performance for classification we sourced
gene dependency data published in Meyers et al. via DepMap Public
18Q3 (Tsherniak et al., 2017). These data provide a matrix of prob-
abilities that a cell line is dependent on a gene, independent of copy
number. We selected 39 cell lines, 19 breast, 11 kidney and 9 pan-
creas based on data availability. In the analysis following we use the
term ‘cell-essential gene’ to refer to a gene which, in the context of a
particular cell-line has a probability >0.65 that the cell is dependent
on the gene. Genes were identified as pan-essential if they were pre-
dicted to be a cell-essential gene in all the 39 cell lines analysed.

Twelve topological features for each node of the PPI were calcu-
lated: betweenness; constraint; closeness; coreness; degree; eccentri-
city; eigen centrality; hub score; neighbourhood n size (for
n¼1,2,6); page rank (Table 1). After normalization, where each fea-
ture score was independently scaled between 0 and 1, these were
used as features in our machine learning models. For each of the 39
cell-lines we optimized and trained a random forest classifier using a
balanced set of nodes labelled as dependent and non-dependent,
averaging around 1000 dependent/non-cell-essential genes for each
cell line, and holding out 20% of the data as a test set, with a further
20% for validation.

We validated the model on each of our cell-lines, using both train-
ing data and validation data extracted from the same single cell-line.
Each trial was repeated 10 times using the base PPI model. To under-
stand how well the classifiers perform and generalize to different cell
types, we tested each of the classifiers on unseen, balanced data from
three different sets: the same cell-line; different cell-lines of the same
tissue type; and from cell-lines originating from different tissue types.

2.1 Perturbing the PPI
The base PPI network was then weighted to more accurately repre-
sent the differences in the 39 cell-lines. Mutations such as frame-
shift, insertions and deletions (indels) or nonsense substitutions were
labelled as LOF. For missense mutations the pathogenic mutations
were identified using the FATHMM algorithm (Shihab et al., 2013),
and classified as gain-of-function (GOF) or LOF depending on
whether they came from oncogenes or tumour suppressor genes.
Nodes that represented genes with inactivating mutations were
removed from the PPI network.

As well as removing inactivated nodes we also weighted edges.
We assume that genes with either GOF mutations and/or high ex-
pression levels have greater impact than in the baseline network. To
model this, we give the edges from the corresponding proteins in the
PPI network low weights. This increases the flow of information
and so strengthens the impact of the gene. Edges from nodes with
low expression levels have high weights, reducing the flow of infor-
mation and thus weakening the impact. To do this, mutation and
gene expression data from Meyer et al. via project Achilles
(Tsherniak et al., 2017) was used to establish the weights, as fol-
lows. For each gene pair we replaced the unweighted bidirectional
edge with two weighted unidirectional edges, so that as gene expres-
sion (g) tends to 0 the weight (w) tends to 1, and as g tends to infin-
ity, w tends to 0. For genes subject to a gain of function mutation
we multiplied the gene expression by 10 before calculating the
weight (w) as a function of the gene expression g. To provide the
properties described above we used the function

w ¼ 0:5� 0:5 tanhðlogðgþ 1e� 10ÞÞ;

where g is the expression in transcripts per million. To focus on the
differences in gene dependency between tissue types we removed
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genes that are either almost always essential or almost never essen-
tial (variation in gene dependency across all cell lines <0.1).
Features for the classification algorithm were recalculated for each
individual cell-line weighted by the edge scores for each node. To
improve performance in cross cell-line classification each cell-line’s
feature set was normalized, i.e. each feature was independently
scaled between 0 and 1 (Jacunski et al., 2015). To ensure unbiased
validation we withheld 20% of this data to be used as a test set.

To measure performance across cell-lines originating from the
same tissue type and the predictive performance between tissue
types, we used the training sets that were already generated for each
cell-line to train our classifiers, and systematically validated them
against each other cell-lines test set. To ensure that our models were
not being biased by genes that were present in both training and test
sets we ensured that any genes present in the training set were
removed from the active test set.

