Skip to main content
. 2022 Nov 8;9:1050436. doi: 10.3389/fmed.2022.1050436

Table 4.

The performance of all Ml models and DNN for detection of DR using a combination of VGG-16 and retinal lesion features.

Classifier Accuracy % Precision Recall F1-score AUC
Xgboost 99.38 1 0.99 0.99 0.994
KNN 47.53 0.45 0.25 0.32 0.475
LR 51.85 0.52 0.57 0.54 0.519
SVM 43.21 0.45 0.62 0.52 0.432
MLP 53.09 0.52 0.93 0.66 0.531
DT 88.27 1.00 0.77 0.87 0.883
RF 68.52 0.71 0.63 0.67 0.685
DNN (1 layer) 48 0.48 0.58 0.53 0.481
DNN (2 layers) 50 0.5 0.38 0.43 0.5
DNN (3 layers) 52 0.52 0.56 0.54 0.519

The bold values highlight the best accuracy, precision, recall, F1-score, and AUC of ML and DNN learning models for detection of DR using a combination of VGG-16 and retinal lesion features.