We predicted both the probability that unseen proteins from the
same cell-line were cell-essential and that unseen proteins from other
cell lines were cell-essential. To predict cell-essential genes in un-
labelled cell-lines we first concatenated all training data into one
large, labelled training dataset. We produced a number of feature
sets for cell-lines that were not included in the original training data
and predicted cell-essential genes in these unlabelled cell-lines based
on a model trained on the pan-cancer set.

R script used for analysis is available: https://bitbucket.org/bio
informatics_lab_sussex/dependant2

2.2 Experimental validation
We validated our predictions experimentally using the unlabelled
breast cancer cell-line, MCF7 as it is not featured in our training
data, readily available and has a good class balance for predictions
on genes featured as part of the available DDR gene library. We per-
formed a high-throughput siRNA screen. MCF7 cells (validated by
ATCC STR.V profiling) were grown in minimal essential medium
(MEM) supplemented with 10% foetal calf serum, penicillin/
streptomycin and L-glutamine at 37�C and 5% CO2. Cells were re-
verse transfected with library siRNA using lipofectamine
RNAiMAX (as per the manufacturer’s instructions) in black 96 well
plates. Plates were incubated at 37�C, 5% CO2 for 72 h. CellTitre-
Blue was added to determine cell viability, plates were analysed
using a plate reader at 560/590 nm.

2.3 Druggability analysis
Druggability annotation was performed using CanSAR Black’s can-
cer protein annotation tools (Coker et al., 2019). We designated any
genes with a ‘nearest drug target’ score of 100% as a known drug
target. We also identified a set of ‘druggable genes’. These were
genes whose protein products were predicted to be drug targets
using a structural druggability algorithm on the human protein
structure (Burley et al., 2022).

3 Results

3.1 Predicting gene dependencies using PPI network

topological features
In total, we used 39 cell-lines with dependency data, mutational
data and gene expression data. Across these cell-lines 4030 genes
had dependency scores >0.65 in one or more cell-line. We refer to
these as cell-essential genes.

3.2 Base PPI network parameter data predicts pan-cell-

line essential genes
We first predicted genes which are cell-essential in all the cell-lines,
i.e. pan-cell-line essential genes. To create a baseline score, we per-
formed the prediction on a base PPI model with randomized edges.
With a balanced class distribution of positive and negative labelled
DepMap genes, we achieved an AUC ROC score of 0.520 (SD
0.082, n¼10). Significance scores below are based on this baseline
distribution.

On average the baseline PPI networks predicted pan-cell-line es-
sential genes with an AUC ROC score of 0.765 (SD 0.024,
P<0.0001) when the classifiers were tested on genes from the same
cell-line. This dropped slightly to an average of AUC ROC 0.758
(SD 0.007, P<0.0001) when they were tested on genes from other
cell-lines. Differences between the tissue types are shown in Table 2.

3.3 Modelling cell-lines with biological network and

genetic alteration data
The PPI networks were modified using the mutation and gene ex-
pression data to create the DependANT classifier (see
Supplementary Table S2). Again using balanced class validation
data; DependANT improved the average predictive power of the
baseline model by 5.7% (from a mean AUC ROC score of 0.758 to
0.801). Predictive power was highest when classifying pan-cell-line
essential genes. On average the classifiers using modified PPI data
and raw gene expression data scored a mean AUC ROC of 0.812
(SD 0.023, P<0.0001) when predicting pan-cell-line essential genes
compared to the base model’s performance of AUC ROC 0.765 (see
Fig. 1a).

However, the therapeutic benefit of predicting gene dependen-
cies is in predicting novel dependencies that only arise in a few
cell-lines. To investigated how well our classifiers do under these cir-
cumstances, we trained DependANT on all cell-lines and then vali-
dated the models on test sets filtered for the rarity of the novel gene
dependencies being predicted (see Fig. 1b). 580 of the total 4030
(�14.3%) cell-essential genes in our training data had high scores in
all 39 cell-lines, whereas 1606 (�39.9%) were cell-essential genes in
20 or less of the 39 cell-lines. As expected, performance of both the
baseline PPI models and DependANT fell when predicting genes
that are only rarely dependencies. However, in each case
DependANT significantly outperforms the baseline models (see

Table 1. List of graph topology features data with descriptions

Feature name Description

Betweenness The number of shortest paths in the entire graph that pass through the node.

Constraint A measure of how many of a node’s connections are focused on single cluster of neighbours.

Closeness The number of steps required to reach all other nodes from a given node.

Coreness Whether a node is part of the k-core of the full graph, the k-core being a maximal sub-graph

in which each node has at least degree k.

Degree The number of edges coming in to or out of the node.

Eccentricity The shortest path distance from the node farthest from the given node.

Eigen centrality A measure of how well-connected a given node is to other well-connected nodes.

Hub score Related to the concepts of hubs and authorities, the hub score is a measure of how many well

linked hubs the nodes is linked to.

PageRank (PRPACK) Another measure of how well-connected a given node is to other well-connected nodes.

Neighbourhood n size (1, 2 and 6 steps) The number of nodes within n steps of a given node for n of 1, 2 and 6.

Note: Features were extracted using R igraph package (version 1.1.2) from protein interaction network data.
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Table 3) by broadly similar amounts, and thus proportionately
larger amounts for the rarer dependencies. Model performance is
also shown. The purple line shows the ROC AUC for the baseline
PPI for different levels of rarity of cell-essential genes. The predic-
tions being most reliable for genes that were essential in all the
cell-lines studied (39). The red line shows the general improved per-
formance of DepentANT which uses weighted PPIs.

3.4 Feature importance
Twelve topological features were included within the dependency
classifiers. To understand whether or not these features provide pre-
dictive power we plotted the distribution of features’ values for
genes with a dependency score above the 0.65 cut-off against those
genes with a lower dependency score.

As Figure 2 shows, the two distributions are distinctive for
features measuring betweenness, constraint, eigen centrality and
hub-score features. This suggests that these features should provide
predictive power.

To quantify the predictive power of each feature we performed a
leave-one-out analysis, iteratively omitting each feature in turn and
measuring the resulting mean decrease in accuracy, across all tree
permutations in a random forest. We found that features (such as
page rank and eigen centrality) that measure the connectivity of a
gene, perform better than degree centrality. Eccentricity, which
measures how close a node is to the centre of the network, performs
badly across all models.

As expected, the difference in mean value for each feature across
cell-essential and non-cell-essential genes is fairly well mirrored in
these importance scores: features with values that vary more be-
tween cell-essential and non-cell-essential genes provided more pre-
dictive power. Pagerank and constraint showed a noticeable
differentiation between classes, while the differentiation between
classes for eigen centrality and hubscore features were not as prom-
inent (see Supplementary Fig. S1).

3.5 Our models are fairly robust to PPI networks

incompleteness
Current PPI network models are both incomplete and suffer from as-
certainment bias in that some proteins are better studied than others
(Huttlin et al., 2017; Mosca et al., 2013; Rolland et al., 2014). In
order to quantify how the incomplete nature of the PPI networks

affects the robustness of our models, we repeated our classification
pipelines with revised PPI networks in which a randomly selected
25% of the data forming the original network was withheld. We
observed minimal loss of predictive power in the network derived
from the randomly withheld dataset AUC ROC 0.78 (SD 0.011)
compared to our raw expression cross cell-line model AUC ROC
0.801 (SD 0.006).

We conclude that while increasing completeness of a PPI net-
work may improve its predictive performance, our current models
are fairly resilient to the incomplete nature of the currently available
PPI network data.

3.6 Creating a pan tissue cell-line training set
To maximize the amount of training data available for use by our
classifiers for the prediction of gene dependencies in previously un-
labelled cell-lines, we concatenated all available features/labels from
all tissue types into one super set. In an attempt to estimate how well
this concatenated data performs for the prediction of gene depend-
ency in unlabelled datasets, we once more validated each of our indi-
vidual test sets based on models trained using our super training set.

We found that our super training set classified gene dependencies
across all cell-lines with an AUC ROC of 0.843 (SD 0.012), a further
improvement on the mean individual cell AUC ROC score of 0.801
(SD 0.006). This model provided the most predictive power and as
such represents the most suitable available for predicting gene
dependencies in cell-lines with no prior labelling as discussed below.

3.7 Experimentally validating gene dependencies in

previously unlabelled cancer cell-lines
The MCF7 breast cell line was chosen to experimentally validate the
DependANT classifier due to the availability of its mutational and
expression data. We used our pan-tissue training set to train our
classifiers and produced a full set of predictions for the MCF7 breast
cell-line.

Survival screens focusing on a library of 240 genes involved in
the DNA damage response (DDR) were repeated in triplicate for the
MCF7 breast cell-line. Cell viability for knockdown of each of the
genes was reported using a z-score: a positive number indicates that
viability increased with the knockdown of the gene, whilst a nega-
tive z-score indicates a decrease in viability.

Fig. 1. (a) AUC ROC plot for the base PPI model is shown in purple (lower line). The red line shows the improvement in prediction scores when the modified DependANT PPI

model is used. (b) A comparison of how well the DependANT and base PPI models predict common and rare cell-essential genes. The blue bars represent the number of cell

lines in which a gene is essential in. For example, 200 genes are reported to be cell-essential genes in exactly three cell lines
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The variance of results across all three repeats was high, which
may have been due to the choice of library (see Supplementary
Table S2). The loss of genes involved in the DDR can often lead to

genomic instability in a cell, with consequential mutations in other
genes or loci. Knocking out a single gene (e.g. MSH3) can thus
cause changes in the function of additional genes, resulting in a

Table 2. Mean model performance when using dependencies from

one cell line to predict those in another cell line of the same and

different tissue types

Test data (ROC)

Training data Breast Kidney Pancreas

Breast 0.761 (SD 0.005) 0.759 (SD 0.006) 0.761 (SD 0.01)

Kidney 0.758 (SD 0.007) 0.755 (SD 0.008) 0.758 (SD 0.01)

Pancreas 0.760 (SD 0.011) 0.752 (SD 0.01) 0.754 (SD 0.012)

Table 3. Model performance across gene dependency rarity inter-

vals shows the general improved performance of the modified PPI

against the baseline

DependANT Baseline PPI % difference

All cell-lines 0.801 0.758 5.7

<30 cell-lines 0.727 0.665 9.3

<20 cell-lines 0.711 0.644 10.4

<10 cell-lines 0.681 0.621 9.7

1 cell-line 0.66 0.615 7.3

Fig. 2. Feature distributions between dependent (red, left-hand side) and non-dependent (green, right-hand side) gene classes show differences between the classes for the

betweenness, constraint, eigen centrality and hub score features
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complex pattern of dependencies. We then compared the z-scores
with the cell-line essentiality predictions (see Supplementary Figs
S2–S4). We classify a gene as ‘predicted cell-essential’ if the likeli-
hood is >0.85 and ‘predicted non-cell-essential’ if the likelihood is
<0.15. This gives an accuracy of 0.64 with a sensitivity of 0.73
and a false discovery rate of 0.38 based on experimental validation
for the MCF7 cell-line. Of the 10 genes with the highest

cell-essentiality score (ce-score), eight also have a mean negative
z-score (see Table 4).

In addition, although only 7 of the 240 genes screened and classi-
fied in the MCF7 cell-line had a mean z-score of less than –1 in all 3
repeats, two of these, MEN1 and CHEK1 were predicted as
cell-essential with a score of over 0.85 (see Table 5).

3.8 Therapeutic opportunities in cancer cell-essential

genes
Being able to predict cell-specific dependency genes from genetic
analysis of clinical samples allows the direct identification of prom-
ising points of therapeutic intervention specific to that sample.
Targeting the protein products of tumour-specific dependent genes
should kill the cancer cells, whist leaving the normal cells which are
not dependent on these genes for viability, relatively unharmed. To
explore whether this is a feasible approach we undertook a drugga-
bilty analysis on a set of cell line samples.

Using Cansar’s cancer protein annotation tools (Bulusu et al.,
2014) we labelled cell-essential genes, based on their respective pro-
tein products, as either a druggable target or non-druggable using
predictions based on their protein structure. Potential druggable tar-
gets were then identified for each of the cell lines in our original
training sets.

Next, we identified 35 cell-lines previously unlabelled for gene
dependency, 15 for breast, 12 for kidney and 8 for pancreas. Each
of these cell-lines were chosen based on the amount of mutation and
expression training data available. We used our pan-tissue training
set to train our classifiers and produced a full set of dependency pre-
dictions for each of these cell-lines (see Supplementary Table S3).

A druggability analysis of the genes predicted to be cell-essential
identified 0.7% whose protein products were known drug targets.
The proportion of predicted druggable genes was higher at 45.1%
compared to 34.2% in our training set. We found therapeutic
opportunities in almost every cell-line in both our training data and
prediction set both in the form of genes with known drugs and genes
those who exhibit druggable traits (Fig. 3).

4 Discussion

PPI maps provide us with a robust model of how the proteome is
organised. Here we find that the topological relationships across
these maps tends to be different for essential genes and non-essential
genes, opening up the opportunity for predicting which genes are es-
sential. However, the real therapeutic benefit would come from

Table 5. The 10 genes with lowest Z-scores in the MCF7 cell line, to-

gether with the predicted likelihood of cell-essentiality given by our

pan-cancer classifier

Gene name Z-score Likelihood of cell-essentiality

POLA1 –1.9195 0.6750

MEN1 –1.6886 0.8546

PNKP –1.5129 0.5851

LIG3 –1.4379 0.3555

CHEK1 –1.2784 0.8503

EME1 –1.2168 0.4798

RBBP8 –1.2160 0.7818

PARP1 –0.9221 0.8987

ERCC2 –0.9021 0.6446

RECQL5 –0.8604 0.5324

Table 4. The 10 genes in the MCF7 cell-line predicted by

DependANT to have the highest cell-essentiality score together

with the experimentally derived Z-score

Gene name Z-score Likelihood of cell-essentiality

RAD23B –0.4723 0.9741

RAD23A 0.2654 0.9713

PRPF19 –0.3052 0.9704

SHFM1 –0.3754 0.9681

TP53BP1 0.7196 0.9554

RUVBL2 –0.0575 0.9538

TRIM28 –0.6968 0.9470

XRCC5 –0.2933 0.9467

RAD1 –0.4956 0.9455

XAB2 –0.7499 0.9360

Fig. 3. Druggability assessments for (a) cell-essential genes in the original training set and (b) for the genes predicted to be essential in the unlabelled dataset. Genes who protein

products are known drug target are shown in red. Genes whose protein products are predicted to be druggable are shown in green, and those that are non-druggable shown in

blue
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using the mutational and expression data associated with a specific
cancer cell to predict which genes acquire cell-essentiality as a result
of the cancer. The proteins associated with these genes could then be
inhibited leading to death of the cancer cells.

A standard PPI map cannot predict whether a gene which is not
normally essential will become so under the specific combinations of
mutations and changes in gene expression that occur in cancer cells.
To address this problem, we first ‘personalized’ the PPI to incorpor-
ate information about mutations and gene expression before using
resulting topological features to train a random-forest classifier,
DependANT. We find that these alterations to the PPI can improve
predictions for cell essentiality in human cell-lines with ROC AUC
scores of up to 0.84. This is an improvement of 10.8% when com-
pared to the baseline PPI classifier, and an improvement on the ac-
curacy reported by previous studies that use PPI network models to
predict essential genes in S.cerevisiae (Saha and Heber, 2006) and
E.coli (da Silva et al., 2008). These improvements are particularly
noticeable for genes which are predicted to be essential in only a few
cell-lines, a feature which would be useful when looking for thera-
peutic targets in cancer cells.

Despite the relatively high performance of our classifiers, we are
aware that the association between gene expression and protein ex-
pression is only partial and so it is likely that further improvements
will be possible for this type of model when it is possible to modify
the PPI network as a result of protein expression as well as existing
‘omic data. It is possible that improvements to the completeness of
our source PPI networks could also lead to significant improvements
in this type of study. In particular our source PPI network provides
only non-directional, binary information about interactions between
proteins rather than the inhibitory or excitatory nature of the inter-
action. Although we report that our models are relatively robust to
incompleteness in the source networks, we expect that as the com-
pleteness and sophistication of PPI models improves so will the ef-
fectiveness of this type of model. However, it is possible that such
improvements may be limited, perhaps because genes with high de-
pendency scores tend to be better studied than genes with lower
scores.

The ability to identify therapeutic vulnerabilities for cancer cells
using readily available omic data from cancer samples may lead to
novel treatment protocols for hard to treat tumours.
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